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1. Introduction 

We denote w, � ∞ 

, c and c 0 , the spaces of all, bounded, conver-
gent, null sequences, respectively. Also, by � 1 and � p , we de-
note the spaces of all absolutely summable and p -absolutely
summable series, respectively. Also we denote c 00 the space
of real sequences which have only a finite number of non-
zero coordinates. Recall that a sequence ( x (i) ) ∞ 

i=1 in a Banach
space X is called Schauder (or basis ) of X if for each x ∈ X
there exists a unique sequence ( a (i) ) ∞ 

i=1 of scalars such that
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 = 

∑ ∞ 

i=1 a (i) x (i) , i.e. lim n →∞ 

∑ n 
i=1 a (i) x (i) = x. A sequence

pace X with a linear topology is called a K-space if each of
he projection maps P i : X → C defined by P i (x ) = x (i) for
 = ( x (i) ) ∞ 

i=1 ∈ X is continuous for each natural i . A Fréchet
pace is a complete metric linear space and the metric is gener-
ted by a F-norm and a Fréchet space which is a K-space is called
n FK-space i.e. a K-space X is called an FK-space if X is a com-
lete linear metric space. In other words, X is an FK-space if X

s a Fréchet space with continuous coordinatewise projections. 
ll the sequence spaces mentioned above are FK -space except 

he space c 00 . An FK -spaces X which contains the space c 00 is
aid to have the property AK if for every sequence ( x (i) ) ∞ 

i=1 ∈ 

 , x = 

∑ ∞ 

i=1 x (i) e (i) where e (i) = (0 , 0 , . . . 1 i th place , 0 , 0 , . . . ) . 
A Banach space X is said to be a Köthe sequence space if X

s a subspace of w such that 

(a) if x ∈ w, y ∈ X and | x ( i )| ≤ | y ( i )| for all i ∈ N , then x ∈
X and ‖ x ‖ ≤ ‖ y ‖ 

(b) there exists an element x ∈ X such that x ( i ) > 0 for all
i ∈ N . 

We say that x ∈ X is order continuous if for any sequence ( x n )
 X such that x n ( i ) ≤ | x ( i )| for all i ∈ N and x n ( i ) → 0 as n →
 we have ‖ x n ‖ → 0 as n → ∞ holds. 
A Köthe sequence space X is said to be order continuous if

ll sequences in X are order continuous. It is easy to see that x ∈
 order continuous if and only if || (0 , 0 , . . . , 0 , x (n + 1) , x (n +
) , . . . ) || → 0 as n → ∞ . 

A Köthe sequence space X is said to have the Fatou property
f for any real sequence x and ( x n ) in X such that x n ↑ x coordi-
atewisely and sup n || x n || < ∞ , we have that x ∈ X and ‖ x n ‖ →
 x ‖ as n → ∞ . 

A Banach space X is said to have the Banach–Saks property 
f every bounded sequence ( x n ) in X admits a subsequence ( z n )
uch that the sequence ( t k ( z )) is convergent in X with respect to
he norm, where 

 k (z ) = 

z 1 + z 2 + · · · + z k 
k 

for all k ∈ N . 

Some of works on geometric properties of sequence space 
an be found in [1–4] . 

Let X be a linear metric space. A function p : X → R is called
aranorm, if 

1. p ( x ) ≥ 0 for all x ∈ X , 
2. p(−x ) = p(x ) for all x ∈ X , 
3. p(x + y ) ≤ p(x ) + p(y ) for all x , y ∈ X , 
4. if ( γ k ) is a sequence of scalars with γ k → γ , as k → ∞

and ( x k ) is a sequence of vectors with p(x k − x ) → 0 as
k → ∞ , then p(γk x k − γ x ) → 0 as k → ∞ . 

Let p = ( p k ) be a bounded sequence of strictly positive real 
umbers. If H = sup k p k < ∞ , then for any complex numbers
 k and b k 

 a k + b k | p k ≤ C 

(| a k | p k + | b k | p k 
)

(1.1) 

here C = max (1 , 2 H−1 ) . Also, for any complex number α, (see
5] ) 

 α| p k ≤ max 
(
1 , | α| H 

)
. (1.2) 

A function M : [0, ∞ ) → [0, ∞ ) is said to be an Orlicz func-
ion if it is continuous, convex, nondecreasing function such 
hat M(0) = 0 , M ( x ) > 0 for x > 0 and M ( x ) → ∞ as x →
 . If convexity of Orlicz function is replaced by M(x + y ) ≤
 ( x ) + M ( y ) then this function is called the modulus function

nd characterized by Ruckle [6] . An Orlicz function M is said to
atisfy �2 −condition for all values u, if there exists K > 0 such
hat M (2 u ) ≤ KM ( u ), u ≥ 0. 

emma 1.1. An Orlicz function satisfies the inequality M ( λx ) ≤
M ( x ) for all λ with 0 < λ < 1 . 

Lindenstrauss and Tzafriri [7] used the idea of Orlicz func- 
ion to construct the sequence space 

 M 

= 

{ 

( x k ) : 
∞ ∑ 

k =1 

M 

( | x k | 
r 

)
< ∞ , for some r > 0 

} 

, 

hich is a Banach space normed by 

 ( x k ) ‖ = inf 

{ 

r > 0 : 
∞ ∑ 

k =1 

M 

( | x k | 
r 

)
≤ 1 

} 

. 

he space l M 

is closely related to the space l p , which is an Orlicz
equence space with M ( x ) = | x | p , for 1 ≤ p < ∞ . 

. Classes of Orlicz difference sequences 

he strongly almost summable sequence spaces were introduced 

nd studied by Maddox [5] , Nanda [8] , Güngör et al., [9] , Esi
10] , Güngör and Et [11] , Esi and Et [12] and many authors. 

Let λ = (λr ) be a monotonically increasing sequence of pos- 
tive real numbers tending to ∞ such that λr ≤ λr + 1 , λ1 = 1 .
he generalized de la Vallée-Poussin mean is defined by t r (x ) =

1 
λr 

∑ 

k ∈ I r x k where I r = [ r − λr + 1 , r ] for r = 1 , 2 , 3 , . . . . A se-
uence x = (x k ) is said to be ( V , λ)-summable to a number L if
 r ( x ) → L as r → ∞ (see [13] ). If λr = r, then ( V , λ)-summability
s reduced to Cesáro summability. We denote � the set of all in-
reasing sequences of positive real numbers tending to ∞ such 

hat λr ≤ λr + 1 , λ1 = 1 . 
Let A = ( a ij ) be an infinite matrix of non-negative real

umbers with all rows are linearly independent for all i, j =
 , 2 , 3 , . . . and B kn ( x ) = 

∑ ∞ 

i=1 a ki x n + i and, the series 
∑ ∞ 

i=1 a ki x n + i 
onverges for each k and uniformly on n . 

