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1. Introduction
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. o . . . summable series, respectively. Also we denote ¢y the space
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of real sequences which have only a finite number of non-
zero coordinates. Recall that a sequence (x(i))}°, in a Banach
space X is called Schauder (or basis) of X if for each x € X
Production and hosting by Elsevier there exists a unique sequence (a(i))X, of scalars such that
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x =Y rra()x(), ie lim,o Y iy a()x(@) =x. A sequence
space X with a linear topology is called a K-space if each of
the projection maps P, : X — C defined by Pi(x) = x(i) for
x = (x(i))2, € X is continuous for each natural i. A Fréchet
space is a complete metric linear space and the metric is gener-
ated by a F-norm and a Fréchet space which is a K-space is called
an FK-space i.e. a K-space X is called an FK-space if X is a com-
plete linear metric space. In other words, X is an FK-space if X
is a Fréchet space with continuous coordinatewise projections.
All the sequence spaces mentioned above are FK-space except
the space ¢po. An FK-spaces X which contains the space ¢y is
said to have the property AK if for every sequence (x(i))y, €
X, x =7, x(i)e(i) where e(i) = (0,0, ...1Mrac 0 0, .. ).

A Banach space X is said to be a Kothe sequence space if X
is a subspace of w such that

(a) ifxew,ye X and |x({)| < |y(i)| foralli € N, then x €
Xand |x]| <[yl

(b) there exists an element x € X such that x(i) > 0 for all
ieN.

We say that x € X is order continuous if for any sequence (x,)
€ X such that x,(i) < |x(i)| for all i € N and x,(i{) > 0 asn —
oo we have ||x,|| — 0 as n — oo holds.

A Kothe sequence space X is said to be order continuous if
all sequences in X are order continuous. It is easy to see that x €
X order continuous if and only if |{(0,0,...,0, x(n + 1), x(n +
2),..)|l > 0asn— oo.

A Kothe sequence space X is said to have the Fatou property
if for any real sequence x and (x,) in X such that x,tx coordi-
natewisely and sup,, ||x,|| < oo, we have that x € X and ||x,| —
x|l as n — oo.

A Banach space X is said to have the Banach—Saks property
if every bounded sequence (x,) in X admits a subsequence (z,)
such that the sequence (#¢(z)) is convergent in X with respect to
the norm, where

it zmtetz

f(z) = i 2 forallk € N.

Some of works on geometric properties of sequence space
can be found in [1-4].

Let X be a linear metric space. A function p : X — R is called
paranorm, if

1. p(x) > 0forall x € X,

2. p(—x) = p(x) for all x € X,

3. p(x+y) < px)+ pQy) forall x, y € X,

4. if (yy) is a sequence of scalars with y, — y, as k — o0
and (x;) is a sequence of vectors with p(x; — x) — 0 as
k — oo, then p(yxxi — yx) — 0as k — oo.

Let p = (pr) be a bounded sequence of strictly positive real
numbers. If H = sup, px < oo, then for any complex numbers
ay, and by,

la + byl < C(lax|™ + |be|™) (1.1)

where C = max(1, 27~"). Also, for any complex number «, (see

[5])
loe|”* < max (1, || 7). (1.2)

A function M: [0, co) — [0, 00) is said to be an Orlicz func-
tion if it is continuous, convex, nondecreasing function such

that M(0) =0, M(x) > 0 for x > 0 and M(x) - o0 as x —
oo. If convexity of Orlicz function is replaced by M (x + y) <
M (x) + M (y) then this function is called the modulus function
and characterized by Ruckle [6]. An Orlicz function M is said to
satisfy A,—condition for all values u, if there exists K > 0 such
that M(2u) < KM(u), u > 0.

Lemma 1.1. An Orlicz function satisfies the inequality M(ix) <
AM(x) for all » with( < A < 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz func-
tion to construct the sequence space

Iy = {(xk)I ZM('?') < 00, forsomer>0},

which is a Banach space normed by

_ N (P
||(Xk)||—1nf{r>0.ZM< r )51}.

k=1

The space /), is closely related to the space /,, which is an Orlicz
sequence space with M (x) = |x|?, for 1 <p < oco.

2. Classes of Orlicz difference sequences

The strongly almost summable sequence spaces were introduced
and studied by Maddox [5], Nanda [8], Glingor et al., [9], Esi
[10], Gling6r and Et [11], Esi and Et [12] and many authors.

Let & = (1,) be a monotonically increasing sequence of pos-
itive real numbers tending to oo such that A, < A, + 1,4, = 1.
The generalized de la Vallée-Poussin mean is defined by 7, (x) =
%’_ Y ke, Xk where L =[r— A, +1,r] for r=1,2,3,.... A se-
quence x = (x;) is said to be (V, A)-summable to a number L if
t,(x) = Lasr— oo (see[13]). If A, = r, then (V, A)-summability
is reduced to Cesaro summability. We denote A the set of all in-
creasing sequences of positive real numbers tending to co such
that A, <A, + 1,4 = 1.

