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. Introduction 

he determination of all possible configurations of plane alge- 
raic curves for a given degree d is one of the classical and inter-
sting problems in algebraic geometry. Throughout this paper, 
e work over the field of the complex numbers C . We denote
y P 

2 = P 

2 (C ) the projective plane over the field of the complex
umbers. The genus is a geometric invariant associated with the 
urve C , and in the case of C ⊂ P 

2 by a Theorem of Noether (see
or instant [1] page 614 or [2] page 222) can be computed as 

 = 

( d − 1 ) ( d − 2 ) 
2 

−
∑ 

P∈ Sing (C) 

m P ( m P − 1 ) 
2 

, 

here Sing (C) is the singular points of the curve C and m P 

enotes the multiplicity of the singularities of P ∈ C (including 
he infinitely near points of P ). This invariant plays a very
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mportant role in algebraic geometry. For instance, plane curves 
 with g = 0 are called rational curves. In case g = 1 , 2, C are

alled elliptic and hyperelliptic curves, respectively. Also, by the 
enus formula, we easily see that, the lines and the conics have
o singular points and an irreducible cubic has at most one
ouble point. 

Yoshihara in [3–5] , classified plane curves with small degrees 
hose singular points are only cusps. Curves of degrees d = 4 , 5
nd 6 are called quartic, quintic and sextic curves, respectively. 
e focus in this paper on a very important type of curves that

s irreducible rational projective plane sextic curves. 
Let P ∈ C be a singular point, and let r P be the number of the

ranches of C at P . Put ι(C) = 

∑ 

P∈ Sing (C) (r P − 1) . The notation
d, ν, ι) is used for curves of degree d , maximal multiplicity of
he singularities ν and ι = ι(C) . For r P = 1 , P is called a cusp. In
ase r P ≥ 2 , Saleem in [7] , introduced the notion of the system
f the multiplicity sequences of the branches of the curve C at P
hich explains after how many times of blowing ups of C at P

he branches separate from each other. 
Yang in [6] , gave a list of reduced sextic curves. In his list, he

howed the existence of the configurations of these curves. Here, 
e extend to give a list of irreducible rational projective sextic

urves of type (6 , 3 , 1) . 
y Elsevier B.V. This is an open access article under the CC 
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In [8] , Sakai and Saleem classified all rational plane curves of
type (d, d − 2) , possibly with multibranched singularities. They
generalized the results with Tono in [9] to plane curves of type
(d, d − 2) with any genus. It turns out that still the answer of
Matsuka and Sakai’s conjectured in [10] , is affirmative. As a
generalization of these results, we have the following question:
Is any rational plane curve of type (d, d − 3) is transformable
into a line by a Cremona transformation? The cuspidal case has
been already discussed and answered affirmatively by Flenner-
Zaidenberg in [11,12] and Fenske in [13] . In this paper, we an-
swer the question for some classes of rational plane curves of
types (6 , 3 , 1) . 

For constructing curve germs, Sakai and Tono in [14] used
the quadratic Cremona transformations ϕ c : (x, y, z ) →
( xy , y 2 , x (z − cx )) for c ∈ C , where (x, y, z ) are homogeneous
coordinates on P 

2 . 

2. Preliminaries 

In this section, we investigate a tool for constructing plane
curves which is the Cremona transformations ϕ c : (x, y, z ) →
( xy , y 2 , x (z − cx )) for c ∈ C . 

2.1. Singularities on plane curves 

Let (C, P) ⊂ (C 

2 , P) be a plane curve germ, where P ∈ C is
a singular point. We obtain the minimal embedded resolution
of the singularity (C, P) , by means of a sequence of blowing-
ups X i 

πi → X i−1 , i = 1 , 2 , . . . , k , over P . Let C 

(i) ⊂ X i be the strict
(also called proper) transform of C in X i and E is the exceptional
divisor of the whole resolution. Hence, the total transform of C
in X k is a simple normal crossing (SNC) divisor D = E + C 

(k )

as in the following diagram: 
(1) Branches with the same tangent line (2) Branches⎧ ⎨ 