Let M be an Orlicz function, p = (p k ) be a sequence of pos-
tive real numbers, and λ = ( λr ) be a monotonically increasing 
equences of positive real numbers. For ρ > 0 we define the new
equence spaces as follows: 

 

 λ[ A, M, �, p ] o = 

{ 

x ∈ w : lim 

r →∞ 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ

)]p k 

= 0 , uniformly on n 

} 

, 

 

 λ[ A, M, �, p ] = 

{ 

x ∈ w : lim 

r →∞ 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k

= 0 , for some L, uniformly on n 

} 
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 λ[ A, M, �, p ] ∞ 

= 

{ 

x ∈ w : sup 

r 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ

)]p k 

< ∞ , uniformly on n 

} 

, 

where �B kn ( x ) = 

∑ ∞ 

i=1 

(
a ki − a k +1 ,i 

)
x n + i . 

Theorem 2.1. For an Orlicz function M and a bounded se-
quence p = (p k ) of positive real numbers, ̂ V λ[ A, M, �, p ] o ,̂ 

 λ[ A, M, �, p ] and ̂  V λ[ A, M, �, p ] ∞ 

are linear spaces over the set
of complex field. 

Proof. We give the proof only for the space ̂ V λ[ A, M, �, p ] o
and for other spaces follow by applying similar method. Let
x = ( x k ) , y = ( y k ) ∈ 

̂ V λ[ A, M, �, p ] o and α, β ∈ C . Then there
exist ρ1 > 0 and ρ2 > 0 such that 

lim 

r →∞ 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ1 

)]p k 

= 0 uniformly on n 

and 

lim 

r →∞ 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( y ) | 
ρ2 

)]p k 

= 0 uniformly on n. 

Define ρ3 = max { 2 | α| ρ1 , 2 | β| ρ2 } . Since the operator �B kn is
linear and M is non-decreasing and convex, we have 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( αx + βy ) | 
ρ3 

)]p k 

= 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | α�B kn ( x ) + β�B kn ( y ) | 
ρ3 

)]p k 

≤ 1 
λr 

∑ 

k ∈ I r 

[
M 

( | α�B kn ( x ) | 
ρ3 

)
+ M 

( | β�B kn ( y ) | 
ρ3 

)]p k 

≤ 1 
λr 

∑ 

k ∈ I r 

1 
2 p k 

[
M 

( | �B kn ( x ) | 
ρ1 

)
+ M 

( | �B kn ( y ) | 
ρ2 

)]p k 

≤ 1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ1 

)
+ M 

( | �B kn ( y ) | 
ρ2 

)]p k 

≤ C 

λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ1 

)]p k 

+ 

C 

λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( y ) | 
ρ2 

)]p k 

→ 0 as r → ∞ 

where C = max (1 , 2 H−1 ) , so αx + βy ∈ 

̂ V λ[ A, M, �, p ] o , hence
it is a linear space. �

Theorem 2.2. For an Orlicz function M and a bounded sequence
p = (p k ) of positive real numbers, ̂  V λ[ A, M, �, p ] o is a topological
linear space, paranormed by 

g ( x ) = inf 

⎧ ⎨ ⎩ 

ρ
p r 
H : 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ

)]p k 
) 

1 
T 

≤ 1 , r = 1 , 2 , 3 , . . . 

⎫ ⎬ ⎭ 

where T = max (1 , sup p k = H ) . 
k 
Proof. The subadditivity of g follows from the Theorem 2.1 ,
by taking α = β = 1 and it is clear that g ( x ) = g ( −x ) . Since
M(0) = 0 , we get inf { ρ p r 

H } = 0 for x = 0 . Suppose that x k 
 =
0 for each k ∈ N . This implies that �B kn ( x ) 
 = 0 for each k and
uniformly on n . Let ε → 0, then 

| �B kn ( x ) | 
ε 

→ ∞ . 

It follows that 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ε 

)]p k 
) 

1 
T 

→ ∞ 

which is a contradiction. 
Next we prove that scalar multiplication is continuous. Let γ

be any complex number, by definition 

g ( γ x ) = inf 

⎧ ⎨ ⎩ 

ρ
p r 
H : 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( γ x ) | 
ρ

)]p k 
) 

1 
T 

≤ 1 , 

r = 1 , 2 , 3 , . . . 

⎫ ⎬ ⎭ 

= inf 

⎧ ⎨ ⎩ 

ρ
p r 
H : 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | γ | | �B kn ( x ) | 
ρ

)]p k 
) 

1 
T 

≤ 1 , 

r = 1 , 2 , 3 , . . . 

⎫ ⎬ ⎭ 

. 

Suppose that s = 

ρ

| γ | , then ρ = s | γ | and since | γ | p k ≤
max 

(
1 , | γ | H 

)
we have 

g ( γ x ) ≤ | γ | p k ≤ max 
(
1 , | γ | H 

)
inf 

×
⎧ ⎨ ⎩ 

s 
p r 
H : 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
s 

)]p k 
) 

1 
T 

≤ 1 , 

r = 1 , 2 , 3 , . . . 

⎫ ⎬ ⎭ 

which converges to zero as x converges to zero in̂ 

 λ[ A, M, �, p ] o . Now suppose that λi → ∞ as i → ∞ and
x is fixed in ̂

 V λ[ A, M, �, p ] o . For arbitrary ε > 0 and let r o be a
positive integer such that 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ

)]p k 

≤
( ε 

2 

)T 

for some ρ > 0 and r > r o . This implies that 

( 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | γ�B kn ( x ) | 
ρ

)]p k 
) 

1 
T 

< 

ε 

2 

for some ρ > 0 and r > r o . Let 0 < | γ | < 1. Using the convexity
of Orlicz function M , for r > r o , we get 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
ρ

)]p k 
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s

≤ 1 
λr 

∑ 

k ∈ I r 

[
M 

( | γ | | �B kn ( x ) | 
ρ

)]p k 

< 

( ε 

2 

)T 
. 

ince M is continuous everywhere in [0, ∞ ), then we consider
or r > r o the function 

f (t ) = 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | t �B kn ( x ) | 
ρ

)]p k 

. 

hen f is continuous at zero. So there is a δ ∈ (0, 1) such that
 f ( t ) | < 

(
ε 

2 

)T 
for 0 < t < δ. Therefore 

 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | γ�B kn ( x ) | 
ρ

)]p k 
) 

1 
T 

< 

ε 

2 
, 

o that g ( γ x ) → 0 as γ → 0. This completes the proof. �

heorem 2.3. Let the sequence p = ( p k ) be bounded. Then 
 

 λ[ A, M, �, p ] o ⊂ ̂ V λ[ A, M, �, p ] ⊂ ̂ V λ[ A, M, �, p ] ∞ 

. 

