

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

Original Article

Orlicz difference sequence spaces generated by infinite matrices and de la Vallée-Poussin mean of order α

Bipan Hazarika a,*, Ayhan Esi b, Ayten Esi b, Karan Tamang c

Received 3 September 2015; revised 8 December 2015; accepted 24 December 2015 Available online 22 March 2016

Keywords

Infinite matrix; Orlicz function; Statistical convergence; λ-sequence Abstract In this paper we introduce the spaces $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$, $\widehat{V}_{\lambda}[A, M, \Delta, p]$ and $\widehat{V}_{\lambda}[A, M, \Delta, p]_{\infty}$ generated by infinite matrices defined by Orlicz functions. Also we introduce the concept of $\widehat{S}_{\lambda}[A, \Delta]$ —convergence and derive some results between the spaces $\widehat{S}_{\lambda}[A, \Delta]$ and $\widehat{V}_{\lambda}[A, \Delta]$. Further, we study some geometrical properties such as order continuity, the Fatou property and the Banach–Saks property of the new space $\widehat{V}_{\lambda}^{\alpha}[A, \Delta, p]_{\infty}$. Finally, we introduce the notion of almost λ-statistically- $[A, \Delta]$ -convergence of order α or $\widehat{S}_{\lambda}^{\alpha}[A, \Delta]$ —convergence and obtain some inclusion relations between the set $\widehat{S}_{\lambda}^{\alpha}[A, \Delta]$ and the space $\widehat{V}_{\lambda}^{\alpha}[A, \Delta, p]_{\infty}$.

2010 Mathematics Subject Classification: 40A05; 40C05; 46A45

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

1. Introduction

We denote w, ℓ_{∞} , c and c_0 , the spaces of all, bounded, convergent, null sequences, respectively. Also, by ℓ_1 and ℓ_p , we denote the spaces of all absolutely summable and p-absolutely summable series, respectively. Also we denote c_{00} the space of real sequences which have only a finite number of nonzero coordinates. Recall that a sequence $(x(i))_{i=1}^{\infty}$ in a Banach space X is called Schauder (or basis) of X if for each $x \in X$ there exists a unique sequence $(a(i))_{i=1}^{\infty}$ of scalars such that

^a Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India

^b Adiyaman University, Department of Mathematics, Adiyaman, 02040, Turkey

^c Department of Mathematics, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India

^{*} Corresponding author. Tel.: +91 3602278512; fax: +91 3602277881. E-mail addresses: bh_rgu@yahoo.co.in (B. Hazarika), aesi23@hotmail.com (A. Esi), aytenesi@yahoo.com (A. Esi), karanthingh@gmail.com (K. Tamang).

 $x = \sum_{i=1}^{\infty} a(i)x(i)$, i.e. $\lim_{n\to\infty} \sum_{i=1}^{n} a(i)x(i) = x$. A sequence space X with a linear topology is called a K-space if each of the projection maps $P_i: X \to \mathbb{C}$ defined by $P_i(x) = x(i)$ for $x = (x(i))_{i=1}^{\infty} \in X$ is continuous for each natural i. A $Fr\acute{e}chet$ space is a complete metric linear space and the metric is generated by a F-norm and a $Fr\acute{e}chet$ space which is a K-space is called an FK-space i.e. a K-space X is called an FK-space if X is a complete linear metric space. In other words, X is an FK-space if X is a X-space with continuous coordinatewise projections. All the sequence spaces mentioned above are X-space except the space X-space X-space X-space X-space which contains the space X-space X-sp

A Banach space *X* is said to be a *Köthe sequence space* if *X* is a subspace of *w* such that

- (a) if $x \in w$, $y \in X$ and $|x(i)| \le |y(i)|$ for all $i \in \mathbb{N}$, then $x \in X$ and $||x|| \le ||y||$
- (b) there exists an element $x \in X$ such that x(i) > 0 for all $i \in \mathbb{N}$.

We say that $x \in X$ is *order continuous* if for any sequence $(x_n) \in X$ such that $x_n(i) \le |x(i)|$ for all $i \in \mathbb{N}$ and $x_n(i) \to 0$ as $n \to \infty$ we have $||x_n|| \to 0$ as $n \to \infty$ holds.

A Köthe sequence space X is said to be *order continuous* if all sequences in X are order continuous. It is easy to see that $x \in X$ order continuous if and only if $||(0, 0, ..., 0, x(n+1), x(n+2), ...)|| \to 0$ as $n \to \infty$.

A Köthe sequence space X is said to have the *Fatou property* if for any real sequence x and (x_n) in X such that $x_n \uparrow x$ coordinatewisely and $\sup_n ||x_n|| < \infty$, we have that $x \in X$ and $||x_n|| \to ||x||$ as $n \to \infty$.

A Banach space X is said to have the *Banach–Saks property* if every bounded sequence (x_n) in X admits a subsequence (z_n) such that the sequence $(t_k(z))$ is convergent in X with respect to the norm, where

$$t_k(z) = \frac{z_1 + z_2 + \dots + z_k}{k}$$
 for all $k \in \mathbb{N}$.

Some of works on geometric properties of sequence space can be found in [1-4].

Let *X* be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$ for all $x \in X$,
- 2. p(-x) = p(x) for all $x \in X$,
- 3. p(x + y) < p(x) + p(y) for all $x, y \in X$,
- 4. if (γ_k) is a sequence of scalars with $\gamma_k \to \gamma$, as $k \to \infty$ and (x_k) is a sequence of vectors with $p(x_k x) \to 0$ as $k \to \infty$, then $p(\gamma_k x_k \gamma x) \to 0$ as $k \to \infty$.

Let $p = (p_k)$ be a bounded sequence of strictly positive real numbers. If $H = \sup_k p_k < \infty$, then for any complex numbers a_k and b_k

$$|a_k + b_k|^{p_k} \le C(|a_k|^{p_k} + |b_k|^{p_k}) \tag{1.1}$$

where $C = \max(1, 2^{H-1})$. Also, for any complex number α , (see [5])

$$|\alpha|^{p_k} \le \max\left(1, |\alpha|^H\right). \tag{1.2}$$

A function $M: [0, \infty) \to [0, \infty)$ is said to be an *Orlicz function* if it is continuous, convex, nondecreasing function such

that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function is replaced by $M(x + y) \le M(x) + M(y)$ then this function is called the *modulus function* and characterized by Ruckle [6]. An Orlicz function M is said to satisfy Δ_2 -condition for all values u, if there exists K > 0 such that $M(2u) \le KM(u)$, $u \ge 0$.

Lemma 1.1. An Orlicz function satisfies the inequality $M(\lambda x) \le \lambda M(x)$ for all λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ (x_k): \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{r}\right) < \infty, \text{ for some } r > 0 \right\},\,$$

which is a Banach space normed by

$$\|(x_k)\| = \inf \left\{ r > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{r}\right) \le 1 \right\}.$$

The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x) = |x|^p$, for $1 \le p < \infty$.

2. Classes of Orlicz difference sequences

The strongly almost summable sequence spaces were introduced and studied by Maddox [5], Nanda [8], Güngör et al., [9], Esi [10], Güngör and Et [11], Esi and Et [12] and many authors.

Let $\lambda=(\lambda_r)$ be a monotonically increasing sequence of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1$, $\lambda_1 = 1$. The generalized de la Vallée-Poussin mean is defined by $t_r(x) = \frac{1}{\lambda_r} \sum_{k \in I_r} x_k$ where $I_r = [r - \lambda_r + 1, r]$ for $r = 1, 2, 3, \ldots$ A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_r(x) \to L$ as $r \to \infty$ (see [13]). If $\lambda_r = r$, then (V, λ) -summability is reduced to Cesáro summability. We denote Λ the set of all increasing sequences of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1$, $\lambda_1 = 1$.

Let A= (a_{ij}) be an infinite matrix of non-negative real numbers with all rows are linearly independent for all $i, j = 1, 2, 3, \ldots$ and $B_{kn}(x) = \sum_{i=1}^{\infty} a_{ki} x_{n+i}$ and, the series $\sum_{i=1}^{\infty} a_{ki} x_{n+i}$ converges for each k and uniformly on n.