⎩ 

( 

k 

k 

) ( 

1 

1 

) 

k + j 

⎫ ⎬ 

⎭ 

{ ( 

2 k − 1 

2 r 

) 

2

2⎧ ⎨ 

⎩ 

( 

2 k 

k 

) ( 

2 

1 

) 2 i 

k + j 

⎫ ⎬ 

⎭ 

{ ( 

2 k 

2 r 

) 

2 k + j 
2 r + i 

}
⎧ ⎨ 

⎩ 

( 

2 k 

k 

) ( 

2 

1 

) 

k + j 

( 

1 

1 

) 

⎫ ⎬ 

⎭ 

{ ( 

2 k − 1 

3 r 

) 

2

3{ ( 

k 

k + r 

) ( 

1 

1 

) 

k 

} { ( 

2 k − 1 

3 r 

) 

3⎧ ⎨ 

⎩ 

( 

2 k 

k + r 

) ( 

2 

1 

) 2 j 

k 

⎫ ⎬ 

⎭ 

{ ( 

2 k − 1 

3 r + 1 

) 

2

⎧ ⎨ 

⎩ 

( 

2 k 

r 

) ( 

2 

1 

) 2 k + j−r 

r 

⎫ ⎬ 

⎭ 

{ ( 

2 k − 1 

3 r + 2 

) 

2

3⎧ ⎨ 

⎩ 

( 

2 k − 1 

r 

) ( 

2 

1 

) 2 k −r −1 

r 

⎫ ⎬ 

⎭ 

{ ( 

2 k 

3 r 

) 

2 k + j 
3 r + s 

}
{ ( 

2 k − 1 

k + j 

) ( 

2 

1 

) 

k −1 

( 

1 

1 

) } { ( 

2 k 

3 r 

) 

2 k + j
3 r + s , { ( 

2 k 

3 r + 1 

) 

2 
 

(k ) πk −→ C 

(k −1) 
πk −1 −→ · · · π2 −→ C 

(1) π1 −→ C = C 

(0) , 

where k is a finite positive integer. We recall the properties of
the multiplicity sequence m P (C) = (m 0 , m 1 , . . . , m k ) of (C, P) .
Let m i be the multiplicity of C 

(i) at P i , where P i is the infinitely
near point of P on C 

(i) . We define the multiplicity sequence
of (C, P) to be m P (C) = (m 0 , m 1 , . . . , m k ) , where m 0 ≥ m 1 ≥

· · · ≥ m k = 1 . For the sequence ( 

a −times ︷ ︸︸ ︷ 
m, . . . , m , 1 , 1) , we write

(m a ) . 
Here, we recall the definition of the system of the multiplicity

sequences of P ∈ C in case the number of the branches of C at P
equals 2, (see [7,8] for more details). 

Definition 1. The systems of the multiplicity sequences of two
branches are defined as follows: 

m P ( ζ1 , ζ2 ) = 

{ ( 

m 1 , 0 

m 2 , 0 

) 

. . . 

( 

m 1 ,ρ

m 2 ,ρ

) 

m 1 ,ρ+1 , m 1 ,ρ+2 , . . . , m 1 ,s 1 

m 2 ,ρ+1 , m 2 ,ρ+2 , . . . , m 2 ,s 2 

} 

, 

where the brackets mean that the germs go through the same
infinitely near points of P and m P (ζi ) = (m i, 0 , m i, 1 , . . . , m i,s i ) are
the multiplicity sequences of the branches (ζi , P) , i = 1 , 2 , of the
germ (C, P) . 

For a classification of a bibranched singular point Q with
multiplicity d − 3 , we give the following proposition. 