roof. Let x = ( x k ) ∈ 

̂ V λ[ A, M, �, p ] o . Then we have 

1 
λr 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) | 
2 ρ

)]p k 

≤ C 

λr 

∑ 

k ∈ I r 

1 

2 p k 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

+ 

C 

λr 

∑ 

k ∈ I r 

1 

2 p k 

[
M 

( | L | 
ρ

)]p k 

≤ C 

λr 

∑ 

k ∈ I r 

1 

2 p k 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

+ C max 

( 

1 , sup 

[
M 

( | L | 
ρ

)]H 

) 

, 

here H = sup k p k < ∞ and C = max 
(
1 , 2 H−1 

)
. Thus we 

ave x = ( x k ) ∈ 

̂ V λ[ A, M, �, p ] . The inclusion ̂

 V λ[ A, M, �, p ] ⊂
 

 λ[ A, M, �, p ] ∞ 

is obvious. �

. New set of sequences of order α

n this section let α ∈ (0, 1] be any real number, let λ = (λr ) be
 monotonically increasing sequence of positive real numbers 
ending to ∞ such that λr ≤ λr + 1 , λ1 = 1 , and p be a positive
eal number such that 1 ≤ p < ∞ . 

Now we define the following sequence space. 

 

 

α
λ [ A, �] ∞ 

(p) 

= 

{ 

x ∈ w : sup 

r 

1 
λα

r 

∑ 

k ∈ I r 
| �B kn ( x ) | p < ∞ , uniformly on n. 

} 

pecial cases: 

(a) For p = 1 we have ̂  V 

α
λ [ A, �] ∞ 

(p) = 

̂ V 

α
λ [ A, �] ∞ 

. 

(b) For α = 1 and p = 1 we have ̂ V 

α
λ [ A, �] ∞ 

(p) = ̂ V λ[ A, �] ∞ 

. 

heorem 3.1. Let α ∈ (0, 1] and p be a positive real number such
hat 1 ≤ p < ∞ . Then the sequence space ̂ V 

α
λ [ A, �] ∞ 

(p) is a

r

K-space normed by 

| x || α = sup 

r 

1 
λα

r 

( ∑ 

k ∈ I r 
| �B kn ( x ) | p 

) 

1 
p 

. 

roof. The proof of the result is straightforward, so 

mitted. �

heorem 3.2. Let α ∈ (0, 1] and p be a positive real number such
hat 1 ≤ p < ∞ . Then ̂  V 

α
λ [ A, �] ∞ 

⊂ ̂ V 

α
λ [ A, �] ∞ 

(p) . 

roof. The proof of the result is straightforward, so 

mitted. �

heorem 3.3. Let α and β be fixed real numbers such that 0 < α

β ≤ 1 and p be a positive real number such that 1 ≤ p < ∞ .
hen ̂  V 

α
λ [ A, �] ∞ 

(p) ⊂ ̂ V 

β

λ [ A, �] ∞ 

(p) . 

roof. The proof of the result is straightforward, so 

mitted. �

heorem 3.4. Let α and β be fixed real numbers such that 0 <
≤ β ≤ 1 and p be a positive real number such that 1 ≤ p <
 . For any two sequences λ = (λr ) and μ = (μr ) for all r , then
 

 

α
λ [ A, �] ∞ 

(p) ⊂ ̂ V 

β
μ [ A, �] ∞ 

(p) if and only if sup r ( 
λα

r 

μ
β
r 
) < ∞ . 

roof. Let x = (x k ) ∈ 

̂ V 

α
λ [ A, �] ∞ 

(p) and sup r ( 
λα

r 

μ
β
r 
) < ∞ .

hen 

up 

r 

1 
λα

r 

∑ 

k ∈ I r 
| �B kn ( x ) | p < ∞ 

nd there exists a positive number K such that λα
r ≤ Kμ

β
r and so

hat 1 
μ

β
r 

≤ K 
λα

r 
for all r . Therefore, we have 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) | p ≤ K 

λα
r 

∑ 

k ∈ I r 
| �B kn ( x ) | p . 

ow taking supremum over r , we get 

up 

r 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) | p ≤ sup 

r 

K 

λα
r 

∑ 

k ∈ I r 
| �B kn ( x ) | p 

nd hence x ∈ 

̂ V 

β
μ [ A, �] ∞ 

(p) . 

Next suppose that ̂ V 

α
λ [ A, �] ∞ 

(p) ⊂ ̂ V 

α
μ [ A, �] ∞ 

(p) and 

up r ( 
λα

r 

μ
β
r 
) = ∞ . Then there exists an increasing sequence ( r i ) of

atural numbers such that lim i ( 
λα

r i 

μ
β
r i 

) = ∞ . Let L be a positive

eal number, then there exists i 0 ∈ N such that 
λα

r i 

μ
β
r i 

> L for all r i 

i 0 . Then λα
r i 

> Lμ
β
r i and so 

1 
μ

β
r i 

> 

L 
λα

r i 
. Therefore we can write 

1 

μ
β
r i 

∑ 

k ∈ I r 
| �B kn ( x ) | p > 

L 

λα
r i 

∑ 

k ∈ I r 
| �B kn ( x ) | p for all r i ≥ i 0 . 

ow taking supremum over r i ≥ i 0 then we get 

up 

 i ≥i 0 

1 

μ
β
r i 

∑ 

k ∈ I r i 

| �B kn ( x ) | p > sup 

r i ≥i 0 

L 

λα
r i 

∑ 

k ∈ I r i 

| �B kn ( x ) | p . (3.1) 
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Since the relation (3.1) holds for all L ∈ R 

+ (we may take the
number L sufficiently large), we have 

sup 

r i ≥i 0 

1 

μ
β
r i 

∑ 

k ∈ I r i 

| �B kn ( x ) | p = ∞ 

but x = (x k ) ∈ 

̂ V 

α
λ [ A, �, p ] ∞ 

with 

sup 

r 

(
λα

r 

μ
β
r 

)
< ∞ . 

Therefore x / ∈ ̂

 V 

α
μ [ A, �] ∞ 

(p) which contradicts that̂ 

 

α
λ [ A, �] ∞ 

(p) ⊂ ̂ V 

α
μ [ A, �] ∞ 

(p) . Hence sup r ≥1 

(
λα

r 

μ
β
r 

)
< ∞ . �

Corollary 3.5. Let α and β be fixed real numbers such that 0 <
α ≤ β ≤ 1 and p be a positive real number such that 1 ≤ p < ∞ .
Then for any two sequences λ = (λr ) and μ = (μr ) for all r ≥ 1 

(a) ̂ V 

α
λ [ A, �] ∞ 

(p) = 

̂ V 

β
μ [ A, �] ∞ 

(p) if and only if

0 < inf r 
(

λα
r 

μ
β
r 

)
< sup r 

(
λα

r 

μ
β
r 

)
< ∞ . 