Let M be an Orlicz function, $p = (p_k)$ be a sequence of positive real numbers, and $\lambda = (\lambda_r)$ be a monotonically increasing sequences of positive real numbers. For $\rho > 0$ we define the new sequence spaces as follows:

$$\begin{split} \widehat{V}_{\lambda}[A, M, \Delta, p]_{o} &= \left\{ x \in w : \lim_{r \to \infty} \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_{k}} \right. \\ &= 0, \text{ uniformly on } n \right\}, \end{split}$$

$$\begin{split} \widehat{V}_{\lambda}[A, M, \Delta, p] &= \left\{ x \in w : \lim_{r \to \infty} \frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_k} \right. \\ &= 0, \text{ for some } L, \text{ uniformly on } n \end{split}$$

and

$$\widehat{V}_{\lambda}[A, M, \Delta, p]_{\infty} = \left\{ x \in w : \sup_{r} \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_{k}} \right. \\ < \infty, \text{ uniformly on } n \right\},$$

where $\Delta B_{kn}(x) = \sum_{i=1}^{\infty} (a_{ki} - a_{k+1,i}) x_{n+i}$.

Theorem 2.1. For an Orlicz function M and a bounded sequence $p = (p_k)$ of positive real numbers, $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$, $\widehat{V}_{\lambda}[A, M, \Delta, p]$ and $\widehat{V}_{\lambda}[A, M, \Delta, p]_{\infty}$ are linear spaces over the set of complex field.

Proof. We give the proof only for the space $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$ and for other spaces follow by applying similar method. Let $x = (x_k), y = (y_k) \in \widehat{V}_{\lambda}[A, M, \Delta, p]_o$ and $\alpha, \beta \in \mathbb{C}$. Then there exist $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\lim_{r \to \infty} \frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho_1} \right) \right]^{p_k} = 0 \text{ uniformly on } n$$

and

$$\lim_{r \to \infty} \frac{1}{\lambda_r} \sum_{k \in L} \left[M \left(\frac{|\Delta B_{kn}(y)|}{\rho_2} \right) \right]^{p_k} = 0 \text{ uniformly on } n.$$

Define $\rho_3 = \max \{2|\alpha|\rho_1, 2|\beta|\rho_2\}$. Since the operator ΔB_{kn} is linear and M is non-decreasing and convex, we have

$$\frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(\alpha x + \beta y)|}{\rho_{3}} \right) \right]^{p_{k}}$$

$$= \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\alpha \Delta B_{kn}(x) + \beta \Delta B_{kn}(y)|}{\rho_{3}} \right) \right]^{p_{k}}$$

$$\leq \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\alpha \Delta B_{kn}(x)|}{\rho_{3}} \right) + M \left(\frac{|\beta \Delta B_{kn}(y)|}{\rho_{3}} \right) \right]^{p_{k}}$$

$$\leq \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \frac{1}{2^{p_{k}}} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho_{1}} \right) + M \left(\frac{|\Delta B_{kn}(y)|}{\rho_{2}} \right) \right]^{p_{k}}$$

$$\leq \frac{1}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho_{1}} \right) + M \left(\frac{|\Delta B_{kn}(y)|}{\rho_{2}} \right) \right]^{p_{k}}$$

$$\leq \frac{C}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho_{1}} \right) \right]^{p_{k}} + \frac{C}{\lambda_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(y)|}{\rho_{2}} \right) \right]^{p_{k}}$$

$$\Rightarrow 0 \text{ as } r \to \infty$$

where $C = \max(1, 2^{H-1})$, so $\alpha x + \beta y \in \widehat{V}_{\lambda}[A, M, \Delta, p]_o$, hence it is a linear space. \square

Theorem 2.2. For an Orlicz function M and a bounded sequence $p = (p_k)$ of positive real numbers, $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$ is a topological linear space, paranormed by

$$g(x) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k} \right)^{\frac{1}{T}} \right\}$$

$$\leq 1, \ r = 1, 2, 3, \dots$$

where $T = \max(1, \sup_k p_k = H)$.

Proof. The subadditivity of g follows from the Theorem 2.1, by taking $\alpha = \beta = 1$ and it is clear that g(x) = g(-x). Since M(0) = 0, we get $\inf\{\rho^{\frac{p_n}{H}}\} = 0$ for x = 0. Suppose that $x_k \neq 0$ for each $k \in \mathbb{N}$. This implies that $\Delta B_{kn}(x) \neq 0$ for each $k \in \mathbb{N}$ and uniformly on n. Let $\varepsilon \to 0$, then

$$\frac{|\Delta B_{kn}(x)|}{\varepsilon}\to\infty.$$

It follows that

$$\left(\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\varepsilon} \right) \right]^{p_k} \right)^{\frac{1}{T}} \to \infty$$

which is a contradiction.

Next we prove that scalar multiplication is continuous. Let γ be any complex number, by definition

$$\begin{split} g(\gamma x) &= \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(\gamma x)|}{\rho} \right) \right]^{p_k} \right)^{\frac{1}{T}} \le 1, \\ r &= 1, 2, 3, \dots \right\} \\ &= \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\gamma| |\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k} \right)^{\frac{1}{T}} \le 1, \\ r &= 1, 2, 3, \dots \right\}. \end{split}$$

Suppose that $s = \frac{\rho}{|\gamma|}$, then $\rho = s|\gamma|$ and since $|\gamma|^{p_k} \le \max(1, |\gamma|^H)$ we have

$$g(\gamma x) \leq |\gamma|^{p_k} \leq \max\left(1, |\gamma|^H\right) \inf$$

$$\times \left\{ s^{\frac{p_r}{H}} : \left(\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M\left(\frac{|\Delta B_{kn}(x)|}{s}\right) \right]^{p_k} \right)^{\frac{1}{T}} \leq 1,$$

$$r = 1, 2, 3, \dots \right\}$$

which converges to zero as x converges to zero in $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$. Now suppose that $\lambda_i \to \infty$ as $i \to \infty$ and x is fixed in $\widehat{V}_{\lambda}[A, M, \Delta, p]_o$. For arbitrary $\varepsilon > 0$ and let r_o be a positive integer such that

$$\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k} \le \left(\frac{\varepsilon}{2} \right)^T$$

for some $\rho > 0$ and $r > r_o$. This implies that

$$\left(\frac{1}{\lambda_r}\sum_{k\in I_r}\left[M\left(\frac{|\gamma\Delta B_{kn}(x)|}{\rho}\right)\right]^{p_k}\right)^{\frac{1}{T}}<\frac{\varepsilon}{2}$$

for some $\rho > 0$ and $r > r_o$. Let $0 < |\gamma| < 1$. Using the convexity of Orlicz function M, for $r > r_o$, we get

$$\frac{1}{\lambda_r} \sum_{k \in L} \left[M \left(\frac{|\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k}$$

$$\leq \frac{1}{\lambda_r} \sum_{k \in L} \left[M \left(\frac{|\gamma| |\Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k} < \left(\frac{\varepsilon}{2} \right)^T.$$

Since M is continuous everywhere in $[0, \infty)$, then we consider for $r > r_o$ the function

$$f(t) = \frac{1}{\lambda_r} \sum_{k \in I} \left[M \left(\frac{|t \Delta B_{kn}(x)|}{\rho} \right) \right]^{p_k}.$$

Then f is continuous at zero. So there is a $\delta \in (0, 1)$ such that $|f(t)| < \left(\frac{\varepsilon}{2}\right)^T$ for $0 < t < \delta$. Therefore

$$\left(\frac{1}{\lambda_r}\sum_{k\in I_r}\left[M\left(\frac{|\gamma\Delta B_{kn}(x)|}{\rho}\right)\right]^{p_k}\right)^{\frac{1}{T}}<\frac{\varepsilon}{2},$$

so that $g(\gamma x) \to 0$ as $\gamma \to 0$. This completes the proof. \square

Theorem 2.3. Let the sequence $p = (p_k)$ be bounded. Then $\widehat{V}_{\lambda}[A, M, \Delta, p]_{o} \subset \widehat{V}_{\lambda}[A, M, \Delta, p] \subset \widehat{V}_{\lambda}[A, M, \Delta, p]_{\infty}.$

Proof. Let $x = (x_k) \in \widehat{V}_{\lambda}[A, M, \Delta, p]_o$. Then we have

$$\begin{split} &\frac{1}{\lambda_r} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x)|}{2\rho} \right) \right]^{p_k} \\ &\leq \frac{C}{\lambda_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_k} \\ &+ \frac{C}{\lambda_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left[M \left(\frac{|L|}{\rho} \right) \right]^{p_k} \\ &\leq \frac{C}{\lambda_r} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_k} \\ &+ C \max \left(1, \sup \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{H} \right), \end{split}$$

where $H = \sup_k p_k < \infty$ and $C = \max(1, 2^{H-1})$. Thus we have $x = (x_k) \in \widehat{V}_{\lambda}[A, M, \Delta, p]$. The inclusion $\widehat{V}_{\lambda}[A, M, \Delta, p] \subset$ $\widehat{V}_{\lambda}[A, M, \Delta, p]_{\infty}$ is obvious. \square

3. New set of sequences of order α

In this section let $\alpha \in (0, 1]$ be any real number, let $\lambda = (\lambda_r)$ be a monotonically increasing sequence of positive real numbers tending to ∞ such that $\lambda_r \leq \lambda_r + 1$, $\lambda_1 = 1$, and p be a positive real number such that $1 \le p < \infty$.