Proposition 1 ( [7] ) . Let C be a rational plane curve of type
(d, d − 3) . Let Q ∈ Cbe a bibranched singular point with mul-
tiplicity d − 3 . Then, the system of the multiplicity sequences
of Q are divided into the following two types ( r, s, v, k > 0 ,
i, j ≥ 0 ): 
 with different tangent lines 

 k −1 

 r + i 

} { ( 

2 k 

3 r + 2 

) 

2 k + j 
3 r , 2 

} 

 { ( 

3 k 

3 r 

) 

3 k + v 
3 r + s 

} 

 k −1 

 r + s 

} { ( 

3 k 

3 r 

) 

3 k + v , 2 

3 r + s 

} 

2 k + j 
 r + s , 2 

} { ( 

3 k 

3 r 

) 

3 k + v , 2 

3 r + s , 2 

} 

 k + j 
3 r 

} { ( 

3 k 

3 r + 1 

) 

3 k + v 
3 r 

} 

 k + j 
 r , 2 

} { ( 

3 k 

3 r + 1 

) 

3 k + v , 2 

3 r 

} 

 { ( 

3 k 

3 r + 2 

) 

3 k + v 
3 r + s , 2 

} 

 

2 

} { ( 

3 k 

3 r + 2 

) 

3 k + v , 2 

3 r + s , 2 

} 

k + j 
3 r 

} { ( 

3 k + 1 

3 r + 2 

) 

3 k 

3 r , 2 

} 
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Since we deal with curves of types (6 , 3 , 1) , then by using
he above proposition and the other results in [7] we have the
ollowing Lemma. 

emma 1 ( [7] ) . Let P be a unibranched or a bibranched singu-
ar point with multiplicity 3. Then, the system of the multiplicity 
equences of P are divided into the following types ( k > 0 , i ≥ 0 ):

Number of branches System of the multiplicity sequences 

1 (3 k ) , (3 k , 2) 

2 

{ ( 

2 

1 

) 

k 

( 

1 

1 

) } 

, 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 i 

k 

⎫ ⎬ 

⎭ 

.1.1. Quadratic Cremona transformation 
n this section, we give a tool to construct curve germs with one
ranch and two branches which we will use in this paper. 

Let (x, y, z ) ∈ P 

2 be homogeneous coordinates. Sakai and
ono in [14] defined the (degenerate) quadratic Cremona trans- 

ormation ϕ c : (x, y, z ) → ( xy , y 2 , x (z − cx )) for c ∈ C . The in-
erse of this transformation is ϕ 

−1 
c (x, y, z ) = (x 

2 , xy , yz + cx 

2 ) .
y a suitable change of coordinates, we can set the two lines

 and t such that l : x = 0 , t : y = 0 and the points O, A and
 have the coordinates O = (0 , 0 , 1) , A = (1 , 0 , c ) and B =

0 , 1 , 0) . We remark that the base points of ϕ c are O, A and the
nfinitely near point of O which corresponds to the direction of l
nd the base points of ϕ 

−1 
c are O, B and the infinitely near point

f O which corresponds to the direction of t (see also [11] ). 
ClassI (the maximal multiplicity is a unibranched singular point (cusp)) 

No. Data (C) No. Data (C) 

1 

[ 

(3 , 2) , (2) , (2) , (2 3 ) , 

( 

1 

1 

) ] 

29 

[ 

(3) , (2 2 ) , 

( 

1 

1 

) 

5 

] 

2 

[ 

(3 , 2) , (2 2 ) , (2 3 ) , 

( 

1 

1 

) ] 

30 

[ 

(3) , (2) , 

( 

1 

1 

) 

6 

] 

3 

[ 

(3 , 2) , (2) , (2 4 ) , 

( 

1 

1 

) ] 

31 

[ 

(3) , 

( 

1 

1 

) 

7 

] 

4 

[ 

(3 , 2) , (2 5 ) , 

( 

1 

1 

) ] 

32 

[ 

(3 2 ) , (2) , (2 2 ) , 

( 

1 

1 

) ] 

5 

[ 

(3 2 , 2) , (2) , (2) , 

( 

1 

1 

) ] 

33 

[ 

(3 2 ) , (2 3 ) , 

( 

1 

1 

) ] 

6 

[ 

(3 2 , 2) , (2 2 ) , 

( 

1 

1 

) ] 

34 

[ 

(3 2 ) , (2) , (2) , 

( 

1 

1 

) 

2 

] 