(b) ̂ V 

α
λ [ A, �] ∞ 

(p) = 

̂ V 

α
μ [ A, �] ∞ 

(p) if and only if

0 < inf r 
(

λα
r 

μα
r 

)
< sup r 

(
λα

r 
μα

r 

)
< ∞ . 

(c) ̂ V 

α
λ [ A, �] ∞ 

(p) = 

̂ V 

β

λ [ A, �] ∞ 

(p) if and only if

0 < inf r 
(

λα
r 

λ
β
r 

)
< sup r 

(
λα

r 

λ
β
r 

)
< ∞ . 

Theorem 3.6. � p [ A, �] ⊂ ̂ V 

α
λ [ A, �] ∞ 

(p) ⊂ � ∞ 

[ A, �] . 

Proof. The proof of the result is straightforward, so
omitted. �

Theorem 3.7. If 0 < p < q , then ̂  V 

α
λ [ A, �] ∞ 

(p) ⊂ ̂ V 

α
λ [ A, �] ∞ 

(q ) .

Proof. The proof of the result is straightforward, so
omitted. �

4. Some geometric properties of the new space 

In this section we study some of the geometric properties like or-
der continuity, the Fatou property and the Banach–Saks prop-
erty of type p in this new sequence space. 

Theorem 4.1. The space ̂  V 

α
λ [ A, �] ∞ 

(p) is order continuous. 

Proof. To show that the space ̂ V 

α
λ [ A, �] ∞ 

(p) is an AK -space.
It is easy to see that ̂ V 

α
λ [ A, �] ∞ 

(p) contains c 00 . By using
the definition of AK -properties, we have that x = ( x (i) ) ∈̂ 

 

α
λ [ A, �] ∞ 

(p) has a unique representation x = 

∑ ∞ 

i=1 x (i ) e (i ) i.e.
|| x − x 

[ j] || α = || (0 , 0 , . . . , x ( j) , x ( j + 1) , . . . ) || α → 0 as j →
∞ , which means that ̂ V 

α
λ [ A, �] ∞ 

(p) has AK . Therefore FK -
space ̂ V 

α
λ [ A, �] ∞ 

(p) contains c 00 has AK -property. Also sincê 

 

α
λ [ A, �] ∞ 

(p) is a Köthe space, hence the space ̂ V 

α
λ [ A, �] ∞ 

(p)

is order continuous. �

Theorem 4.2. The space ̂  V 

α
λ [ A, �] ∞ 

(p) has the Fatou property. 

Proof. Let x be a real sequence and ( x j ) be any nondecreas-
ing sequence of non-negative elements from ̂

 V 

α
λ [ A, �] ∞ 

(p) such
that x j ( i ) → x ( i ) as j → ∞ coordinatewisely and sup j || x j || α <
∞ . 
Let us denote T = sup j || x j || α. Since the supremum is ho-
mogeneous, then we have 

1 
T 

sup 
r 

1 
λα

r 

⎛ ⎝ 

∑ 

k ∈ I r 
| �B kn 

(
x j (i) 

)| p 
⎞ ⎠ 

1 
p 

≤ sup 
r 

1 
λα

r 

⎛ ⎝ 

∑ 

k ∈ I r 

∣∣∣∣∣�B kn 
(
x j (i) 

)
|| x n || α

∣∣∣∣∣
p 
⎞ ⎠ 

1 
p 

= 

1 
|| x n || α || x n || α = 1 . 

Also by the assumptions that ( x j ) is non-decreasing and conver-
gent to x coordinatewisely and by the Beppo-Levi theorem, we
have 

1 
T 

lim 

j→∞ 

sup 

r 

1 
λα

r 

( ∑ 

k ∈ I r 
| �B kn 

(
x j (i) 

)| p ) 

1 
p 

= sup 

r 

1 
λα

r 

( ∑ 

k ∈ I r 

∣∣∣∣�B kn ( x (i) ) 
T 

∣∣∣∣p 
) 

1 
p 

≤ 1 , 

whence 

|| x || α ≤ T = sup 

j 
|| x j || α = lim 

j→∞ 

|| x j || α < ∞ . 

Therefore x ∈ 

̂ V 

α
λ [ A, �] ∞ 

(p) . On the other hand, for any natu-
ral number j the sequence ( x j ) is non-decreasing, we obtain that
the sequence ( ‖ x j ‖ α) is bounded form above by ‖ x ‖ α . There-
fore lim j → ∞ 

‖ x j ‖ α ≤ ‖ x ‖ α which contradicts the above inequal-
ity proved already, yields that || x || α = lim j→∞ 

|| x j || α. �

Theorem 4.3. The space ̂ V 

α
λ [ A, �] ∞ 

(p) has the Banach–Saks
property. 

Proof. The proof of the result follows from the used in [1] . �

5. λ-statistical convergence 

The idea of statistical convergence first appeared, under the
name of almost convergence, in the first edition Zygmund [14] .
Later, this idea was introduced by Fast [15] and Steinhaus [16]
and studied various authors (see [10,17,18] ). Mursaleen [19] , in-
troduced the notion λ-statistical convergence for real sequences.
For more details on λ-statistical convergence we refer to [20]
and many others. The notion of order statistical convergence
was introduced by Gadjiev and Orhan [21] and after that statis-
tical convergence of order α studied by Çolak [22] , λ-statistical
convergence of order α studied by Çolak and Bekta ̧s [23] , λ-
statistical convergence of order α of sequence of functions stud-
ied by Et et al., [24,25] and many authors. In this section, we
define the concept of ̂ S λ[ A, �] -convergence and establish the
relationship of ̂ S λ[ A, �] with 

̂ V λ[ A, �] . Also we introduce the
notion of ̂ S λ[ A, �] −convergence of order α of real number se-
quences and obtain some inclusion relations between the set
of ̂ S [ A, �] −convergence of order α and the sets ˆ V 

α
λ [ A, �] and

ˆ 
 

α
λ [ A, M, �, p] . 

Definition 5.1. [19] A sequence x = ( x k ) is said to be λ-
statistically convergent to L if for every ε > 0 

lim 

r 

1 
λr 

| { k ∈ I r : | x k − L | ≥ ε } | = 0 . 