Now we define the following sequence space.

$$\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$$

$$= \left\{ x \in w : \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \sum_{k \in I_{r}} |\Delta B_{kn}(x)|^{p} < \infty, \text{ uniformly on } n. \right\}$$

Special cases:

- (a) For p=1 we have $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)=\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}$. (b) For $\alpha=1$ and p=1 we have $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)=1$

Theorem 3.1. Let $\alpha \in (0, 1]$ and p be a positive real number such that $1 \leq p < \infty$. Then the sequence space $V_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$ is a BK-space normed by

$$||x||_{\alpha} = \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} |\Delta B_{kn}(x)|^{p} \right)^{\frac{1}{p}}.$$

Proof. The proof of the result is straightforward, so omitted. \square

Theorem 3.2. Let $\alpha \in (0, 1]$ and p be a positive real number such that $1 \leq p < \infty$. Then $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty} \subset \widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$.

Proof. The proof of the result is straightforward, so omitted. \square

Theorem 3.3. Let α and β be fixed real numbers such that $0 < \alpha$ $\leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. Then $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p) \subset \widehat{V}_{\lambda}^{\beta}[A, \Delta]_{\infty}(p)$.

Proof. The proof of the result is straightforward, so omitted. \square

Theorem 3.4. Let α and β be fixed real numbers such that 0 < 1 $\alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$ ∞ . For any two sequences $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ for all r, then $\widehat{V}^{\alpha}_{\lambda}[A, \Delta]_{\infty}(p) \subset \widehat{V}^{\beta}_{\mu}[A, \Delta]_{\infty}(p)$ if and only if $\sup_{r}(\frac{\lambda_r^{\alpha}}{\mu_r^{\beta}}) < \infty$.

Proof. Let $x = (x_k) \in \widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$ and $\sup_{r}(\frac{\lambda_r^{\alpha}}{u^{\beta}}) < \infty$. Then

$$\sup_{r} \frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p < \infty$$

and there exists a positive number K such that $\lambda_r^{\alpha} \leq K \mu_r^{\beta}$ and so that $\frac{1}{u_{-}^{\mu}} \leq \frac{K}{\lambda_{r}^{\alpha}}$ for all r. Therefore, we have

$$\frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p \le \frac{K}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p.$$

Now taking supremum over r, we get

$$\sup_{r} \frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p \le \sup_{r} \frac{K}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p$$

and hence $x \in \widehat{V}_{\mu}^{\beta}[A, \Delta]_{\infty}(p)$.

Next suppose that $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p) \subset \widehat{V}_{\mu}^{\alpha}[A,\Delta]_{\infty}(p)$ and $\sup_{r} (\frac{\lambda_{ij}^{\alpha}}{\sigma_{ij}^{\beta}}) = \infty$. Then there exists an increasing sequence (r_i) of natural numbers such that $\lim_{i} (\frac{\lambda_{r_i}^n}{\mu_{\ell}^{B}}) = \infty$. Let L be a positive real number, then there exists $i_0 \in \mathbb{N}$ such that $\frac{\lambda_{i_l}^{\alpha}}{\mu_{l_l}^{\beta}} > L$ for all r_i $\geq i_0$. Then $\lambda_{r_i}^{\alpha} > L \mu_{r_i}^{\beta}$ and so $\frac{1}{\mu_{r_i}^{\beta}} > \frac{L}{\lambda_{r_i}^{\alpha}}$. Therefore we can write

$$\frac{1}{\mu_{r_i}^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p > \frac{L}{\lambda_{r_i}^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x)|^p \text{ for all } r_i \ge i_0.$$

Now taking supremum over $r_i \ge i_0$ then we get

$$\sup_{r_{i} \ge i_{0}} \frac{1}{\mu_{r_{i}}^{\beta}} \sum_{k \in I_{r_{i}}} |\Delta B_{kn}(x)|^{p} > \sup_{r_{i} \ge i_{0}} \frac{L}{\lambda_{r_{i}}^{\alpha}} \sum_{k \in I_{r_{i}}} |\Delta B_{kn}(x)|^{p}.$$
(3.1)

Since the relation (3.1) holds for all $L \in \mathbb{R}^+$ (we may take the number L sufficiently large), we have

$$\sup_{r_i \ge i_0} \frac{1}{\mu_{r_i}^{\beta}} \sum_{k \in I_{r_i}} |\Delta B_{kn}(x)|^p = \infty$$

but
$$x = (x_k) \in \widehat{V}_{\lambda}^{\alpha}[A, \Delta, p]_{\infty}$$
 with

$$\sup_{r} \left(\frac{\lambda_r^{\alpha}}{\mu_r^{\beta}} \right) < \infty.$$

Therefore $x \notin \widehat{V}_{\mu}^{\alpha}[A, \Delta]_{\infty}(p)$ which contradicts that $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p) \subset \widehat{V}_{\mu}^{\alpha}[A, \Delta]_{\infty}(p)$. Hence $\sup_{r \geq 1} \left(\frac{\lambda_r^{\alpha}}{\mu^{\beta}}\right) < \infty$. \square

Corollary 3.5. Let α and β be fixed real numbers such that $0 < \alpha \le \beta \le 1$ and p be a positive real number such that $1 \le p < \infty$. Then for any two sequences $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ for all $r \ge 1$

(a)
$$\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p) = \widehat{V}_{\mu}^{\beta}[A, \Delta]_{\infty}(p)$$
 if and only if $0 < \inf_{\Gamma} \left(\frac{\lambda_{\mu}^{\alpha}}{\mu^{\beta}}\right) < \sup_{\Gamma} \left(\frac{\lambda_{\mu}^{\alpha}}{\mu^{\beta}}\right) < \infty$.

(b)
$$\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p) = \widehat{V}_{\mu}^{\alpha}[A, \Delta]_{\infty}(p)$$
 if and only if $0 < \inf_{\Gamma} \left(\frac{\lambda_{\mu}^{\alpha}}{\mu^{\alpha}}\right) < \sup_{\Gamma} \left(\frac{\lambda_{\mu}^{\alpha}}{\mu^{\alpha}}\right) < \infty$.

(c)
$$\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p) = \widehat{V}_{\lambda}^{\beta}[A, \Delta]_{\infty}(p)$$
 if and only if $0 < \inf_{\Gamma} \left(\frac{\lambda_{\Gamma}^{\alpha}}{\lambda_{\Gamma}^{\beta}} \right) < \sup_{\Gamma} \left(\frac{\lambda_{\Gamma}^{\alpha}}{\lambda_{\Gamma}^{\beta}} \right) < \infty$.

Theorem 3.6. $\ell_p[A, \Delta] \subset \widehat{V}^{\alpha}_{\lambda}[A, \Delta]_{\infty}(p) \subset \ell_{\infty}[A, \Delta].$

Proof. The proof of the result is straightforward, so omitted. \square

Theorem 3.7. If
$$0 , then $\widehat{V}_{\alpha}^{\alpha}[A, \Delta]_{\infty}(p) \subset \widehat{V}_{\alpha}^{\alpha}[A, \Delta]_{\infty}(q)$.$$

Proof. The proof of the result is straightforward, so omitted. \square

4. Some geometric properties of the new space

In this section we study some of the geometric properties like order continuity, the Fatou property and the Banach–Saks property of type p in this new sequence space.

Theorem 4.1. The space $\widehat{V}^{\alpha}_{\lambda}[A, \Delta]_{\infty}(p)$ is order continuous.

Proof. To show that the space $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ is an AK-space. It is easy to see that $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ contains c_{00} . By using the definition of AK-properties, we have that $x=(x(i))\in\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ has a unique representation $x=\sum_{i=1}^{\infty}x(i)e(i)$ i.e. $||x-x^{[j]}||_{\alpha}=||(0,0,\ldots,x(j),x(j+1),\ldots)||_{\alpha}\to 0$ as $j\to\infty$, which means that $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ has AK. Therefore FK-space $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ contains c_{00} has AK-property. Also since $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ is a Köthe space, hence the space $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ is order continuous. \square

Theorem 4.2. The space $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$ has the Fatou property.