Let A= (a;) be an infinite matrix of non-negative real
numbers with all rows are linearly independent for all 7, j =
1,2,3,...and B,(X) = Y oo} arixpy; and, the series Y ooy axixXppi
converges for each k and uniformly on n.

Let M be an Orlicz function, p = (p;) be a sequence of pos-
itive real numbers, and A = (%,) be a monotonically increasing
sequences of positive real numbers. For p > 0 we define the new

sequence spaces as follows:
. 1 | A By, (x) | P
lim D [M (7

?,\[A, M, A, pl, = {x EW:
" kel p

=0, uniformlyon n},

= o1 [ABr, (x) — LI\ 1™
Vil4, M, A,P]z{xe W rangox—Z[M<7

" kel P

=0, forsome L, uniformly onn}



Orlicz difference sequence spaces generated by infinite matrices and de la Vallée-Poussin mean of order o 547

and

)Ia[A, M, A, pl, = {x ew:

P,
an L3 [aa(122200) )"
- o

I T kel

< 00, uniformly on n},

where ABy, (x) = 37 (axi — i) Xt

Theorem 2.1. For an Orlicz function M and a bounded se-
quence p = (pr) of positive real numbers, ’VA[A, M, A, pl,
f/\A[A, M, A, pland ?,\[A, M, A, pl,, are linear spaces over the set
of complex field.

Proof. We give the proof only for the space VA[A, M, A, pl,
and for other spaces follow by applying similar method. Let
X =(xx),y= () € Vi[4, M, A, p], and «, 8 € C. Then there
exist p; > 0 and p, > 0 such that

: 1 |ABkn(x)| Pk .
rlg‘élo T Z |:M<7>] = O uniformly onn

r kel P
and
1 AB Pk
lim — Z [M<w>i| = O uniformly on 7.
r—00 }"r 02
kel
Define p; = max {2|«|p1, 2|B|p2}. Since the operator ABy, is

linear and M is non-decreasing and convex, we have

Ar kel, 3

|0[ABkn(x) + ,BAB/m(J’” >j|pk
P3

( |l ABy, (x)] > n M( |BAB, (»)] )]pk
P3 o3

‘
=~
m

=~

IA

Il
> =
™
< N

IA

(IABAn(x)|> +M<|ABkn(y)l>T"
L1 P2
IABkn(x)l) +M<|ABk,1(y)|>]”"

P1 P2

|ABkn(x)|)]pk C [ (IABkn(VN)]”
M( =2t =3 | B2
kel |: ( L1 * )‘-r g P2

A

IA
Fla #l= &= &=
<

where C = max(1,27-1), so ax + By € V,[4, M, A, P,
it is a linear space. [

hence

Theorem 2.2. For an Orlicz function M and a bounded sequence
p = (pr) of positive real numbers, V,[A, M, A, pl, is a topological
linear space, paranormed by

1

e\ T
g(x) = inf { p' (;Z[M(m&z(xnﬂ )
" kel

S 17 }‘:1,2,3,...

where T = max(1, sup, pr = H).

Proof. The subadditivity of g follows from the Theorem 2.1,
by taking « = 8 =1 and it is clear that g(x) = g(—x). Since
M(0) =0, we get inf{p#} =0 for x = 0. Suppose that x; #
0 for each k£ € N. This implies that ABy,(x) # 0 for each k£ and
uniformly on n. Let ¢ — 0, then

|ABkn(x)|
— >
&

It follows that

1 | A B, (x)]\ 17 7
(&%[M(e )]) oo

which is a contradiction.
Next we prove that scalar multiplication is continuous. Let y
be any complex number, by definition

1 |ABkn(yx>|>Tk ’
— M| — 1
(Kg[ ( p =5

glyx) =inf p¥ :

r=1,2,3,...

1

e\ T
—inf{p : (IZ[M<|V||ABkn(x)|)] ) <1
)L" kel p

r=1,2,3,...

Suppose that s= £, then p=s|y| and since

|V7‘7
max (1, [y|”) we have

ly | <
g(yx) < lyI™ < max (1, |y|") inf

- 1 |ABkn(x)| P 7]'
(xlener) =

r=1,2,3,...