In this case we write S λ − lim x = L or x k → L ( S λ). 
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efinition 5.2. [23] A sequence x = ( x k ) is said to be λ-
tatistically convergent L of order α or S 

α
λ -convergent to L if 

or every ε > 0 

im 

r 

1 
λα

r 
| { k ∈ I r : | x k − L | ≥ ε } | = 0 . 

n this case we write S 

α
λ − lim x = L or x k → L (S 

α
λ ) . 

efinition 5.3. Let λ = ( λr ) be a sequence in �. A sequence 
 = ( x k ) is said to be almost λ-statistically [ A , �]-convergent
r ̂  S λ[ A, �] −convergent to L if for every ε > 0 

im 

r 

1 
λr 

| { k ∈ I r : | �B kn ( x ) − L | ≥ ε } | = 0 . 

n this case we write ̂  S λ[ A, �] − lim x = L or x k → L ( ̂  S λ[ A, �] ) .

heorem 5.1. Let λ = ( λr ) be a sequence in �, then 

(a) If x k → L ( ̂  V λ[ A, �] ) then x k → L ( ̂  S λ[ A, �] ) . 
(b) If x ∈ l ∞ 

[ A , �] and x k → L ( ̂  S λ[ A, �] ) , then x k →
L ( ̂  V λ[ A, �] ) . 

(c) ̂ V λ[ A, �] ∩ l ∞ 

[ A, �] = 

̂ S λ[ A, �] ∩ l ∞ 

[ A, �] , where 

l ∞ 

[ A, �] = 

{
x ∈ w : sup 

k,n 
| �B kn ( x ) | < ∞ 

}
. 

roof. (a) Suppose that ε > 0 and x k → L ( ̂  V λ[ A, �] ) , then we
ave 

 

k ∈ I r 
| �B kn ( x ) − L | ≥

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | 

ε | { k ∈ I r : | �B kn ( x ) − L | ≥ ε } | . 
herefore x k → L ( ̂  S λ[ A, �] ) . 

(b) Suppose that x ∈ l ∞ 

[ A , �] and x k → L ( ̂  S λ[ A, �] ) , i.e., for
ome K > 0, | �B kn ( x ) − L | ≤ K for all k and n . Given ε > 0, we
et 

1 
λr 

∑ 

k ∈ I r 
| �B kn ( x ) − L | = 

1 
λr 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | 

+ 

1 
λr 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

| �B kn ( x ) − L | 

≤ K 

λr 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε } | + ε, 

s r → ∞ , the right side goes to zero, which implies that x k →
 ( ̂  V λ[ A, �] ) . 

(c) Follows from (a) and (b). �

efinition 5.4. Let 0 < α ≤ 1 be given. A sequence x = ( x k ) is
aid to be almost statistically [ A, �] − convergent to L of order 
or ̂  S 

α[ A, �] -convergent to L of order α if for every ε > 0 

lim 

 →∞ 

1 
n α

| { k ≤ n : | �B kn ( x ) − L | ≥ ε } | = 0 . 

n this case we write ̂ S 

α[ A, �] − lim x = L or x k → 

 ( ̂  S 

α[ A, �] ) . 
efinition 5.5. Let λ = ( λr ) be a sequence in �, and 0 <

≤ 1 be given. A sequence x = ( x k ) is said to be al-
ost λ-statistically-[ A , �]-convergent to L of order α or ̂ 

 

α
λ [ A, �] −convergent to L of order α if for every ε > 0 

lim 

 →∞ 

1 
λα

r 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε } | = 0 . 

n this case we write ̂ S 

α
λ [ A, �] − lim x = L or x k →

 ( ̂  S 

α
λ [ A, �] ) . 

heorem 5.2. For 0 < α ≤ 1, if ̂ S 

α[ A, �] − lim k x k = x 0 then x 0 

s unique. 

roof. The proof of the result is easy, so omitted. �

heorem 5.3. Let 0 < α ≤ 1 and x = (x k ) and (y = (y k )) be
equences of real numbers. 

(a) If ̂ S 

α[ A, �] − lim k x k = x 0 and c ∈ C , then ̂ S 

α[ A, �] −
lim k (cx k ) = cx 0 . 

(b) If ̂ S 

α[ A, �] − lim k x k = x 0 and ̂ S 

α[ A, �] − lim k y k = y 0 , 
then ̂  S 

α[ A, �] − lim k (x k + y k ) = x 0 + y 0 . 

roof. (a) For c = 0 , the result is trivial. Suppose that c 
 = 0,
hen for every ε > 0 the result follows form the following in-
quality 

1 
n α

|{ k ≤ n : | �B kn ( cx ) − cx 0 | ≥ ε}| 

= 

1 
n α

∣∣∣∣{k ≤ n : | �B kn ( x ) − x 0 | ≥ ε 

| c | 
}∣∣∣∣. 

b) For every ε > 0. The result follows from the from the follow-
ng inequality. 

1 
n α

|{ k ≤ n : | �B kn ( x + y ) − (x 0 + y 0 ) | ≥ ε}| 

≤ 1 
n α

∣∣∣{ k ≤ n : | �B kn ( x ) − x 0 | ≥ ε 

2 

} ∣∣∣
+ 

1 
n α

∣∣∣{ k ≤ n : | �B kn ( y ) − y 0 | ≥ ε 

2 

} ∣∣∣
�

heorem 5.4. Let 0 < α ≤ 1 and x = (x k ) and (y = (y k )) be
equences of real numbers. 

(a) If ̂ S 

α
λ [ A, �] − lim k x k = x 0 and c ∈ C , then ̂ S 

α
λ [ A, �] −

lim k (cx k ) = cx 0 . 

(b) If ̂ S 

α
λ [ A, �] − lim k x k = x 0 and ̂ S 

α
λ [ A, �] − lim k y k = y 0 , 

then ̂  S 

α
λ [ A, �] − lim k (x k + y k ) = x 0 + y 0 . 

roof. (a) For c = 0 , the result is trivial. Suppose that c 
 = 0,
hen for every ε > 0 the result follows form the following in-
quality 

1 
λα

r 
|{ k ∈ I r : | �B kn ( cx ) − cx 0 | ≥ ε}| 

= 

1 
λα

r 

∣∣∣∣{k ∈ I r : | �B kn ( x ) − x 0 | ≥ ε 

| c | 
}∣∣∣∣. 

b) For every ε > 0. The result follows from the from the follow-
ng inequality. 

1 
λα

r 
|{ k ∈ I r : | �B kn ( x + y ) − (x 0 + y 0 ) | ≥ ε}| 



Orlicz difference sequence spaces generated by infinite matrices and de la Vallée-Poussin mean of order α 551 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 1 
λα

r 

∣∣∣{ k ∈ I r : | �B kn ( x ) − x 0 | ≥ ε 

2 

} ∣∣∣
+ 

1 
λα

r 

∣∣∣{ k ∈ I r : | �B kn ( y ) − y 0 | ≥ ε 

2 

} ∣∣∣
�

Theorem 5.5. If 0 < α < β ≤ 1, then ̂ S 

α
λ [ A, �] ⊂ ̂ S 

β

λ [ A, �] and
the inclusion is strict. 