Proof. Let x be a real sequence and (x_j) be any nondecreasing sequence of non-negative elements from $\widehat{V}_{\lambda}^{\alpha}[A,\Delta]_{\infty}(p)$ such that $x_j(i) \to x(i)$ as $j \to \infty$ coordinatewisely and $\sup_j ||x_j||_{\alpha} < \infty$

Let us denote $T = \sup_j ||x_j||_{\alpha}$. Since the supremum is homogeneous, then we have

$$\frac{1}{T} \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} |\Delta B_{kn}(x_{j}(i))|^{p} \right)^{\frac{1}{p}} \leq \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} \left| \frac{\Delta B_{kn}(x_{j}(i))}{||x_{n}||_{\alpha}} \right|^{p} \right)^{\frac{1}{p}}$$

$$= \frac{1}{||x_{n}||_{\alpha}} ||x_{n}||_{\alpha} = 1.$$

Also by the assumptions that (x_j) is non-decreasing and convergent to x coordinatewisely and by the Beppo-Levi theorem, we have

$$\frac{1}{T} \lim_{j \to \infty} \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I_{r}} |\Delta B_{kn}(x_{j}(i))|^{p} \right)^{\frac{1}{p}}$$

$$= \sup_{r} \frac{1}{\lambda_{r}^{\alpha}} \left(\sum_{k \in I} \left| \frac{\Delta B_{kn}(x(i))}{T} \right|^{p} \right)^{\frac{1}{p}} \le 1,$$

whence

$$||x||_{\alpha} \le T = \sup_{j} ||x_j||_{\alpha} = \lim_{j \to \infty} ||x_j||_{\alpha} < \infty.$$

Therefore $x \in \widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$. On the other hand, for any natural number j the sequence (x_j) is non-decreasing, we obtain that the sequence $(\|x_j\|_{\alpha})$ is bounded form above by $\|x\|_{\alpha}$. Therefore $\lim_{j \to \infty} \|x_j\|_{\alpha} \le \|x\|_{\alpha}$ which contradicts the above inequality proved already, yields that $\|x\|_{\alpha} = \lim_{j \to \infty} \|x_j\|_{\alpha}$. \square

Theorem 4.3. The space $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]_{\infty}(p)$ has the Banach–Saks property.

Proof. The proof of the result follows from the used in [1]. \Box

5. λ -statistical convergence

The idea of statistical convergence first appeared, under the name of almost convergence, in the first edition Zygmund [14]. Later, this idea was introduced by Fast [15] and Steinhaus [16] and studied various authors (see [10,17,18]). Mursaleen [19], introduced the notion λ -statistical convergence for real sequences. For more details on λ -statistical convergence we refer to [20] and many others. The notion of order statistical convergence was introduced by Gadjiev and Orhan [21] and after that statistical convergence of order α studied by Colak [22], λ -statistical convergence of order α studied by Colak and Bektas [23], λ statistical convergence of order α of sequence of functions studied by Et et al., [24,25] and many authors. In this section, we define the concept of $\widehat{S}_{\lambda}[A,\Delta]$ -convergence and establish the relationship of $S_{\lambda}[A, \Delta]$ with $V_{\lambda}[A, \Delta]$. Also we introduce the notion of $\widehat{S_{\lambda}}[A, \Delta]$ —convergence of order α of real number sequences and obtain some inclusion relations between the set of $\widehat{S}[A, \Delta]$ —convergence of order α and the sets $\widehat{V}_{\lambda}^{\alpha}[A, \Delta]$ and $\hat{V}_{\lambda}^{\alpha}[A, M, \Delta, p].$

Definition 5.1. [19] A sequence $x = (x_k)$ is said to be λ -statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{\lambda_r} |\{k \in I_r : |x_k - L| \ge \varepsilon\}| = 0.$$

In this case we write $S_{\lambda} - \lim x = L$ or $x_k \to L(S_{\lambda})$.

Definition 5.2. [23] A sequence $x = (x_k)$ is said to be λ statistically convergent L of order α or S_{λ}^{α} -convergent to L if for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{\lambda_r^{\alpha}} |\{k \in I_r : |x_k - L| \ge \varepsilon\}| = 0.$$

In this case we write $S_{\lambda}^{\alpha} - \lim x = L \text{ or } x_k \to L(S_{\lambda}^{\alpha}).$

Definition 5.3. Let $\lambda = (\lambda_r)$ be a sequence in Λ . A sequence $x = (x_k)$ is said to be almost λ -statistically $[A, \Delta]$ -convergent or $\widehat{S}_{\lambda}[A, \Delta]$ —convergent to L if for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{\lambda_{r}} |\{k \in I_{r} : |\Delta B_{kn}(x) - L| \ge \varepsilon\}| = 0.$$

In this case we write $\widehat{S}_{\lambda}[A, \Delta] - \lim x = L \text{ or } x_k \to L(\widehat{S}_{\lambda}[A, \Delta]).$

Theorem 5.1. Let $\lambda = (\lambda_r)$ be a sequence in Λ , then

- (a) If $x_k \to L(\widehat{V}_{\lambda}[A, \Delta])$ then $x_k \to L(\widehat{S}_{\lambda}[A, \Delta])$. (b) If $x_k \in I_{\infty}[A, \Delta]$ and $x_k \to L(\widehat{S}_{\lambda}[A, \Delta])$, then $x_k \to I_{\infty}[A, \Delta]$
- (c) $\widehat{V}_{\lambda}[A, \Delta] \cap l_{\infty}[A, \Delta] = \widehat{S}_{\lambda}[A, \Delta] \cap l_{\infty}[A, \Delta]$, where

$$l_{\infty}[A, \Delta] = \left\{ x \in w : \sup_{k,n} |\Delta B_{kn}(x)| < \infty \right\}.$$

Proof. (a) Suppose that $\varepsilon > 0$ and $x_k \to L(\widehat{V}_{\lambda}[A, \Delta])$, then we

$$\sum_{k \in I_r} |\Delta B_{kn}(x) - L| \ge \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \ge \varepsilon}} |\Delta B_{kn}(x) - L|$$

 $\geq \varepsilon |\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}|.$

Therefore $x_k \to L(\widehat{S}_{\lambda}[A, \Delta])$.

(b) Suppose that $x \in l_{\infty}[A, \Delta]$ and $x_k \to L(\widehat{S}_{\lambda}[A, \Delta])$, i.e., for some K > 0, $|\Delta B_{kn}(x) - L| \le K$ for all k and n. Given $\varepsilon > 0$, we

$$\begin{split} \frac{1}{\lambda_r} \sum_{k \in I_r} |\Delta B_{kn}(x) - L| &= \frac{1}{\lambda_r} \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \geq \varepsilon}} |\Delta B_{kn}(x) - L| \\ &+ \frac{1}{\lambda_r} \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| < \varepsilon}} |\Delta B_{kn}(x) - L| \\ &\leq \frac{K}{\lambda_r} |\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}| + \varepsilon, \end{split}$$

as $r \to \infty$, the right side goes to zero, which implies that $x_k \to \infty$ $L(\widehat{V}_{\lambda}[A, \Delta]).$

(c) Follows from (a) and (b). \Box

Definition 5.4. Let $0 < \alpha \le 1$ be given. A sequence $x = (x_k)$ is said to be almost statistically $[A, \Delta]$ – convergent to L of order α or $\widehat{S}^{\alpha}[A, \Delta]$ -convergent to L of order α if for every $\varepsilon > 0$

$$\lim_{n\to\infty} \frac{1}{n^{\alpha}} |\{k \le n : |\Delta B_{kn}(x) - L| \ge \varepsilon\}| = 0.$$

In this case we write $\widehat{S}^{\alpha}[A, \Delta] - \lim x = L$ or $x_k \to \infty$ $L(\widehat{S}^{\alpha}[A, \Delta]).$

Definition 5.5. Let $\lambda = (\lambda_r)$ be a sequence in Λ , and $0 < \infty$ $\alpha \leq 1$ be given. A sequence $x = (x_k)$ is said to be almost λ -statistically-[A, Δ]-convergent to L of order α or $S_{\lambda}^{\alpha}[A, \Delta]$ – convergent to L of order α if for every $\varepsilon > 0$

$$\lim_{r\to\infty}\frac{1}{\lambda_r^{\alpha}}|\{k\in I_r:\ |\Delta B_{kn}(x)-L|\geq\varepsilon\}|=0.$$

In this case we write $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] - \lim x = L$ or $x_k \to$ $L(\widehat{S}^{\alpha}_{\lambda}[A, \Delta]).$

Theorem 5.2. For $0 < \alpha < 1$, if $\widehat{S}^{\alpha}[A, \Delta] - \lim_k x_k = x_0$ then x_0 is unique.

Proof. The proof of the result is easy, so omitted. \Box

Theorem 5.3. Let $0 < \alpha \le 1$ and $x = (x_k)$ and $(y = (y_k))$ be sequences of real numbers.