X
o
&S

which converges to zero as x converges to zero in
Vil[4, M, A, p],. Now suppose that A; — oo as i — oo and
x 1s fixed in ’VA[A, M, A, p],. For arbitrary ¢ > 0 and let r, be a
positive integer such that

el <y

for some p > 0 and r > r,. This implies that

1

i\ T
lz[M<|)’ABlm(X)|>i| ’ _£
A o P 2

forsome p > 0andr > r,. Let 0 < |y | < 1. Using the convexity
of Orlicz function M, for r > r,, we get

sy
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gl
= P 3

Since M is continuous everywhere in [0, oo), then we consider
for r > r, the function

1 |tABkn(x)|)i|pk
= — M =
f@) A;[ ( p

Then f'is continuous at zero. So there is a § € (0, 1) such that
()] < (%)T for 0 < t < 8. Therefore

1
w\ T

iz[MCVAB/m(x)I)] Nl

Ar kel P 2

so that g(yx) — 0 as y — 0. This completes the proof. [

Theorem 2.3. Let the sequence p = (py) be bounded. Then
Vild, M, A, pl, C Vi[4, M, A, p] C Vi[A, M, A, pl...

Proof. Let x = (x;) € I7~A[A, M, A, p],. Then we have

72[ <|ABkn<x>|>}
Ar kel
<&yt [M<|ABkn(x>—L|>]”
)Lr kel 2 p
|L| Pk
S Zw (7))
Ay ,;2* P
72 |: ('ABkl1(x)_L|>]pk
Ay = 2 p

kely

ILINT®
+Cmax | 1,sup | M| — R
P
where H =sup, py < oo and C=max(1,2"). Thus we

llavex = (x) € IZ[A, M, A, p]. The inclusion IZ[A, M, A, p] C
VilA, M, A, p], is obvious. O

3. New set of sequences of order «

In this section let « € (0, 1] be any real number, let A = (A,) be
a monotonically increasing sequence of positive real numbers
tending to oo such that A, < A, + 1, A; = 1, and p be a positive
real number such that 1 < p < oc.

Now we define the following sequence space.

VilA, Al (p)
1 .
= {XEwW: sup— Z |A By, (x)|” < 0o, uniformly on n.
" I kel
Special cases:

(a) For p =1 we have %"‘[A, Al (p) =
(b) For @« =1 and p=1 we have
Vi[A4, Al.

VelA, Al
VA, Al (p) =

Theorem 3.1. Let o € (0, 1] and p be a positive real number such
that 1 < p < oo. Then the sequence space V*[A, Al (p) is a

BK-space normed by

1

el = sup - (Z |ABk,,<x)|f’> .

" kel

Proof. The proof of the result is
omitted. O

straightforward, so

Theorem 3.2. Let « € (0, 1] and p be a positive real number such
that 1 < p < oo. Then V¥[A, Al C VA, Al (p).

Proof. The proof of the result is straightforward, so

omitted. [

Theorem 3.3. Let o and B be fixed real numbers such that 0 < «
<p §Al and p be a positive real number such that 1 < p < oo.
Then VA, Al (p) C VI[A, Al (p).

Proof. The proof of the result is
omitted. [

straightforward, so

Theorem 3.4. Let o and B be fixed real numbers such that 0 <
a < B < 1 and p be a positive real number such that 1 < p <
0. For any two sequences k= (A ) and p = (u,)fo; all v, then
PELA, Ao (p) € PP1A, Al (p) if and only if sup, (%) < oo.

Proof. Let
Then

x = (x¢) € V¥4, Al.(p) and supr(:—r;) < 0.

sup Y IABL I < oo

r ’kel,

and there exists a positive number K such that A < K m.g and so
that - < £ for all r. Therefore, we have
M r

Z |ABu (X)) < — Z |A By ().

' kel ’ kel

Now taking supremum over r, we get

sup — Z |AB (01" < sup Z | ABy (X)1?
T ke, rA e

and hence x € /Vf[A, Al (p).
Next suppose that /VA“[A, Al (p) C /ﬁf‘[A, Al (p) and
supr(%) = oo. Then there exists an increasing sequence (r;) of

.o ..
natural numbers such that lim;(—) = co. Let L be a positive
"

"
i

. A%
real number, then there exists iy € N such that — > L for all r;
Moy

> iy. Then Ay > Lu, and so iﬁ s - Therefore we can write
r ’i

1 L
—5 2 1ABu(I" > = | AB (0 forallr; > io.
i kel i kel

Now taking supremum over r; > iy then we get

sup — ﬁ > 1ABu ()" > sup — LS ABL (I, 3.1

riziy M, kGI, rizip ri kGI,-l
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Since the relation (3.1) holds for all L € R™ (we may take the
number L sufficiently large), we have

sup — Z |AB (x)| = 00
rizig Ml, kEL

but x = (x;) € V2[4, A, p],, with

su (L)
p(—F ) <oo
r l,l,r

x ¢ VoA, Al (p)  which
/Ia"‘[A, Al (p) C /V;[A, Al (p). Hence sup,., (2—’;) <oo0. [

Therefore contradicts  that

Corollary 3.5. Let o and B be fixed real numbers such that 0 <
a < B < 1andp be a positive real number such that 1 < p < oco.
Then for any two sequences . = (A,) and u = (u,) for all r > 1
(@) VE[A, Al (p) = V/14, Al (p)
. A% 2
(i< inf, (W) < sEp,. (uf) < oo.
(b) Vka[Af A]oo(p) = V:[Av A]oo(p)
0 < inf, (%) < sup, (;—Z) < 00.
© VoA, Al (p) = V4. Al (p)  if  and  only  if
0 < inf, (i—ﬁ) < sup, (%)

if and only if

if and only if

< O0.