Proof. The proof of the result follows form the following equal-
ity. 

1 

λ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| 

= 

1 
λα

r 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε } | . 

To prove the inclusion is strict, let λ be given and we consider a
sequence x = (x k ) be defined by 

�B kn (x k ) = 

{ 

k, if r − [ 
√ 

λr ] + 1 ≤ k ≤ r ;
0 , otherwise. 

Then 

1 

λ
β
r 
|{ k ∈ I r : | �B kn (x k ) − 0 | ≥ ε}| 

= 

1 

λ
β
r 
|{ k ∈ I r : r − [ 

√ 

λr ] + 1 ≤ k ≤ r }| ≤
√ 

λr 

λ
β
r 

Then we have x ∈ 

̂ S 

β

λ [ A, �] for 1 
2 < β ≤ 1 but x / ∈ 

̂ S 

α
λ [ A, �] for

0 < α ≤ 1 
2 . �

Corollary 5.6. If a sequence is ̂  S 

α
λ [ A, �] -convergent to L then it iŝ S λ[ A, �] -convergent to L for 0 < α ≤ 1. 

Theorem 5.7. Let 0 < α ≤ 1 and λ = (λr ) ∈ �. Then ̂  S 

α[ A, �] ⊂̂ S 

α
λ [ A, �] if 

lim 

r →∞ 

inf 
λα

r 

r α
> 0 . 

Proof. If x k → L 

(̂ S 

α[ A, �] 
)

then for every ε > 0 and for suffi-

ciently large r we have 

1 
r α

| { k ≤ r : | �B kn ( x ) − L | ≥ ε} | 

≥ 1 
r α

| { k ∈ I r : | �B kn ( x ) − L | ≥ ε} | 

≥ λα
r 

r α
1 
λα

r 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε} | . 

Taking the limit as r → ∞ and using the given condition,

we get x k → L 

(̂ S 

α
λ [ A, �] 

)
. This completes the proof of the

theorem. �

Corollary 5.8. Let 0 < α ≤ 1 and λ = (λr ) ∈ �. Then ̂  S 

α
λ [ A, �] ⊂̂ S [ A, �] . 

Theorem 5.9. Let 0 < α ≤ 1 and λ = (λr ) ∈ �. Then ̂  S [ A, �] ⊂̂ S 

α
λ [ A, �] if and only if 

lim 

r →∞ 

inf 
λα

r > 0 . (5.1)

r 
Proof. Let the condition (5.1) holds and x = (x k ) ∈ 

̂ S [ A, �] .
For a given ε > 0 we have 

{ k ≤ r : | �B kn ( x ) − L | ≥ ε} ⊃ { k ∈ I r : | �B kn ( x ) − L | ≥ ε} . 

Then we have 

1 
r 
| { k ≤ r : | �B kn ( x ) − L | ≥ ε} | 

≥ 1 
r 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε} | 

= 

λα
r 

r 
1 
λα

r 
| { k ∈ I r : | �B kn ( x ) − L | ≥ ε} | . 

By taking limit as r → ∞ and from relation (5.1) we have 

x k → L 

(̂ S [ A, �] 
)

⇒ x k → L 

(̂ S 

α
λ [ A, �] 

)
. 

Next we suppose that 

lim 

r →∞ 

inf 
λα

r 

r 
= 0 . 

Then we can choose a subsequence ( r i ) such that 
λα

r i 
r i 

< 

1 
i . Define

a sequence x = (x k ) as follows: 

�B kn (x k ) = 

{ 

1 , if k ∈ I r i ;
0 , otherwise. 

Then clearly x = (x k ) ∈ 

̂ S [ A, �] but x = (x k ) / ∈ 

̂ S λ[ A, �] . Sincê S 

α
λ [ A, �] ⊂ ̂ S λ[ A, �] , we have x = (x k ) / ∈ 

̂ S 

α
λ [ A, �] , which is a

contradiction. Hence the relation (5.1) holds. �

Theorem 5.10. Let λ = (λr ) and μ = (μr ) be two sequences in �
such that λr ≤ μr for all r ∈ N and 0 < α ≤ β ≤ 1. If 

lim 

r →∞ 

inf 
λα

r 

μ
β
r 
, (5.2)

then ̂  S 

β
μ[ A, �] ⊆ ̂ S 

α
λ [ A, �] . 

Proof. Suppose that λr ≤ μr for all r ∈ N and the condition (5.2)
hold. Then I r ⊂ J r and so that for ε > 0 we can write 

{ k ∈ J r : | �B kn ( x ) − L | ≥ ε} ⊃ { k ∈ I r : | �B kn ( x ) − L | ≥ ε} . 

Then we have 

1 

μ
β
r 
|{ k ∈ J r : | �B kn ( x ) − L | ≥ ε}| 

≥ λα
r 

μ
β
r 

1 
λα

r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| , 

for all r ∈ N , where J r = [ r − μr + 1 , r ] . Taking limit r → ∞
in the last inequality and using (5.2) , we have ̂ S 

β
μ[ A, �] ⊆̂ S 

α
λ [ A, �] . �

Corollary 5.11. Let λ = (λr ) and μ = (μr ) be two sequences in
� such that λr ≤ μr for all r ∈ N . If (5.2) holds, then 

(a) ̂ S 

α
μ[ A, �] ⊆ ̂ S 

α
λ [ A, �] for 0 < α ≤ 1, 

(b) ̂ S μ[ A, �] ⊆ ̂ S 

α
λ [ A, �] for 0 < α ≤ 1, 
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(c) ̂ S μ[ A, �] ⊆ ̂ S λ[ A, �] . 

heorem 5.12. Let λ = (λr ) and μ = (μr ) be two sequences in �
uch that λr ≤ μr for all r ∈ N and 0 < α ≤ β ≤ 1. If 

lim 

 →∞ 

μr 

λ
β
r 

= 1 , (5.3) 

hen ̂  S 

α
λ [ A, �] ⊆ ̂ S 

β
μ[ A, �] . 

roof. Let ̂ S 

α
λ [ A, �] − lim x = L and (5.3) be satisfied. Since 

 r ⊂ J r , for ε > 0 we can write 

1 

μ
β
r 
|{ k ∈ J r : | �B kn ( x ) − L | ≥ ε}| 

= 

1 

μ
β
r 
|{ r − μr + 1 ≤ k ≤ r − λr : | �B kn ( x ) − L | ≥ ε}| 

+ 

1 

μ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| 

≤ μr − λr 

μ
β
r 

+ 

1 

μ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| 

≤ μr − λ
β
r 

λ
β
r 

+ 

1 

μ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| 

≤
(

μr 

λ
β
r 

− 1 
)

+ 

λα
r 

μ
β
r 

1 
λα

r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| . 