- (a) If $\widehat{S}^{\alpha}[A, \Delta] \lim_k x_k = x_0$ and $c \in \mathbb{C}$, then $\widehat{S}^{\alpha}[A, \Delta] \lim_{k} (cx_k) = cx_0.$
- (b) If $\widehat{S}^{\alpha}[A, \Delta] \lim_k x_k = x_0$ and $\widehat{S}^{\alpha}[A, \Delta] \lim_k y_k = y_0$, then $\widehat{S}^{\alpha}[A, \Delta] \lim_k (x_k + y_k) = x_0 + y_0$.

Proof. (a) For c = 0, the result is trivial. Suppose that $c \neq 0$, then for every $\varepsilon > 0$ the result follows form the following in-

$$\frac{1}{n^{\alpha}} |\{k \le n : |\Delta B_{kn}(cx) - cx_0| \ge \varepsilon\}|$$

$$= \frac{1}{n^{\alpha}} \left| \left\{ k \le n : |\Delta B_{kn}(x) - x_0| \ge \frac{\varepsilon}{|c|} \right\} \right|.$$

(b) For every $\varepsilon > 0$. The result follows from the from the following inequality.

$$\frac{1}{n^{\alpha}} |\{k \le n : |\Delta B_{kn}(x+y) - (x_0 + y_0)| \ge \varepsilon\}| \\
\le \frac{1}{n^{\alpha}} |\{k \le n : |\Delta B_{kn}(x) - x_0| \ge \frac{\varepsilon}{2}\}| \\
+ \frac{1}{n^{\alpha}} |\{k \le n : |\Delta B_{kn}(y) - y_0| \ge \frac{\varepsilon}{2}\}|$$

Theorem 5.4. Let $0 < \alpha \le 1$ and $x = (x_k)$ and $(y = (y_k))$ be sequences of real numbers.

- (a) If $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \lim_{k} x_{k} = x_{0}$ and $c \in \mathbb{C}$, then $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] -$
- (b) If $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \lim_{k} x_{k} = x_{0}$ and $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \lim_{k} y_{k} = y_{0}$, then $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \lim_{k} (x_{k} + y_{k}) = x_{0} + y_{0}$.

Proof. (a) For c = 0, the result is trivial. Suppose that $c \neq 0$, then for every $\varepsilon > 0$ the result follows form the following inequality

$$\frac{1}{\lambda_r^{\alpha}} |\{k \in I_r : |\Delta B_{kn}(cx) - cx_0| \ge \varepsilon\}|
= \frac{1}{\lambda_r^{\alpha}} \left| \left\{ k \in I_r : |\Delta B_{kn}(x) - x_0| \ge \frac{\varepsilon}{|c|} \right\} \right|.$$

(b) For every $\varepsilon > 0$. The result follows from the from the following inequality.

$$\frac{1}{\lambda_r^{\alpha}}|\{k \in I_r : |\Delta B_{kn}(x+y) - (x_0 + y_0)| \ge \varepsilon\}|$$

$$\leq \frac{1}{\lambda_r^{\alpha}} \left| \left\{ k \in I_r : |\Delta B_{kn}(x) - x_0| \geq \frac{\varepsilon}{2} \right\} \right|$$

$$+ \frac{1}{\lambda_r^{\alpha}} \left| \left\{ k \in I_r : |\Delta B_{kn}(y) - y_0| \geq \frac{\varepsilon}{2} \right\} \right|$$

Theorem 5.5. If $0 < \alpha < \beta \le 1$, then $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \subset \widehat{S}_{\lambda}^{\beta}[A, \Delta]$ and the inclusion is strict.

Proof. The proof of the result follows form the following equal-

$$\begin{split} &\frac{1}{\lambda_r^{\beta}}|\{k\in I_r: |\Delta B_{kn}(x)-L|\geq \varepsilon\}|\\ &=\frac{1}{\lambda_r^{\alpha}}|\{k\in I_r: |\Delta B_{kn}(x)-L|\geq \varepsilon\}|. \end{split}$$

To prove the inclusion is strict, let λ be given and we consider a sequence $x = (x_k)$ be defined by

$$\Delta B_{kn}(x_k) = \begin{cases} k, & \text{if } r - [\sqrt{\lambda_r}] + 1 \le k \le r; \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} &\frac{1}{\lambda_r^{\beta}} | \{ k \in I_r : |\Delta B_{kn}(x_k) - 0 | \ge \varepsilon \} | \\ &= \frac{1}{\lambda_r^{\beta}} | \{ k \in I_r : r - [\sqrt{\lambda_r}] + 1 \le k \le r \} | \le \frac{\sqrt{\lambda_r}}{\lambda_r^{\beta}} \end{split}$$

Then we have $x \in \widehat{S}^{\beta}_{\lambda}[A, \Delta]$ for $\frac{1}{2} < \beta \le 1$ but $x \notin \widehat{S}^{\alpha}_{\lambda}[A, \Delta]$ for

Corollary 5.6. If a sequence is $\widehat{S}_{\lambda}^{\alpha}[A, \Delta]$ -convergent to L then it is $\widehat{S}_{\lambda}[A, \Delta]$ -convergent to L for $0 < \alpha \leq 1$.

Theorem 5.7. Let $0 < \alpha \le 1$ and $\lambda = (\lambda_r) \in \Lambda$. Then $\widehat{S}^{\alpha}[A, \Delta] \subset$ $\widehat{S}_{1}^{\alpha}[A, \Delta]$ if

$$\lim_{r\to\infty}\inf\frac{\lambda_r^\alpha}{r^\alpha}>0.$$

Proof. If $x_k \to L(\widehat{S}^{\alpha}[A, \Delta])$ then for every $\varepsilon > 0$ and for sufficiently large r we have

$$\begin{split} &\frac{1}{r^{\alpha}}|\{k \leq r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}| \\ &\geq \frac{1}{r^{\alpha}}|\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}| \\ &\geq \frac{\lambda_r^{\alpha}}{r^{\alpha}} \frac{1}{\lambda^{\alpha}}|\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}|. \end{split}$$

Taking the limit as $r \to \infty$ and using the given condition, we get $x_k \to L(\widehat{S}_{\lambda}^{\alpha}[A, \Delta])$. This completes the proof of the

Corollary 5.8. Let $0 < \alpha \le 1$ and $\lambda = (\lambda_r) \in \Lambda$. Then $\widehat{S}_{\lambda}^{\alpha}[A, \Delta] \subset$ $\widehat{S}[A, \Delta].$

Theorem 5.9. Let $0 < \alpha \le 1$ and $\lambda = (\lambda_r) \in \Lambda$. Then $\widehat{S}[A, \Delta] \subset$ $\widehat{S}^{\alpha}_{\lambda}[A, \Delta]$ if and only if

$$\lim_{r \to \infty} \inf \frac{\lambda_r^{\alpha}}{r} > 0. \tag{5.1}$$

Proof. Let the condition (5.1) holds and $x = (x_k) \in \widehat{S}[A, \Delta]$. For a given $\varepsilon > 0$ we have

$$\{k \le r : |\Delta B_{kn}(x) - L| \ge \varepsilon\} \supset \{k \in I_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}.$$

Then we have

$$\frac{1}{r} |\{k \le r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}|
\ge \frac{1}{r} |\{k \in I_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}|
= \frac{\lambda_r^{\alpha}}{r} \frac{1}{\lambda^{\alpha}} |\{k \in I_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}|.$$

By taking limit as $r \to \infty$ and from relation (5.1) we have

$$x_k \to L(\widehat{S}[A, \Delta]) \Rightarrow x_k \to L(\widehat{S}_{\lambda}^{\alpha}[A, \Delta]).$$

Next we suppose that

$$\lim_{r\to\infty}\inf\frac{\lambda_r^\alpha}{r}=0.$$

Then we can choose a subsequence (r_i) such that $\frac{\lambda_{r_i}^{\mu}}{r_i} < \frac{1}{i}$. Define a sequence $x = (x_k)$ as follows:

$$\Delta B_{kn}(x_k) = \begin{cases} 1, & \text{if } k \in I_{r_i}; \\ 0, & \text{otherwise.} \end{cases}$$

Then clearly $x = (x_k) \in \widehat{S}[A, \Delta]$ but $x = (x_k) \notin \widehat{S}_{\lambda}[A, \Delta]$. Since $\widehat{S}_{\lambda}^{\alpha}[A,\Delta] \subset \widehat{S}_{\lambda}[A,\Delta]$, we have $x=(x_k) \notin \widehat{S}_{\lambda}^{\alpha}[A,\Delta]$, which is a contradiction. Hence the relation (5.1) holds. \square

Theorem 5.10. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in Λ such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. If

$$\lim_{r \to \infty} \inf \frac{\lambda_r^{\alpha}}{\mu^{\beta}},\tag{5.2}$$

then
$$\widehat{S}^{\beta}_{\mu}[A, \Delta] \subseteq \widehat{S}^{\alpha}_{\lambda}[A, \Delta]$$
.