Theorem 3.6. ¢,[4, A] C V“[ Al (p) C €[4, Al

Proof. The proof of the result is

omitted. [

straightforward, so

Theorem 3.7. If0 < p < q, then ?A"‘[A, Al (p) C IZ"‘[A, Al (@)-

Proof. The proof of the
omitted. [

result is straightforward, so

4. Some geometric properties of the new space

In this section we study some of the geometric properties like or-
der continuity, the Fatou property and the Banach-Saks prop-
erty of type p in this new sequence space.

Theorem 4.1. The space ?D‘[A, Al (p) is order continuous.

Proof. To show that the space V“[A Al (p) is an AK-space.
It is easy to see that V"‘[A Al (p) contains c¢p. By using
the definition of AK-properties, we have that x = (x(i)) €
IZ“[A, Al (p) has a unique representation x = > | x(i)e(i) i.e.

e = xX0]y = 1100, 0, ..., x(j), X( + Dy .. )lly — 0 as j —
0, whlch means that V"‘[A Al (p) has AK Therefore FK-
space V“‘[A Al (p) contains ¢y has 4K-property. Also since
V"[A Al (p) is a Kothe space, hence the space V"‘[A Al (p)
is order continuous. [

Theorem 4.2. The space ?,\’1 [4, Al (p) has the Fatou property.

Proof. Let x be a real sequence and (x;) be any nondecreas-
ing sequence of non-negative elements from V" [4, Al (p) such
that x;(i) — x(i) as j — oo coordinatewisely dnd sup; 1xlle <
00.

Let us denote 7" = sup; ||x)||,. Since the supremum is ho-
mogeneous, then we have

1o

1 1

P . P\ P
1 1 ABn-'()
Tsup(§ |ABy, x,<z>)|) <supw(§ e (Y’l))

kel r " \kel,

Xplle =1
[1Xnlla [l
Also by the assumptions that (x;) is non-decreasing and conver-
gent to x coordinatewisely and by the Beppo-Levi theorem, we
have
1
P
? len20 Sl:,p — (Z |AB (x;())1” )

" kel

1
1 ABu(x()) |7\
= sup — _ <1,
P e (Z T ) =
" \kel,
whence
[1X|le =T =sup|lx;lle = lim ||x;]|, < oo.
Jj—oo

J

Therefore x € IZ“[A, Al (p). On the other hand, for any natu-
ral number j the sequence (x;) is non-decreasing, we obtain that
the sequence (]|x;ll,) is bounded form above by |x||,. There-
fore lim; _, o |lx;lle < lIx|lo which contradicts the above inequal-
ity proved already, yields that ||x[|, = lim;_ o [|x;]le. O

Theorem 4.3. The space /I;A"‘[A, Al (p) has the Banach—Saks
property.
Proof. The proof of the result follows from the used in [1]. O

5. A-statistical convergence

The idea of statistical convergence first appeared, under the
name of almost convergence, in the first edition Zygmund [14].
Later, this idea was introduced by Fast [15] and Steinhaus [16]
and studied various authors (see [10,17,18]). Mursaleen [19], in-
troduced the notion A-statistical convergence for real sequences.
For more details on A-statistical convergence we refer to [20]
and many others. The notion of order statistical convergence
was introduced by Gadjiev and Orhan [21] and after that statis-
tical convergence of order « studied by Colak [22], A-statistical
convergence of order « studied by Colak and Bektas [23], A-
statistical convergence of order « of sequence of functions stud-
ied by Et et al., [24,25] and many authors. In this section, we
define the concept of S [4, A]-convergence and establish the
relationship of SA[A A] with m[A A]. Also we introduce the
notion of S;[A4, A]—convergence of order « of real number se-
quences and obtain some inclusion relations between the set
of S[A, A]—convergence of order « and the sets IA/A“[A, A] and
Veld, M, A, pl.

Definition 5.1. [19] A sequence x = (x;) is said to be A-
statistically convergent to L if for every ¢ > 0

.1

hm A—l{k el |xx—L|>¢}=0.

In this case we write S; — limx = L or x; — L(S)).
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Definition 5.2. [23] A sequence x = (x;) is said to be A-
statistically convergent L of order o or S%-convergent to L if
for every ¢ > 0

1
limk—al{kelr: Ixe —L| > ¢} =0.

In this case we write S§ —limx = L or x; — L(S%).

Definition 5.3. Let A = (A,) be a sequence in A. A sequence
X = (x;) is said to be almost A-statistically [4, A]-convergent
or S;[4, A]—convergent to L if for every ¢ > 0

1
lim [k € 1, : |ABi(x) — L] = )| = 0.