sing the relation (5.3) and 

̂ S 

α
λ [ A, �] − lim x = L the right- 

and side of the above inequality tends to zero as r → ∞ . This
mplies that ̂  S 

α
λ [ A, �] ⊆ ̂ S 

β
μ[ A, �] . �

orollary 5.13. Let λ = (λr ) and μ = (μr ) be two sequences in 
such that λr ≤ μr for all r ∈ N . If (5.3) holds, then 

(a) ̂ S 

α
λ [ A, �] ⊆ ̂ S 

α
μ[ A, �] for 0 < α ≤ 1, 

(b) ̂ S λ[ A, �] ⊆ ̂ S 

α
μ[ A, �] for 0 < α ≤ 1, 

(c) ̂ S λ[ A, �] ⊆ ̂ S μ[ A, �] . 

efinition 5.6. Let M be an Orlicz function, p = (p k ) be a se-
uence of strictly positive real numbers, α ∈ (0, 1], λ = ( λr ) be 
 sequence of positive reals, and for ρ > 0, now we define 

 

 

α
λ [ A, M, �, p ] 

= 

{ 

x ∈ w : lim 

r →∞ 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

= 0 , 

for some L, uniformly on n } . 

f M(x ) = x and p k = p for all k ∈ N then we shall write
 

 

α
λ [ A, M, �, p ] = 

̂ V 

α
λ [ A, �] (p) and if M(x ) = x then we shall 

rite ̂  V 

α
λ [ A, M, �, p ] = 

̂ V 

α
λ [ A, �, p ] . 

heorem 5.14. Let ( p k ) be a bounded and 0 < inf k p k ≤ p k ≤
up k p k = H < ∞ . Let 0 < α ≤ β ≤ 1, M be an Orlicz
unction and λ = ( λr ) be a sequence of positive reals, then 
 

 

α
λ [ A, M, �, p ] ⊂ ̂ S 

β

λ [ A, �] . 

roof. Let x = (x k ) ∈ 

̂ V 

α
λ [ A, M, �, p ] . Let ε > 0 be given. As

 

α
r ≤ h βr for each r we can write 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 
= 

1 
λα

r 

⎡ ⎢ ⎢ ⎢ ⎣ 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

+ 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

⎤ ⎥ ⎥ ⎥ ⎦ 

≥ 1 

λ
β
r 

⎡ ⎢ ⎢ ⎢ ⎣ 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

+ 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

⎤ ⎥ ⎥ ⎥ ⎦ 

≥ 1 

λ
β
r 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

[
M 

(
ε 

ρ

)]p k 

≥ 1 

λ
β
r 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

min 

(
[ M ( ε 1 ) ] h , [ M(ε 1 )] H 

)
, ε 1 = 

ε 

ρ

≥ 1 

λ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε}| 

min 

(
[ M ( ε 1 ) ] h , [ M(ε 1 )] H 

)
. 

rom the above inequality we have (x k ) ∈ 

̂ S 

β

λ [ A, �] . �

orollary 5.15. Let 0 < α ≤ 1, M be an Orlicz function and λ =
 λr ) be an element of �, then ̂  V 

α
λ [ A, M, �, p ] ⊂ ̂ S 

α
λ [ A, �] . 

heorem 5.16. Let M be an Orlicz function, x = (x k ) be a
equence in l ∞ 

[ A , �], and λ = ( λr ) be an element of �. If
im r →∞ 

λr 
λα

r 
= 1 , then ̂  S 

α
λ [ A, �] ⊂ ̂ V 

α
λ [ A, M, �, p ] . 

roof. Suppose that x = (x k ) is a sequence in l ∞ 

[ A , �] and̂ 

 

α[ A, �] − lim k x k = L. As x = (x k ) ∈ l ∞ 

[ A, �] there exists
 > 0 such that | �B kn ( x )| ≤ K for all k and n . For given ε 

 0 we have 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

= 

1 
λα

r 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

+ 

1 
λα

r 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

[
M 

( | �B kn ( x ) − L | 
ρ

)]p k 

≤ 1 
λα

r 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

max 

{ [
M 

(
K 

ρ

)]h 

, 

[
M 

(
K 

ρ

)]H 

} 

+ 

1 
λα

r 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

[
M 

(
ε 

ρ

)]p k 

≤ max 

{ [
M 

(
K 

ρ

)]h 

, 

[
M 

(
K 

ρ

)]H 

} 

1 
λα

r 
| | �B kn ( x ) − L | ≥ ε| 
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+ 

λr 

λα
r 

max 

{ [
M 

(
ε 

ρ

)]h 

, 

[
M 

(
ε 

ρ

)]H 

} 

. 

Therefore we have (x k ) ∈ 

̂ V 

α
λ [ A, M, �, p ] . �

Theorem 5.17. Let λ = (λr ) ∈ �, 0 < α ≤ β ≤ 1 , p be a positive
real number, then ̂  V 

α
λ [ A, �] (p) ⊆ ̂ V 

β

λ [ A, �] (p) . 

Proof. The proof is easy, so omitted. �

Corollary 5.18. Let λ = (λr ) ∈ � and p be a positive real number,
then ̂  V 

α
λ [ A, �] (p) ⊆ ̂ V λ[ A, �] (p) . 

Theorem 5.19. Let λ = (λr ) ∈ �, 0 < α ≤ β ≤ 1 and p be a pos-
itive real number, then ̂  V 

α
λ [ A, �] (p) ⊆ ̂ S 

β

λ [ A, �] . 

Proof. Let x = (x k ) ∈ 

̂ V 

α
λ [ A, �] (p) and for ε > 0 we have ∑ 

k ∈ I r 
| �B kn ( x ) − L | p = 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | p 

+ 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

| �B kn ( x ) − L | p 

≥
∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | p 

≥ |{ k ∈ I r : | �B kn ( x ) − L | ≥ ε }| .ε p . 

Therefore we have 

1 
λα

r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p ≥ 1 

λ
β
r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε }| .ε p . 

The last inequality implies that x = (x k ) ∈ 

̂ S 

β

λ [ A, �] if
x = (x k ) ∈ 

̂ V 

α
λ [ A, �] (p) . This completes the proof of the

theorem. �

Theorem 5.20. Let λ = (λr ) and μ = (μr ) be two sequences in �
such that λr ≤ μr for all r ∈ N and 0 < α ≤ β ≤ 1. If (5.2) holds,
then ̂  V 

β
μ [ A, �] (p) ⊆ ̂ V 

α
λ [ A, �] (p) 

Proof. The proof is easy, so omitted. �

Corollary 5.21. Let λ = (λr ) and μ = (μr ) be two sequences in
� such that λr ≤ μr for all r ∈ N . If (5.2) holds, then 

(a) ̂ V 

α
μ [ A, �] (p) ⊆ ̂ V 

α
λ [ A, �] (p) for 0 < α ≤ 1, 

(b) ̂ V μ[ A, �] (p) ⊆ ̂ V 

α
λ [ A, �] (p) for 0 < α ≤ 1, 

(c) ̂ V μ[ A, �] (p) ⊆ ̂ V λ[ A, �] (p) . 