Proof. Suppose that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and the condition (5.2) hold. Then $I_r \subset J_r$ and so that for $\varepsilon > 0$ we can write

$$\{k \in J_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\} \supset \{k \in I_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}.$$

Then we have

$$\begin{split} &\frac{1}{\mu_r^{\beta}} |\{k \in J_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}| \\ &\ge \frac{\lambda_r^{\alpha}}{\mu_r^{\beta}} \frac{1}{\lambda_r^{\alpha}} |\{k \in I_r : |\Delta B_{kn}(x) - L| \ge \varepsilon\}|, \end{split}$$

for all $r \in \mathbb{N}$, where $J_r = [r - \mu_r + 1, r]$. Taking limit $r \to \infty$ in the last inequality and using (5.2), we have $\widehat{S}_{\mu}^{\beta}[A, \Delta] \subseteq$ $\widehat{S}^{\alpha}_{\lambda}[A,\Delta].$

Corollary 5.11. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in A such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$. If (5.2) holds, then

$$\begin{array}{ll} \text{(a)} \ \ \widehat{S}_{\mu}^{\alpha}[A,\,\Delta]\subseteq\widehat{S}_{\lambda}^{\alpha}[A,\,\Delta] & \textit{for} \ 0<\alpha\leq 1, \\ \text{(b)} \ \ \widehat{S}_{\mu}[A,\,\Delta]\subseteq\widehat{S}_{\lambda}^{\alpha}[A,\,\Delta] & \textit{for} \ 0<\alpha\leq 1, \\ \end{array}$$

(b)
$$\widehat{S}_{\mu}[A, \Delta] \subseteq \widehat{S}_{\lambda}^{\alpha}[A, \Delta]$$
 for $0 < \alpha \le 1$.

(c)
$$\widehat{S}_{\mu}[A, \Delta] \subset \widehat{S}_{\lambda}[A, \Delta]$$
.

Theorem 5.12. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in Λ such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. If

$$\lim_{r \to \infty} \frac{\mu_r}{\lambda_r^{\beta}} = 1,\tag{5.3}$$

then $\widehat{S}_{1}^{\alpha}[A, \Delta] \subseteq \widehat{S}_{n}^{\beta}[A, \Delta]$.

Proof. Let $\widehat{S}_{i}^{\alpha}[A, \Delta] - \lim x = L$ and (5.3) be satisfied. Since $I_r \subset J_r$, for $\varepsilon > 0$ we can write

$$\begin{split} &\frac{1}{\mu_r^\beta}|\{k\in J_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|\\ &=\frac{1}{\mu_r^\beta}|\{r-\mu_r+1\leq k\leq r-\lambda_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|\\ &+\frac{1}{\mu_r^\beta}|\{k\in I_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|\\ &\leq\frac{\mu_r-\lambda_r}{\mu_r^\beta}+\frac{1}{\mu_r^\beta}|\{k\in I_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|\\ &\leq\frac{\mu_r-\lambda_r}{\lambda_r^\beta}+\frac{1}{\mu_r^\beta}|\{k\in I_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|\\ &\leq\left(\frac{\mu_r-\lambda_r^\beta}{\lambda_r^\beta}-1\right)+\frac{\lambda_r^\alpha}{\mu_r^\beta}\frac{1}{\lambda_r^\alpha}|\{k\in I_r:|\Delta B_{kn}(x)-L|\geq\varepsilon\}|. \end{split}$$

Using the relation (5.3) and $\widehat{S}^{\alpha}_{\lambda}[A, \Delta] - \lim x = L$ the righthand side of the above inequality tends to zero as $r \to \infty$. This implies that $\widehat{S}^{\alpha}_{\lambda}[A, \Delta] \subseteq \widehat{S}^{\beta}_{\mu}[A, \Delta]$. \square

Corollary 5.13. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in A such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$. If (5.3) holds, then

$$\begin{array}{ll} \text{(a)} \ \ \widehat{S}^{\alpha}_{\lambda}[A,\,\Delta] \subseteq \widehat{S}^{\alpha}_{\mu}[A,\,\Delta] & \textit{for} \ 0 < \alpha \leq 1, \\ \text{(b)} \ \ \widehat{S}_{\lambda}[A,\,\Delta] \subseteq \widehat{S}^{\alpha}_{\mu}[A,\,\Delta] & \textit{for} \ 0 < \alpha \leq 1, \\ \end{array}$$

(b)
$$S_{\lambda}[A, \Delta] \subseteq S_{\mu}^{\alpha}[A, \Delta]$$
 for $0 < \alpha \le 1$,

(c)
$$\widehat{S}_{\lambda}[A, \Delta] \subseteq \widehat{S}_{\mu}[A, \Delta]$$
.

Definition 5.6. Let M be an Orlicz function, $p = (p_k)$ be a sequence of strictly positive real numbers, $\alpha \in (0, 1], \lambda = (\lambda_r)$ be a sequence of positive reals, and for $\rho > 0$, now we define

$$\begin{split} \widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p] \\ &= \left\{ x \in w : \lim_{r \to \infty} \frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_k} = 0, \\ &\text{for some } L, \text{ uniformly on } n \}. \end{split}$$

If M(x) = x and $p_k = p$ for all $k \in \mathbb{N}$ then we shall write $\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p] = \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p)$ and if M(x) = x then we shall write $\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p] = \widehat{V}_{\lambda}^{\alpha}[A, \Delta, p]$.

Theorem 5.14. Let (p_k) be a bounded and $0 < \inf_k p_k \le p_k \le$ $sup_k p_k = H < \infty$. Let $0 < \alpha \le \beta \le 1$, M be an Orlicz function and $\lambda = (\lambda_r)$ be a sequence of positive reals, then $\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p] \subset \widehat{S}_{\lambda}^{\beta}[A, \Delta].$

Proof. Let $x = (x_k) \in \widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p]$. Let $\varepsilon > 0$ be given. As $h_r^{\alpha} \leq h_r^{\beta}$ for each r we can write

$$\frac{1}{\lambda_r^{\alpha}} \sum_{k \in L} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_k}$$

$$\begin{split} &=\frac{1}{\lambda_{r}^{\alpha}}\left[\sum_{\substack{A \in I_{r} \\ |\Delta B_{kn}(x)-L| \geq \varepsilon}} \left[M\left(\frac{|\Delta B_{kn}(x)-L|}{\rho}\right)\right]^{p_{k}} \right. \\ &+ \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x)-L| < \varepsilon}} \left[M\left(\frac{|\Delta B_{kn}(x)-L|}{\rho}\right)\right]^{p_{k}} \right] \\ &\geq \frac{1}{\lambda_{r}^{\beta}}\left[\sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x)-L| \geq \varepsilon}} \left[M\left(\frac{|\Delta B_{kn}(x)-L|}{\rho}\right)\right]^{p_{k}} \right. \\ &+ \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x)-L| \geq \varepsilon}} \left[M\left(\frac{|\Delta B_{kn}(x)-L|}{\rho}\right)\right]^{p_{k}} \right] \\ &\geq \frac{1}{\lambda_{r}^{\beta}}\sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x)-L| \geq \varepsilon}} \left[M\left(\frac{\varepsilon}{\rho}\right)\right]^{p_{k}} \\ &\geq \frac{1}{\lambda_{r}^{\beta}}\sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x)-L| \geq \varepsilon}} \min\left([M(\varepsilon_{1})]^{h}, [M(\varepsilon_{1})]^{H}\right), \varepsilon_{1} = \frac{\varepsilon}{\rho} \\ &\geq \frac{1}{\lambda_{r}^{\beta}}|\{k \in I_{r} : |\Delta B_{kn}(x)-L| \geq \varepsilon\}| \\ &\min\left([M(\varepsilon_{1})]^{h}, [M(\varepsilon_{1})]^{H}\right). \end{split}$$

From the above inequality we have $(x_k) \in \widehat{S}_{\lambda}^{\beta}[A, \Delta]$. \square

Corollary 5.15. Let $0 < \alpha \le 1$, M be an Orlicz function and $\lambda =$ (λ_r) be an element of Λ , then $\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p] \subset \widehat{S}_{\lambda}^{\alpha}[A, \Delta]$.