7 

[ 

(3 , 2) , (2) , (2) , (2 2 ) , 

( 

1 

1 

) 

2 

] 

35 

[ 

(3 2 ) , (2 2 ) , 

( 

1 

1 

) 

2 

] 

8 

[ 

(3 , 2) , (2) , (2 3 ) , 

( 

1 

1 

) 

2 

] 

36 

[ 

(3 2 ) , (2) , 

( 

1 

1 

) 

3 

] 

9 

[ 

(3 , 2) , (2 4 ) , 

( 

1 

1 

) 

2 

] 

37 

[ 

(3 2 ) , 

( 

1 

1 

) 

4 

] 

10 

[ 

(3 , 2) , (2) , (2 2 ) , 

( 

1 

1 

) 

3 

] 

38 

[ 

(3 3 ) , 

( 

1 

1 

) ] 

11 

[ 

(3 , 2) , (2 3 ) , 

( 

1 

1 

) 

3 

] 

39 

[ 

(3) , (3 , 2) , (2 2 ) , 

( 

1 

1 

) ] 
Now, successive compositions of the quadratic Cremona 
ransformations ϕ = ϕ c k ◦ · · · ◦ ϕ c 1 for c 1 , . . . , c k ∈ C can be
ritten as 

 

−1 (x, y, z ) = 

( 

x 

k +1 , x 

k y, y k z + 

k +1 ∑ 

i=2 

c k +2 −i x 

i y k +1 −i 

) 

. 

efinition 2. Let Sing (C) = { P 1 , P 2 , . . . , P s } be the set of all the
ingular points on the rational plane curve C . The collection of
he systems of the multiplicity sequences of C at the points P i 

s called the numerical data of C and is written as Data (C) =
 m p 1 

(C) , m p 2 
(C) , . . . , m p s (C)] . 

. Main results 

n this section, we construct some classes of rational plane 
urves of type (6 , 3) with a bibranched singular point and we
how that these curves are transformable into a line by using
uitable Cremona transformations. 

Yang in [6] , gave a list of sextic curves. He showed the exis-
ence of the configurations of these curves. Here, we extend to
ive a list of irreducible sextic curves of type (6 , 3 , 1) . Our result
s written in the following theorem. 

heorem 3. Let C be a rational plane curve of type (6 , 3 , 1) .
hen, Data (C) are classified as follows (up to projective 
quivalent): 
ClassII (the maximal multiplicity is a bibranched singular point 
with two coincident tangent lines) 

No. Data (C) 

1 

[ 

(2) , (2) , (2 2 ) , (2 2 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

2 

[ 

(2) , (2 2 ) , (2 3 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

3 

[ 

(2 3 ) , (2 3 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

4 

[ 

(2 2 ) , (2 4 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

5 

[ 

(2) , (2 5 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

6 

[ 

(2 6 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

7 

[ 

(3) , (2) , (2 2 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

8 

[ 

(3) , (2 3 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

9 

[ 

(3) , (3) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

10 

[ 

(3 2 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

11 

[ 

(3 , 2) , (2) , (2) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

( continued on next page ) 
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( continued ) 

ClassI (the maximal multiplicity is a unibranched singular point (cusp)) ClassII (the maximal multiplicity is a bibranched singular point 
with two coincident tangent lines) 

No. Data (C) No. Data (C) No. Data (C) 

12 

[ 

(3 2 , 2) , 

( 

1 

1 

) 

3 

] 

40 

[ 

(3) , (3 , 2) , (2) , 

( 

1 

1 

) 

2 

] 

12 

[ 

(3 , 2) , (2 2 ) , 

{ ( 

2 

1 

) ( 

1 

1 

) } ] 

13 

[ 

(3 , 2) , (2) , (2) , 

( 

1 

1 

) 

4 

] 

41 

[ 

(3) , (3 , 2) , 

( 

1 

1 

) 

3 

] 

13 

[ 

(2) , (2) , (2) , 

{ ( 

2 

1 

) 

2 

( 

1 

1 

) } ] 

14 

[ 

(3 , 2) , (2 2 ) , 

( 

1 

1 

) 