In this case we write :S’\,\[A, A]l—limx = Lorx; — L(§A[A, A].
Theorem 5.1. Let A = (A,) be a sequence in A, then

(a) If xi — L(V,[A, A]) then x;. — L(S,[A, A)).

(b) If/)f € Io[A4, Al and x; — L(S,[A4, A]), then x;, —
L(V;[4, A). ~

(©) Vi[A, Al NI [A, A] = S,[A, Al N I[A, A], where

lol4, A] = {x ew: sup|AB(x)| < oo}.
k.n

Proof. (a) Suppose that ¢ > 0 and x; — L(ﬁ[A, A]), then we
have

D IABu(x)—LI= Y

kel kel
| ABy, (0—L|=e

|ABkn(x) - L|

>el{k € I . |ABr(x) — L| > €}].

Therefore x; — L(S,[4, A]). R

(b) Suppose that x € [,[4, A]land x; — L(S;[4, A)), i.e., for
some K > 0, |AB,(x) — L| < K for all k and n. Given ¢ > 0, we
get

1 1
T IABu() —Li= = Y |ABu(x) — L]
" kel " kel
| ABy, )—L|ze

1
L2
r kel
|AB,\.,, (x)—L|<5

|ABjo (x) — L|

K
< kel [ABu(x) — LIz e}l +e,

as r — oo, the right side goes to zero, which implies that x; —
L(V;[4, AD.
(c) Follows from (a) and (b). O

Definition 5.4. Let 0 < o < 1 be given. A sequence x = (xi) is
said to be almost statistically [4, A]— convergent to L of order
a or §*[A4, Al-convergent to L of order « if for every ¢ > 0

1
lim —|{k <n: |ABu(x) — L| = &}| = 0.

n—o00 1

In_this case we write §°‘[A, Al—limx=L or x;—
L(S¥[4, A]).

Definition 5.5. Let A = (A,) be a sequence in A, and 0 <
a < 1 be given. A sequence x = (x;) is said to be al-
most A-statistically-[4, Al-convergent to L of order a or
S¢[A, A]l—convergent to L of order « if for every ¢ > 0

1
lim 1k € 1 |ABu(x) — LI = e} = 0.

InAthis case we write §§[A,A]—limx=L or Xxp —
L(S5[4, A]).

Theorem 5.2. For 0 <a <1, z_'f§"[A, A] = limy x; = xqg then xo
is unique.

Proof. The proof of the result is easy, so omitted. [

Theorem 5.3. Let 0 < @ < 1 and x = (x;) and (y = (yr)) be
sequences of real numbers.

(a) If SU[4, A] - limg x; = xo and ¢ € C, then S°[A, A] —
lim&(cxk) = CXp. N

(b) If S(XJ\A, A] — limk X = Xo and Sa[A, A] — lim/\. Yk =)o,
then S®[A, A] — limy (X + yi) = xo + Yo-

Proof. (a) For ¢ = 0, the result is trivial. Suppose that ¢ # 0,
then for every & > 0 the result follows form the following in-
equality

1
—|{k < n:|AB(cx) — cxol > e}
na
1 £
= — |1k <n:|ABu(x) — xo| = —¢|.
n* ]

(b) For every & > 0. The result follows from the from the follow-
ing inequality.

nial{kf 1 |AB,(x +y) — (xXo + yo)| > &}
< niu’{kf n: 8B () — x| = 2|
_|_niaHk§n AB () = yol > %H
O

Theorem 5.4. Let 0 < @ < 1 and x = (x;) and (y = (yr)) be
sequences of real numbers.

(a) If 5°[4, A]—lim; x; = xo and ¢ € C, then SY[A, A] —
lim& (ex) = exo. R

(b) If S;LXJ;A, A] — hmk X = Xo and Si[A, A] — hmk Vi = Yo,
then S¢[A, A] — limy (X, + yi) = X0 + Y.

Proof. (a) For ¢ = 0, the result is trivial. Suppose that ¢ # 0,
then for every ¢ > 0 the result follows form the following in-
equality

1
fal{k € I, 1 |ABy,(cx) — cxo| > e}

Aa

r

{k €l |ABu(x) — Xo| > f—l}‘
C

(b) For every ¢ > 0. The result follows from the from the follow-
ing inequality.

1
s [tk € L [AB (x + ) — (X0 + yo)l = el
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s sisn—n= ]

T

]
2

{k € I : |ABu,(») — yol = %H
O

Theorem 5.5. If 0 < a < B < 1, then S*[A, A] C S'[4, A] and
the inclusion is strict.

Proof. The proof of the result follows form the following equal-
ity.

1
)75|{k €1 |[ABju(x) — L| = €}
1
= )Tal{k €L |[ABw(x) — L| = ¢}].