Theorem 5.16. Let M be an Orlicz function, $x = (x_k)$ be a sequence in $l_{\infty}[A, \Delta]$, and $\lambda = (\lambda_r)$ be an element of Λ . If $\lim_{r\to\infty} \frac{\lambda_r}{\lambda_r^{\alpha}} = 1$, then $S_{\lambda}^{\alpha}[A, \Delta] \subset V_{\lambda}^{\alpha}[A, M, \Delta, p]$.

Proof. Suppose that $x = (x_k)$ is a sequence in $l_{\infty}[A, \Delta]$ and $\widehat{S}^{\alpha}[A, \Delta] - \lim_{k} x_{k} = L$. As $x = (x_{k}) \in l_{\infty}[A, \Delta]$ there exists K > 0 such that $|\Delta B_{kn}(x)| \leq K$ for all k and n. For given ε > 0 we have

$$\begin{split} &\frac{1}{\lambda_{r}^{\alpha}} \sum_{k \in I_{r}} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_{k}} \\ &= \frac{1}{\lambda_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x) - L| \geq \varepsilon}} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_{k}} \\ &+ \frac{1}{\lambda_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x) - L| < \varepsilon}} \left[M \left(\frac{|\Delta B_{kn}(x) - L|}{\rho} \right) \right]^{p_{k}} \\ &\leq \frac{1}{\lambda_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x) - L| \geq \varepsilon}} \max \left\{ \left[M \left(\frac{K}{\rho} \right) \right]^{h}, \left[M \left(\frac{K}{\rho} \right) \right]^{H} \right\} \\ &+ \frac{1}{\lambda_{r}^{\alpha}} \sum_{\substack{k \in I_{r} \\ |\Delta B_{kn}(x) - L| < \varepsilon}} \left[M \left(\frac{\varepsilon}{\rho} \right) \right]^{p_{k}} \\ &\leq \max \left\{ \left[M \left(\frac{K}{\rho} \right) \right]^{h}, \left[M \left(\frac{K}{\rho} \right) \right]^{H} \right\} \frac{1}{\lambda_{r}^{\alpha}} ||\Delta B_{kn}(x) - L| \geq \varepsilon ||\Delta B_{kn}(x) - L| \leq \varepsilon ||\Delta B_{kn}(x) - L|| \leq \varepsilon ||\Delta B_{kn}(x) - L||\Delta B_{k$$

$$+ \frac{\lambda_r}{\lambda_r^{\alpha}} \max \left\{ \left[M \left(\frac{\varepsilon}{\rho} \right) \right]^h, \left[M \left(\frac{\varepsilon}{\rho} \right) \right]^H \right\}.$$

Therefore we have $(x_k) \in \widehat{V}^{\alpha}_{\lambda}[A, M, \Delta, p]$. \square

Theorem 5.17. Let $\lambda = (\lambda_r) \in \Lambda$, $0 < \alpha \le \beta \le 1$, p be a positive real number, then $\widehat{V}_{\lambda}^{\alpha}[A, \Delta](p) \subseteq \widehat{V}_{\lambda}^{\beta}[A, \Delta](p)$.

Proof. The proof is easy, so omitted. \Box

Corollary 5.18. *Let* $\lambda = (\lambda_r) \in \Lambda$ *and p be a positive real number,* then $\widehat{V}_{\lambda}^{\alpha}[A, \Delta](p) \subseteq \widehat{V}_{\lambda}[A, \Delta](p)$.

Theorem 5.19. Let $\lambda = (\lambda_r) \in \Lambda$, $0 < \alpha \le \beta \le 1$ and p be a positive real number, then $\widehat{V}_{\lambda}^{\alpha}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}^{\beta}[A, \Delta].$

Proof. Let $x = (x_k) \in \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p)$ and for $\varepsilon > 0$ we have

$$\sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p = \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \ge \varepsilon}} |\Delta B_{kn}(x) - L|^p$$

$$+ \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| < \varepsilon}} |\Delta B_{kn}(x) - L|^p$$

$$\geq \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \ge \varepsilon}} |\Delta B_{kn}(x) - L|^p$$

$$\geq |AB_{kn}(x) - AB_{kn}(x) - AB_{kn}(x) - AB_{kn}(x) - AB_{kn}(x) - AB_{kn}(x)$$

Therefore we have

$$\frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p \geq \frac{1}{\lambda_r^{\beta}} |\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}|.\varepsilon^p.$$

The last inequality implies that $x = (x_k) \in \widehat{S}_{\lambda}^{\beta}[A, \Delta]$ if $x=(x_k)\in \widehat{V}_{\lambda}^{\alpha}[A,\Delta](p)$. This completes the proof of the theorem. \square

Theorem 5.20. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in Λ such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. If (5.2) holds, then $\widehat{V}_{\mu}^{\beta}[A, \Delta](p) \subseteq \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p)$

Proof. The proof is easy, so omitted. \Box

Corollary 5.21. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in A such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$. If (5.2) holds, then

$$\begin{array}{l} \text{(a)} \ \ \widehat{V}_{\mu}^{\alpha}[A,\,\Delta](p)\subseteq \widehat{V}_{\lambda}^{\alpha}[A,\,\Delta](p) \ for \ 0<\alpha\leq 1, \\ \text{(b)} \ \ \widehat{V}_{\mu}[A,\,\Delta](p)\subseteq \widehat{V}_{\lambda}^{\alpha}[A,\,\Delta](p) \ for \ 0<\alpha\leq 1, \\ \text{(c)} \ \ \widehat{V}_{\mu}[A,\,\Delta](p)\subseteq \widehat{V}_{\lambda}[A,\,\Delta](p). \end{array}$$

(b)
$$\widehat{V}_{\mu}[A, \Delta](p) \subseteq \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p)$$
 for $0 < \alpha \le 1$,

Theorem 5.22. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in Λ such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. If (5.2) holds, then $\widehat{V}_{\mu}^{\beta}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}^{\alpha}[A, \Delta].$

Proof. Let $x = (x_k) \in \widehat{V}_{\mu}^{\beta}[A, \Delta](p)$. Then for $\varepsilon > 0$ we have

$$\begin{split} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p &= \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \ge \varepsilon}} |\Delta B_{kn}(x) - L|^p \\ &+ \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| < \varepsilon}} |\Delta B_{kn}(x) - L|^p \\ &\ge \sum_{\substack{k \in I_r \\ |\Delta B_{kn}(x) - L| \ge \varepsilon}} |\Delta B_{kn}(x) - L|^p \end{split}$$

Therefore we have

$$\begin{split} \frac{1}{\mu_r^{\beta}} & \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^{\rho} \\ & \geq \frac{\lambda_r^{\alpha}}{\mu_r^{\beta}} \frac{1}{\lambda_r^{\alpha}} |\{k \in I_r : |\Delta B_{kn}(x) - L| \geq \varepsilon\}|.\varepsilon^{\rho}, \end{split}$$

since (5.2) holds and $x = (x_k) \in \widehat{V}_{\mu}^{\beta}[A, \Delta](p)$. The last inequality implies that $x = (x_k) \in \widehat{S}_{\lambda}^{\alpha}[A, \Delta]$. This completes the proof of the theorem. \Box

Corollary 5.23. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in A such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq 1$. If (5.2) holds,

(a)
$$\widehat{V}_{\mu}^{\alpha}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}^{\alpha}[A, \Delta],$$

(b) $\widehat{V}_{\mu}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}^{\alpha}[A, \Delta],$
(c) $\widehat{V}_{\mu}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}[A, \Delta],$

(b)
$$\widehat{V}_{\mu}[A, \Delta](p) \subseteq \widehat{S}^{\alpha}_{\lambda}[A, \Delta]$$

(c)
$$\widehat{V}_{\mu}[A, \Delta](p) \subseteq \widehat{S}_{\lambda}[A, \Delta],$$

Theorem 5.24. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in Λ such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. If (5.3) holds, then $\ell_{\infty}[A, \Delta] \cap \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p) \subseteq \widehat{V}_{\mu}^{\beta}[A, \Delta](p)$.