4 

] 

42 

[ 

(3 , 2) , (3 , 2) , (2) , 

( 

1 

1 

) ] 

14 

[ 

(2) , (2 2 ) , 

{ ( 

2 

1 

) 

2 

( 

1 

1 

) } ] 

15 

[ 

(3 , 2) , (2) , 

( 

1 

1 

) 

5 

] 

43 

[ 

(3 , 2) , (3 , 2) , 

( 

1 

1 

) 

2 

] 

15 

[ 

(2 3 ) , 

{ ( 

2 

1 

) 

2 

( 

1 

1 

) } ] 

16 

[ 

(3 , 2) , 

( 

1 

1 

) 

6 

] 

44 

[ 

(3) , (3) , (2 3 ) , 

( 

1 

1 

) ] 

16 

[ 

(3) , 

{ ( 

2 

1 

) 

2 

( 

1 

1 

) } ] 

17 

[ 

(3) , (2) , (2 2 ) , (2 3 ) , 

( 

1 

1 

) ] 

45 

[ 

(3) , (3) , (2) , (2) , 

( 

1 

1 

) 

2 

] 

17 

{ ( 

2 

1 

) 

3 

( 

1 

1 

) } 

18 

[ 

(3) , (2) , (2) , (2 4 ) , 

( 

1 

1 

) ] 

46 

[ 

(3) , (3) , (2 2 ) , 

( 

1 

1 

) 

2 

] 

18 

[ 

(2 2 ) , (2 2 ) , 

{ ( 

2 

1 

) 

2 

} ] 

19 

[ 

(3) , (2 2 ) , (2 4 ) , 

( 

1 

1 

) ] 

47 

[ 

(3) , (3) , (2) , 

( 

1 

1 

) 

3 

] 

19 

[ 

(2 4 ) , 

{ ( 

2 

1 

) 

2 

} ] 

20 

[ 

(3) , (2) , (2 5 ) , 

( 

1 

1 

) ] 

48 

[ 

(3) , (3) , (3) , 

( 

1 

1 

) ] 

20 

[ 

(3) , (2) , 

{ ( 

2 

1 

) 

2 

} ] 

21 

[ 

(3) , (2 6 ) , 

( 

1 

1 

) ] 

49 

[ 

(3) , (3) , 

( 

1 

1 

) 

4 

] 

21 

[ 

(3 , 2) , 

{ ( 

2 

1 

) 

2 

} ] 

22 

[ 

(3) , (2 2 ) , (2 3 ) , 

( 

1 

1 

) 

2 

] 

22 

⎡ 

⎣ (2) , (2) , (2) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

2 

⎫ ⎬ 

⎭ 

⎤ 

⎦ 

23 

[ 

(3) , (2) , (2 4 ) , 

( 

1 

1 

) 

2 

] 

23 

⎡ 

⎣ (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

2 

⎫ ⎬ 

⎭ 

⎤ 

⎦ 

24 

[ 

(3) , (2 5 ) , 

( 

1 

1 

) 

2 

] 

24 

⎡ 

⎣ (3) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

2 

⎫ ⎬ 

⎭ 

⎤ 

⎦ 

25 

[ 

(3) , (2) , (2) , (2) , (2) , 

( 

1 

1 

) 

3 

] 

25 

⎡ 

⎣ (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 

2 

⎫ ⎬ 

⎭ 

⎤ 

⎦ 

26 

[ 

(3) , (2 2 ) , (2 2 ) , 

( 

1 

1 

) 

3 

] 

26 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 4 

2 

⎫ ⎬ 

⎭ 

27 

[ 

(3) , (2) , (2 2 ) , 

( 

1 

1 

) 

4 

] 

27 

[ 

(2) , 

{ ( 

2 

1 

) 

3 

} ] 

28 

[ 

(3) , (2 3 ) , 

( 

1 

1 

) 

4 

] 

28 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

3 

⎫ ⎬ 

⎭ 

ClassIII (the maximal multiplicity is a bibranched singular with two different tangent lines) 

No. Data (C) No. Data (C) No. Data (C) 