Theorem 5.22. Let λ = (λr ) and μ = (μr ) be two sequences in �
such that λr ≤ μr for all r ∈ N and 0 < α ≤ β ≤ 1. If (5.2) holds,
then ̂  V 

β
μ [ A, �] (p) ⊆ ̂ S 

α
λ [ A, �] . 

Proof. Let x = (x k ) ∈ 

̂ V 

β
μ [ A, �] (p) . Then for ε > 0 we have ∑ 

k ∈ I r 
| �B kn ( x ) − L | p = 

∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | p 

+ 

∑ 

k ∈ I r | �B kn ( x ) −L | <ε 

| �B kn ( x ) − L | p 

≥
∑ 

k ∈ I r | �B kn ( x ) −L | ≥ε 

| �B kn ( x ) − L | p 
Therefore we have 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p 

≥ λα
r 

μ
β
r 

1 
λα

r 
|{ k ∈ I r : | �B kn ( x ) − L | ≥ ε }| .ε p , 

since (5.2) holds and x = (x k ) ∈ 

̂ V 

β
μ [ A, �] (p) . The last inequal-

ity implies that x = (x k ) ∈ 

̂ S 

α
λ [ A, �] . This completes the proof

of the theorem. �

Corollary 5.23. Let λ = (λr ) and μ = (μr ) be two sequences in
� such that λr ≤ μr for all r ∈ N and 0 < α ≤ 1. If (5.2) holds,
then 

(a) ̂ V 

α
μ [ A, �] (p) ⊆ ̂ S 

α
λ [ A, �] , 

(b) ̂ V μ[ A, �] (p) ⊆ ̂ S 

α
λ [ A, �] , 

(c) ̂ V μ[ A, �] (p) ⊆ ̂ S λ[ A, �] , 

Theorem 5.24. Let λ = (λr ) and μ = (μr ) be two sequences in �
such that λr ≤ μr for all r ∈ N and 0 < α ≤ β ≤ 1. If (5.3) holds,
then � ∞ 

[ A, �] ∩ ̂

 V 

α
λ [ A, �] (p) ⊆ ̂ V 

β
μ [ A, �] (p) . 

Proof. Let x = (x k ) ∈ � ∞ 

[ A, �] ∩ ̂

 V 

α
λ [ A, �] (p) and suppose

that (5.3) holds. Since ( x k ) ∈ � ∞ 

[ A , �], there exists K > 0 such
that | �B kn ( x )| ≤ K for all k and n . Since λr ≤ μr and I r ⊂ J r for
all r ∈ N we can write 

1 

μ
β
r 

∑ 

k ∈ J r 
| �B kn ( x ) − L | p = 

1 

μ
β
r 

∑ 

k ∈ J r −I r 

| �B kn ( x ) − L | p 

+ 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p 

≤
(

μr − λr 

μ
β
r 

)
K 

p + 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p 

≤
( 

μr − λ
β
r 

μ
β
r 

) 

K 

p + 

1 

μ
β
r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p 

≤
( 

μr − λ
β
r 

λ
β
r 

) 

K 

p + 

λα
r 

μ
β
r 

1 
λα

r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p 

≤
(

μr 

λ
β
r 

− 1 
)

K 

p + 

λα
r 

μ
β
r 

1 
λα

r 

∑ 

k ∈ I r 
| �B kn ( x ) − L | p . 

This implies that x = (x k ) ∈ 

̂ V 

β
μ [ A, �] (p) . 

Hence � ∞ 

[ A, �] ∩ ̂

 V 

α
λ [ A, �] (p) ⊆ ̂ V 

β
μ [ A, �] (p) . �

Corollary 5.25. Let λ = (λr ) and μ = (μr ) be two sequences in
� such that λr ≤ μr for all r ∈ N . If (5.3) holds, then 

(a) � ∞ 

[ A, �] ∩ ̂

 V 

α
λ [ A, �] (p) ⊆ ̂ V 

α
μ [ A, �] (p) for 0 < α ≤ 1, 

(b) � ∞ 

[ A, �] ∩ ̂

 V 

α
λ [ A, �] (p) ⊆ ̂ V μ[ A, �] (p) for 0 < α ≤ 1, 

(c) � ∞ 

[ A, �] ∩ ̂

 V λ[ A, �] (p) ⊆ ̂ V μ[ A, �] (p) . 

Theorem 5.26. Let M be an Orlicz function and if inf k p k > 0 ,
then limit of any sequence x = (x k ) in ̂  V 

α
λ [ A, M, �, p ] is unique. 

Proof. Let lim k p k = s > 0 . Suppose that (x k ) →
l 1 
(̂ V 

α
λ [ A, M, �, p ] 

)
and (x k ) → l 2 

(̂ V 

α
λ [ A, M, �, p ] 

)
. Then

there exist ρ1 > 0 and ρ2 > 0 such that 

lim 

r →∞ 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − l 1 | 
ρ

)]p k 

= 0 , uniformly on n 
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[

[  

[

[

[

[

[

[  

[

[  

[  

[  

 

nd 

lim 

 →∞ 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − l 2 | 
ρ

)]p k 

= 0 , uniformly on n. 

et ρ = max { 2 ρ1 , 2 ρ2 } . As M is nondecreasing and convex, we
ave 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | l 1 − l 2 | 
ρ

)]p k 

≤ D 

λα
r 

∑ 

k ∈ I r 

1 
2 p k 

([
M 

( | �B kn ( x ) − l 1 | 
ρ

)]p k 

+ 

[
M 

( | �B kn ( x ) − l 2 | 
ρ

)]p k )
D 

λα
r 

∑ 

k ∈ I r 

([
M 

( | �B kn ( x ) − l 1 | 
ρ

)]p k 

+ 

D 

λα
r 

∑ 

k ∈ I r 

[
M 

( | �B kn ( x ) − l 2 | 
ρ

)]p k 
) 

→ 0 as r → ∞ , 

here sup k p k = H and D = max (1 , 2 H−1 ) . Therefore we get 

lim 

 →∞ 

1 
λα

r 

∑ 

k ∈ I r 

[
M 

( | l 1 − l 2 | 
ρ

)]p k 

= 0 . 

s lim k p k = s, we have 

lim 

 →∞ 

[
M 

( | l 1 − l 2 | 
ρ

)]p k 

= 

[
M 

( | l 1 − l 2 | 
ρ

)]s 

nd so l 1 = l 2 . Hence the limit is unique. �
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