Proof. Let $x = (x_k) \in \ell_{\infty}[A, \Delta] \cap \widehat{V}_{\alpha}^{\alpha}[A, \Delta](p)$ and suppose that (5.3) holds. Since $(x_k) \in \ell_{\infty}[A, \Delta]$, there exists K > 0 such that $|\Delta B_{kn}(x)| \leq K$ for all k and n. Since $\lambda_r \leq \mu_r$ and $I_r \subset J_r$ for all $r \in \mathbb{N}$ we can write

$$\begin{split} \frac{1}{\mu_r^{\beta}} \sum_{k \in J_r} |\Delta B_{kn}(x) - L|^p &= \frac{1}{\mu_r^{\beta}} \sum_{k \in J_r - I_r} |\Delta B_{kn}(x) - L|^p \\ &+ \frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p \\ &\leq \left(\frac{\mu_r - \lambda_r}{\mu_r^{\beta}}\right) K^p + \frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p \\ &\leq \left(\frac{\mu_r - \lambda_r^{\beta}}{\mu_r^{\beta}}\right) K^p + \frac{1}{\mu_r^{\beta}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p \\ &\leq \left(\frac{\mu_r - \lambda_r^{\beta}}{\lambda_r^{\beta}}\right) K^p + \frac{\lambda_r^{\alpha}}{\mu_r^{\beta}} \frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p \\ &\leq \left(\frac{\mu_r}{\lambda_r^{\beta}} - 1\right) K^p + \frac{\lambda_r^{\alpha}}{\mu_r^{\beta}} \frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} |\Delta B_{kn}(x) - L|^p. \end{split}$$

This implies that $x = (x_k) \in \widehat{V}_{\mu}^{\beta}[A, \Delta](p)$. Hence $\ell_{\infty}[A, \Delta] \cap \widehat{V}_{\lambda}^{\alpha}[A, \Delta](p) \subseteq \widehat{V}_{\mu}^{\beta}[A, \Delta](p)$. \square

Corollary 5.25. Let $\lambda = (\lambda_r)$ and $\mu = (\mu_r)$ be two sequences in A such that $\lambda_r \leq \mu_r$ for all $r \in \mathbb{N}$. If (5.3) holds, then

$$\begin{array}{l} \text{(a)} \ \ell_{\infty}[A,\,\Delta] \cap \widehat{V}^{\alpha}_{\lambda}[A,\,\Delta](p) \subseteq \widehat{V}^{\alpha}_{\mu}[A,\,\Delta](p) \, for \, 0 < \alpha \leq 1, \\ \text{(b)} \ \ell_{\infty}[A,\,\Delta] \cap \widehat{V}^{\alpha}_{\lambda}[A,\,\Delta](p) \subseteq \widehat{V}_{\mu}[A,\,\Delta](p) \, for \, 0 < \alpha \leq 1, \\ \text{(c)} \ \ell_{\infty}[A,\,\Delta] \cap \widehat{V}^{\alpha}_{\lambda}[A,\,\Delta](p) \subseteq \widehat{V}_{\mu}[A,\,\Delta](p). \end{array}$$

(b)
$$\ell_{\infty}[A, \Delta] \cap \widehat{V}_{\alpha}[A, \Delta](p) \subseteq \widehat{V}_{\alpha}[A, \Delta](p)$$
 for $0 < \alpha < 1$

(c)
$$\ell_{\infty}[A, \Delta] \cap V_{\lambda}[A, \Delta](p) \subset V_{\mu}[A, \Delta](p)$$

Theorem 5.26. Let M be an Orlicz function and if $\inf_k p_k > 0$, then limit of any sequence $x = (x_k)$ in $\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p]$ is unique.

Proof. Let $\lim_k p_k = s > 0$. Suppose that $l_1(\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p])$ and $(x_k) \to l_2(\widehat{V}_{\lambda}^{\alpha}[A, M, \Delta, p])$. Then there exist $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\lim_{r\to\infty}\frac{1}{\lambda_r^\alpha}\sum_{k\in I_r}\left[M\bigg(\frac{|\Delta B_{kn}(x)-l_1|}{\rho}\bigg)\right]^{p_k}=0, \ \ \text{uniformly on} \ \ n$$

and

$$\lim_{r\to\infty}\frac{1}{\lambda_r^\alpha}\sum_{k\in I_r}\left[M\bigg(\frac{|\Delta B_{kn}(x)-l_2|}{\rho}\bigg)\right]^{p_k}=0,\ \ \text{uniformly on }\ n.$$

Let $\rho = \max\{2\rho_1, 2\rho_2\}$. As M is nondecreasing and convex, we have

$$\begin{split} &\frac{1}{\lambda_r^{\alpha}} \sum_{k \in I_r} \left[M \left(\frac{|l_1 - l_2|}{\rho} \right) \right]^{p_k} \\ &\leq \frac{D}{\lambda_r^{\alpha}} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left(\left[M \left(\frac{|\Delta B_{kn}(x) - l_1|}{\rho} \right) \right]^{p_k} \right. \\ &\left. + \left[M \left(\frac{|\Delta B_{kn}(x) - l_2|}{\rho} \right) \right]^{p_k} \right) \\ &\left. + \frac{D}{\lambda_r^{\alpha}} \sum_{k \in I_r} \left(\left[M \left(\frac{|\Delta B_{kn}(x) - l_1|}{\rho} \right) \right]^{p_k} \right. \\ &\left. + \frac{D}{\lambda_r^{\alpha}} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{kn}(x) - l_2|}{\rho} \right) \right]^{p_k} \right) \to 0 \text{ as } r \to \infty, \end{split}$$

where $\sup_k p_k = H$ and $D = \max(1, 2^{H-1})$. Therefore we get

$$\lim_{r\to\infty}\frac{1}{\lambda_r^\alpha}\sum_{k\in I_r}\biggl[M\biggl(\frac{|l_1-l_2|}{\rho}\biggr)\biggr]^{p_k}=0.$$

As $\lim_{k} p_k = s$, we have

$$\lim_{k\to\infty} \left[M \left(\frac{|l_1-l_2|}{\rho} \right) \right]^{p_k} = \left[M \left(\frac{|l_1-l_2|}{\rho} \right) \right]^s$$

and so $l_1 = l_2$. Hence the limit is unique. \square

Acknowledgment

The authors thank the referees for their comments which improved the presentation of the paper.

References

- [1] Y.A. Cui, H. Hudzik, On the Banach–Saks and weak Banach–Saks properties of some Banach sequence spaces, Acta Sci. Math. (Szeged) 65 (1999) 179–187.
- [2] J. Diestel, Sequence and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, 1984.

- [3] M. Karakaş, M. Et, V. Karakaya, Some geometric properties of a new difference sequence space involving lacunary sequences, Acta Math. Ser. B. Engl. Ed. 33 (6) (2013) 1711–1720.
- [4] M. Mursaleen, R. Çolak, M. Et, Some geometric inequalities in a new banach sequence space, J. Inequ. Appl. ID-86757 (2007) 6pp.
- [5] I.J. Maddox, Spaces of strongly summable sequences, Quarterly J. Math. Oxford. 2 (18) (1967) 345–355.
- [6] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math. 25 (1973) 973–978.
- [7] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971) 379–390.
- [8] S. Nanda, Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung. 49 (1987) 71–76.
- [9] M. Güngör, M. Et, Y. Altin, Strongly (ν_σ, λ, q)-summable sequences defined by Orlicz functions, Appl. Math. Comput. 157 (2004) 561–571.
- [10] A. Esi, The *a*-statistical and strongly (*a-p*)-cesàro convergence of sequences, Pure Appl. Math. Sci. XLIII (1-2) (1996) 89–93.
- [11] M. Güngör, M. Et, δ^r-strongly summable sequences defined by Orlicz functions, Indian J. Pure. Appl. Math. 34 (8) (2003) 1141–1151.
- [12] A. Esi, M. Et, Some new sequence spaces defined by a sequence of orlicz functions, Indian J. Pure Appl. Math. 31 (8) (2000) 967–973.
- [13] L. Leindler, Über die la vallée-pousinsche summierbarkeit allgemeiner orthogonalreihen, Acta Math. Acad. Sci. Hung. 16 (1965) 375–387
- [14] A. Zygmund, Trigonometrical Series, Monografas de Matematicas, vol.5, Warszawa-Lwow, 1935.
- [15] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241–244.
- [16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [17] J.A. Fridy, On statistical convergence, Analysis 5 (4) (1985) 301–313.
- [18] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [19] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (1) (2000) 111–115.
- [20] Ř. Çolak, On λ-statistical convergence, in: Conference on Summability and Applications, Istanbul, Turkey, 2011.12-13.
- [21] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mt. J. Math. 32 (1) (2002) 129–138.
- [22] R. Çolak, Statistical Convergence of Order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, 2010, pp. 121–129.
- [23] R. Çolak, C.A. Bektaş, λ -statistical convergence of order α , Acta Math. Sci. 31 (3) (2011) 953–959.
- [24] M. Et, M. Çinar, M. Karakaş, On λ-statistical convergence of order α of sequences of function, J. Inequ. Appl. 2013 (2013) 204.
- [25] M. Et, S.A. Mohiuddine, A. Alotaibi, On λ-statistical convergence and strongly λ-summable functions of order α, J. Inequ. Appl. 2013 (2013) 469.