1 

[ 

(2) , (2) , (2 2 ) , (2 3 ) , 

( 

2 

1 

) ] 

15 

[ 

(3 2 , 2) , 

( 

2 

1 

) ] 

29 

⎡ 

⎣ (3) , (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

2 

[ 

(2 2 ) , (2 2 ) , (2 3 ) , 

( 

2 

1 

) ] 

16 

[ 

(3 2 ) , (2) , 

( 

2 

1 

) ] 

30 

⎡ 

⎣ (3 , 2) , (2) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

( continued on next page ) 
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( continued ) 

ClassIII (the maximal multiplicity is a bibranched singular with two different tangent lines) 

No. Data (C) No. Data (C) No. Data (C) 

3 

[ 

(2) , (2) , (2) , (2 4 ) , 

( 

2 

1 

) ] 

17 

[ 

(3) , (3 , 2) , 

( 

2 

1 

) ] 

31 

⎡ 

⎣ (2) , (2) , (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 3 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

4 

[ 

(2) , (2 2 ) , (2 4 ) , 

( 

2 

1 

) ] 

18 

⎡ 

⎣ (2) , (2 2 ) , (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 32 

⎡ 

⎣ (2) , (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 3 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

5 

[ 

(2 3 ) , (2 4 ) , 

( 

2 

1 

) ] 

19 

⎡ 

⎣ (2 3 ) , (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 33 

⎡ 

⎣ (2 4 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 3 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

6 

[ 

(2) , (2) , (2 5 ) , 

( 

2 

1 

) ] 

20 

⎡ 

⎣ (2 2 ) , (2 4 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 34 

⎡ 

⎣ (3) , (2) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 3 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

7 

[ 

(2 2 ) , (2 5 ) , 

( 

2 

1 

) ] 

21 

⎡ 

⎣ (2) , (2 5 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 35 

⎡ 

⎣ (3 , 2) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 3 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

8 

[ 

(2) , (2 6 ) , 

( 

2 

1 

) ] 

22 

⎡ 

⎣ (2 6 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 36 

⎡ 

⎣ 

⎧ ⎨ 

⎩ 

(2) , (2 2 ) , 

( 

2 

1 

) 2 4 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

9 

[ 

(2 7 ) , 

( 

2 

1 

) ] 

23 

⎡ 

⎣ (3) , (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 37 

⎡ 

⎣ (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 4 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

10 

[ 

(3) , (2 2 ) , (2 2 ) , 

( 

2 

1 

) ] 

24 

⎡ 

⎣ (3 , 2) , (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 38 

⎡ 

⎣ (3) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 4 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

11 

[ 

(3) , (2) , (2 3 ) , 

( 

2 

1 

) ] 

25 

⎡ 

⎣ (3 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 39 

⎡ 

⎣ (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 5 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

12 

[ 

(3) , (2 4 ) , 

( 

2 

1 

) ] 

26 

⎡ 

⎣ (2) , (2 2 ) , (2 2 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 40 

⎡ 

⎣ (2) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 6 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

13 

[ 

(3 , 2) , (2) , (2 2 ) , 

( 

2 

1 

) ] 

27 

⎡ 

⎣ (2 2 ) , (2 3 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 41 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 7 
⎫ ⎬ 

⎭ 

14 

[ 

(3 , 2) , (2 3 ) , 

( 

2 

1 

) ] 

28 

⎡ 

⎣ (2 5 ) , 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 
⎫ ⎬ 

⎭ 

⎤ 

⎦ 

R  

i

c
i
f
s
t  

x  

I  

t  

 

c  

m
n

(  

 

 

(  

(  

 

emark 1. Rational plane curves of type (6 , 3 , 0) are classified
n [13] as follows: 

Class Data (C) 

(S1) (3 3 , 2) 

(S2) [(3 3 ) , (2)] 
(S3) [(3 2 ) , (3 , 2)] 
(S4) [(3) , (3 2 , 2)] 

In [7] Appenthe singular points of thedix A, we give a 
omplete comparison of all Fenske’s curves with their defin- 
ng equations. By applying a suitable quadratic Cremona trans- 
ormations, we give a construction of cuspidal rational plane 
extic curves. By a suitable change of coordinates, we set the 
wo lines l and t and the points O, A , and B as follows: l :
 = 0 , t : y = 0 , O = (0 , 0 , 1) , A = (1 , 0 , c ) and B = (0 , 1 , 0) .
n what follows, Applying ϕ c , we construct the curve C 

′ from
he curve C , where C 

′ is the strict transform of C via ϕ c .