To prove the inclusion is strict, let A be given and we consider a
sequence x = (x;) be defined by

k, ifr—[WAl+1l<k<r
ABkn(x/\’) = .
0, otherwise.
Then
1
El{k €1 : |AB(x;) — 0] > &}

%
)Lﬁ

r

1
A—ﬁukelr:r—[ﬁlﬂsksr}ls

Then we have x € §f[A, A] for % <B<lbutx¢g §§‘[A, A] for

0<(x§%. O

Corollary 5.6. Ifa sequence is :?\j’\‘ [4, Al-convergent to L then it is
Sy [A4, Al-convergent to L for 0 < o < 1.

Theorem 5.7. Let0 <a < 1andi = () € A. Then S*[4, A] C
Syld, Alif

L LAY
lim 1nf‘—; > 0.

r—00 7
Proof. If x;, — L(§“ [4, A]) then for every ¢ > 0 and for suffi-
ciently large r we have

1
k=1 |AB (x) — LI = e}]

1
—{k € I, 1 |ABj(x) — L| > &}]
r&
A1
> 7!)7'“1( €1 1 [ABy,(x) — L| > &}].
Taking the limit as r — oo and using the given condition,
we get x; — L(§§[A, A]). This completes the proof of the
theorem. 0O

Corollary5.8. Let0 <a <1landi = (A,) € A. Then S{[A, A] C
S[4. Al

Theorem 5.9. Let 0 <o < 1 and )= (A,) € A. Then §[A, Al C
Se[A. A] if and only if

)Ll!
lim inf — > 0. 5.1

r—00 r

Proof. Let the condition (5.1) holds and x = (x;) € §[A, Al
For a given ¢ > 0 we have

{k <r:|ABu(x)— Ll > e} D{k el : |AB,(x) — L| > &}.
Then we have

lI{k =1 |ABg(x) — L| = &}
;

v

1
;I{k €1 1 |ABj(x) — L| = &}

3

A¢ 1
= ——|k el [ABw(x) = L| > &}|.

oAy
By taking limit as » — oo and from relation (5.1) we have
X — L(§[A, A]) = X — L(§g[A, A]).

Next we suppose that

)\40{
lim inf - = 0.

r—00 r

Pt2

Then we can choose a subsequence (r;) such that -+ < % Define
1

a sequence x = (xy) as follows:

ABe(x0) 1, ifkel;

n(Xi) =

o 0, otherwise.

Then clearly x = (x;) € §[A, Albut x = (xg) ¢ :S‘;[A, A]. Since
SY[A, A] C S;[A4, A], we have x = (xx) ¢ S{[A4, A], which is a
contradiction. Hence the relation (5.1) holds. O

Theorem 5.10. Let A = (A,) and pu = (i) be two sequences in A
such that A, < u, forallr e Nand0 <o < g < 1. If

o

bt
lim inf =7, (5.2)

r—>00 Iy

then SP[A, A] € S¢[A4, Al

Proof. Suppose that A, < u, for all € N and the condition (5.2)
hold. Then I, C J, and so that for ¢ > 0 we can write

{ked :|AB,(x) — L| 2 ¢} D {k el : |ABy,(x) — L| > ¢}.
Then we have

1
FHk € Jy 1 |ABjy(x) — L| = &}

A1
> S|k € I, 1 |AB (x) — LI > )],
wr A
for all r € N, where J, = [r — u, + 1, 7]. Taking limit r — oo
in the last inequality and using (5.2), we have Sﬂ[A, Al C

S¢[4, Al O

Corollary 5.11. Let A = (A,) and = (i,) be two sequences in
A such that A, < p, for allr € N. If (5.2) holds, then

(a) SUA, A1 S S¢[4, A] for0<a <1,
(b) Su[4, A1 S S¥[4,A] forO<a <1,
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(©) S,[4, A] € 5[4, Al

Theorem 5.12. Let A = (A,) and ;© = (j1,) be two sequences in A
such that &, < u, forallr e Nand0 <a < < 1. If

lim 20 =1, (5.3)

then S¢[A, A] € SP[A4, Al

Proof. Let S'\f\‘[A, A]l—limx = L and (5.3) be satisfied. Since
I, C J., for ¢ > 0 we can write

1
Fl{k €Jy 1 |ABw(x) — L| = ¢}

1
= Hr—w+1<k<r—»x

— | AB(x) — L| = )]
I
+ Tl{k € Ir : |AB/<I1(X) _Ll = 5}|
,bL,.—}\,
< B2l ke 12 |1ABL () — LI = ¢)]
o
Aﬁ 1
< +7|{k€1 [ABy(x) — L| = ¢}
< ( ) %*l{kEI [AByu(x) — L| = €}].

Using the relation (5.3) and 5[4, A] —limx = L the right-
hand side of the above inequality tends to zero as r — oo. This
implies that S"‘[A Al C SF A4, Al O

Corollary 5.13. Let A = (A,) and pu = () be two sequences in
A such that ), < u, for allr € N. If (5.3) holds, then

(a) §"[A A] € S[4, A
(b) SA[A Al C S‘”[A Al
(©) Si[4, Al C S,[4, Al.

for0<a <1,
for0<a <1,

Definition 5.6. Let M be an Orlicz function, p = (p;) be a se-
quence of strictly positive real numbers, a € (0, 1], A = (,) be
a sequence of positive reals, and for p > 0, now we define

Vel4, M, A, p]

1 ABy, (x) — LI\ %
={xew: lim—z M(W =0,
r—00 )\f} oy P

forsome L, uniformly on n}.

E M(x)=x andApk = p for all k € N then we shall write
VA“[A,,{M, A, pl= Vx"[A,AA](p) and if M (x) = x then we shall
write V*[A4, M, A, p] = V2[4, A, p].

Theorem 5.14. Let (py) be a bounded and 0 < infy p; < p; <
suprpr = H <oco. Let 0 < o < B < 1, M be an Orlicz
Junction and L= (A,) be a sequence of positive reals, then
Veld, M, A, p] € SP[4, Al

Proof. Let x = (x;) € VA"‘[A, M, A, p]. Let ¢ > 0 be given. As
h < 1 for each r we can write

|ABy, (x) — LI\ 7™
w2 ()]
I kel

1
= A—a Z

B. Hazarika et al.
r kel,

A By, — LI\
[M(' e (X) |)]
0
| ABy, (0—L|=e

+ Z [M(lABkn(x)—U)]pk
kel p

| ABy, (0—L| <

1 |: <|AB/<11(X) _L|>i|pk
M - -
A ; o

| ABy, ()-L|ze

_ Pk
+ Z [M(IABkn(X) LI)]
kel p

| ABy, (o—L| <

Pz O
M| —

B

}Lr kel, p

| ABy, (0—L|ze

1

B Z
)‘-r kel,
| ABy, () -L|ze

v
|

v
\

v
\

min ([M (en)]", [M (e1)]"), &) = %

v

1
Fl{k €1 1 |AByy(x) — L| = &}

min ([M(El N [M(Sl)]ﬂ)'

From the above inequality we have (x;) € §f [4,A]. O

Corollary 5.15. Let0 <« < IA,Mbe an Orlicz function and » =
() be an element of A, then V#[A, M, A, p] C S{[A4, A].

Theorem 5.16. Let M be an Orlicz function, x = (x;) be a
vequence in Ix[A, A), and h = () be an element of A. If
lim,_, o 2 ¥ =1, then S¢[A, A] C V“[A M, A, pl.

Proof. Suppose that x = (x;) is a sequence in /[4, A] and
S¥[A4, Al —lim; x;, = L. As x = (x;) € [[4, A] there exists
K > 0 such that |ABy,(x)| < K for all k and n. For given &
> 0 we have

72[ <|ABk,,<x)—L|>]”

I kel p
o |AB(x) — LI\
-5 ()]

|ABy, (v)-L|=e

oy e

r kel,
| ABy, (—L|<e

S EOIREON

|AB,(,,(,\’)—L|>5

 Z G
Ag keI, p

| ABy, (—L| <

<o s (Y] [ (5)] Y1



Orlicz difference sequence spaces generated by infinite matrices and de la Vallée-Poussin mean of order o 553

e EOIREBI

Therefore we have (x;) € ?A“[A, M, A, pl. O

Theorem 5.17. Let = (A,) € A,0 <a < B <1, pbeapositive
real number, then V2[A, A]l(p) Vkﬂ[A, Al(p).

Proof. The proof is easy, so omitted. [J

Coro!lary 5.18. Let A=) €A and p be a positive real number,
then Vi'[4, Al(p) € Vil4, Al(p).

Theorem 5.19. Let . = (A,) € A,0 <a < B < 1andp be a pos-
itive real number, then V"‘[A Al(p) € Sﬂ[A Al

Proof. Let x = (x;) € VA“[A, Al(p) and for ¢ > 0 we have

D IABu() — L= Y |ABu(x) - LI

kel, kely

|ABy, (0—L|=e
L

kel
| aBy, 0—L|<e

2>
kel
| ABy, (0—L|ze

= |{k € Ir : |ABkn(x) -

|AB/(,7(X) - L|p

|ABkn (x) - LIP

L| > ¢}|.€”.

Therefore we have

)TZIABkn(Y) L) = )Tl{k €I 1 |AB(x) — L| = e}].¢”.