 

As a technique for choosing the initial curves C with a spe-
ific Data( C ), we apply the inverse of a suitable quadratic Cre-
ona transformations. These initial curves with given data are 

ot unique (see [7] , Section 4.2 for more details). 

S1) : We begin with the quintic curve C with Data (C) =
[(3 , 2) , (2 2 )] . We choose two lines l and t such that l ·
C = 4 O + R and t · C = 2 O + 3 P. We find that P 

′ = O
with multiplicity sequence m P ′ = (3 3 , 2) and O 

′ = S with
m O 

′ = (1) . 
S2) : We start with the quintic curve C with Data (C) =[ 

(3 , 2) , (2) , 

( 

1 

1 

) ] 

. We choose the lines l and t such that 

l · C = 2 O + 3 R and t · C = 3 O + 2 A . We see that R 

′ = B
with m R ′ = (3 2 , 2) and O 

′ = O with m O 

′ = (3) . 
S3) : In this case we begin with the cuspidal cubic curve C .

We choose two lines l and t such that l · C = 3 R and
t · C = 3 P, where P is a flex point. We choose c 1 such that
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A 1 = (1 , 0 , c 1 ) � = P. We find that R 

′ = B with multiplic-
ity sequence m R ′ = (3 , 2) and O 

′ = O with m O 

′ = (3 2 ) . 
(S4) : We start with the quintic curve C with Data (C) =

[(3) , (2 3 )] . We choose two lines l and t as in figure (3 . 4) .
Choosing c 1 such that A 1 = (1 , 0 , c 1 ) � = P. We find that
R 

′ = B , O 

′ = S with m O 

′ = (2) and P 

′ = O with m P ′ =
(3 3 ) . 

4. Construction 

In this section, we construct some of the curves in Theorem
3 by using suitable Cremona transformations. We deal with
some of the cases which were not included in the Yang’s list.
The other curves can be constructed in the same manner. By
changing coordinates suitably, we may assume that l : x = 0 ,
 : y = 0 , O = (0 , 0 , 1) , A = (1 , 0 , c ) and B = (0 , 1 , 0) . In what

follows, Applying ϕ c : (x, y, z ) → ( xy , y 2 , x (z − cx )) for c ∈ C ,
we construct the curve C 

′ from the curve C , where C 

′ is the strict
transform of C via ϕ c . 

( I, 5) : We begin with the quartic curve C with Data (C) =
[(2) , (2) , (2)] . We choose two lines l and t such that
l · C = 2 O + R + S and t · C = O + 3 P. We find that
P 

′ = O with multiplicity sequence m P ′ = (3 2 , 2) , and

R 

′ = S 

′ = B with m R ′ = 

( 

1 

1 

) 

. 

(I , 6) : We start with the quartic curve C with Data (C) =
[(2) , (2 2 )] . We choose two lines l and t such that l · C =
2 O + R + S and t · C = O + 3 P . We find that P 

′ = O
with multiplicity sequence m P ′ = (3 2 , 2) , and S = R 

′ =
B with m O 

′ = 

( 

1 

1 

) 

. 

(I , 12) : We begin with the quintic curve C with Data (C) =[ 

(2) , (2 2 ) , 

( 

1 

1 

) 

3 

] 

. We choose two lines l and t such

that l · C = 4 O + R and t · C = 2 O + 3 P. We find that
P 

′ = O with multiplicity sequence m P ′ = (3 2 , 2) , and
O 

′ = S with m O 

′ = (1) . 
(I , 32) : We start with the quartic curve C with Data (C) =

[(2) , (2 2 )] . We choose two lines l and t such that
l · C = 2 O + R + S and t · C = O + 3 P. By applying
quadratic Cremona transformation,we get P 

′ = O
with multiplicity sequence m P ′ = (3 2 ) , and R 

′ = S 

′ =
B with m R ′ = 

( 

1 

1 

) 

. 