" kel

The last 1nequdllty implies that x = (x;) € S’S [4, A] if
x=(x) € V"‘[A Al(p). This completes the proof of the
theorem. [

Theorem 5.20. Let A = (A,) and i = () be two sequences in A
such El\zat A < ,u,for’a\ll reNand0 <a < B <1.1If(5.2) holds,
then VI[A, Al(p) € VI[4, Al(p)

Proof. The proof is easy, so omitted. [

Corollary 5.21. Let A = (A,) and = (u,) be two sequences in
A such that A, < u, for allr € N. If (5.2) holds, then

(@) Vo[4, Al(p) S V2[4, Al(p) for 0 <o < 1,
(b) Vul4. Al(p) S VE[A, Al(p) for 0 <o < 1,
(© V.[4, Al(p) € V3[4, Al(p).

Theorem 5.22. Let A = (A,) and u = (j1,) be two sequences in A
such that &, < p, for allr € Nand 0 <« < B <1.If (5.2) holds,
then Vﬂ[A Al(p) € S"[A Al

Proof. Let x = (x;) € Vlf[A, Al(p). Then for ¢ > 0 we have

Y IABu(x) L= )

kel kel,
| aBy, (0—L|2e

|ABy (x) — LI

+ Y |ABu(x)—LF
kel
| ABy, ()—L| <
> Y |ABu(x) L

kel
| ABy, (0—L|ze

Therefore we have

1
—5 D |AB(x) — LI
I kel

AL
—|{kel

> _I
A

|AB (x) — L| = €}].€”,

since (5.2) holds and x = (x;) € IZf[A, Al(p). The last inequal-
ity implies that x = (x;) € S§[4, A]. This completes the proof
of the theorem. [

Corollary 5.23. Let A = (A,) and p = (u,) be two sequences in
A such that », < u, forallr e Nand 0 < o < 1. If (5.2) holds,
then

(a) V2[4, Al(p) < Si14, A],
(b) V,[4. Al(p) € S¥[4. Al,
(C) I/IL[Aa A](P) g S)L[Av A]a

Theorem 5.24. Let A = (A,) and i = (i) be two sequences in A
such that A, < ,u,/]\‘or allr € Nan/d\O <a<B<1.1If(53) holds,
then s[4, AIN VA, Al(p) S VI[A, Al(p).

Proof. Let x = (x;) € {oo[4, AlN IZ“[A, Al(p) and suppose
that (5.3) holds. Since (x;) € €[4, A], there exists K > 0 such
that | ABy,(x)| < K for all k and n. Since A, < u, and I, C J, for
all r € N we can write

1 1
— D 1ABu() — LI = — ) [ABu(x) - LI”

I kel keJy—1Iy
1
+— > |AB(x) — LI
e kel,
< (“’; )KP+—Z|ABkn<x) Ly
/‘Lr Hl‘ kEI
My — )\P
e e i La —Z|ABkn<x) Ly
MI‘ :ul‘ kEI,
MHr — )L;/?
=\ = K+ —ﬁ—a D IABy(x) = LI
r l’l’l I kel

IA

o Az
(A 1)Kﬂ+—72|ABkn<x) L.

r r r 1\6[

This implies that x = (x;) € V/[4, Al(p).
Hence («[4, A]N V2[4, Al(p) € V4, Al(p). O

Corollary 5.25. Let A = (A,) and pu = () be two sequences in
A such that A, < p, for all r € N. If (5.3) holds, then

(2) Exld, AN VA, Al(p) € V1A, Al(p) for 0 < < 1,
(b) €[4, A]N V“[A Al(p) < V WA, Al(p) for 0 <a <1,
(©) Lold, AINT[A4, Al(p) € VA, Al(p).

Theorem 5.26. Let M be an Orlicz function and if infy pr > 0,
then limit of any sequence x = (xy) in V¥[A, M, A, p] is unique.

(xx) —
Then

Pr(l)f. Let limy pp =5 > 0. SupApose that
L(VAA, M, A, pl) and  (xp) — L(V[A, M, A, pl).
there exist p; > 0 and p, > 0 such that

LI\ TP .
=0, uniformlyon n

1 |ABkn(x) -
li s
rin; A« Z |: ( 1%

I kel
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and [3] M. Karakag, M. Et, V. Karakaya, Some geometric properties of a
new difference sequence space involving lacunary sequences, Acta

1 |ABj,(x) — L]\ 17 ) Math. Ser. B. Engl. Ed. 33 (6) (2013) 1711-1720.
rlgglo Il Z M f = 0, uniformly on 7. [4] M. Mursaleen, R. Colak, M. Et, Some geometric inequalities in a

" kel

Let p = max{2p;, 2p,}. As M is nondecreasing and convex, we
have

el

|A B (x) —
= kz 20 ([ ( P

ol
(%))

Ba Z[: ([ <|ABkn(X)

ol

D |AB, (x) — LI\ 1™
2R ) e

I kel
where sup, pi = H and D = max(1, 27~"). Therefore we get

1 Il — bl _
'lggk_"‘z[M< P )] =0

" kel

As limy p, = s, we have

o [ () ] = [ (%55)]

and so /; = /. Hence the limit is unique. [
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