(I , 37) : We start with the quartic curve C with Data (C) =[ ( 

1 

1 

) 

3 

] 

. We choose two lines l and t such that l ·
C = 2 O + 2 R and t · C = O + 3 P. We find that P 

′ =
O with multiplicity sequence m P ′ = (3 2 ) , and R 

′ = B

with m R ′ = 

( 

1 

1 

) 

4 

. 

 II , 13) : We start with the quartic curve C with Data (C) =[ 

(2) , (2) , 

( 

1 

1 

) ] 

. We choose two lines l and t such

that l · C = 2 O + 2 R and t · C = O + 3 P. We find

 

that P 

′ = O 

′ = O with multiplicity sequence m P ′ ={ ( 

2 

1 

) 

2 

( 

1 

1 

) } 

, and R 

′ = B with m R ′ = (2) . 

 II , 15) : In this case,we begin with the quartic curve C with

Data (C) = 

[ 

(2 2 ) , 

( 

1 

1 

) ] 

. We choose two lines l and

t such that l · C = 2 O + 2 R and t · C = O + 3 P. We
find that P 

′ = O 

′ = O with multiplicity sequence m P ′ ={ ( 

2 

1 

) 

2 

( 

1 

1 

) } 

, and R 

′ = B with m R ′ = (2 3 ) . 

 II , 18) : We begin with the quintic curve C with Data (C) =
[(2 2 ) , (2 4 )] . We choose two lines l and t such that
l · C = 4 O + R and t · C = 2 O + 2 P + S. We find that

P 

′ = S 

′ = O with multiplicity sequence m P ′ = 

( 

2 

1 

) 

2 

,

and O 

′ = N with m O 

′ = (2 2 ) . 
 II , 19) : We start with the quintic curve C with Data (C) =

[(2 2 ) , (2 4 )] . We choose two lines l and t such that
l · C = 4 O + R and t · C = 2 O + 2 P + S. We find that

P 

′ = S 

′ = O with multiplicity sequence m P ′ = 

( 

2 

1 

) 

2 

,

and O 

′ = N with m O 

′ = (1) . 
 II , 22) : In this case,we start with the quintic curve C with

Data (C) = [(2) , (2) , (2) , (2 3 )] . We choose two lines l
and t such that l · C = 4 O + R and t · C = 2 O + 2 P +
S. We find that P 

′ = S 

′ = O with multiplicity sequence

m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

2 

⎫ ⎬ 

⎭ 

, and O 

′ = N with m O 

′ = (2) . 

 II , 25) : We start with the quintic curve C with Data (C) =
[(2 2 ) , (2 4 )] . We choose two lines l and t such that l ·
C = 4 O + R and t · C = 2 O + 2 P + S. We find that P 

′

= S 

′ = O with multiplicity sequence m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 2 

2 

⎫ ⎬ 

⎭ 

,

and O 

′ = N with m O 

′ = (2 2 ) . 
 II , 26) : We begin with the quintic curve C with Data (C) =

[(2 2 )(2 4 )] . We choose two lines l and t such that l ·
C = 4 O + R and t · C = 2 O + 2 P + S. We find that P 

′

= S 

′ = O with multiplicity sequence m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 4 

2 

⎫ ⎬ 

⎭ 

,

and O 

′ = N with m O 

′ = (1) . 
 II , 24) : We start with the cubic curve C with Data (C) = { (2) } .

We choose two lines l and t such that l · C = 3 R and
t · C = 2 P + S. We find that P 

′ = S 

′ = O with mul-

tiplicity sequence m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

2 

⎫ ⎬ 

⎭ 

, and R 

′ = B with

m R ′ = (3) . 
 II , 21) : In this case, we begin with the cubic curve C with

Data (C) = { (2) } . We choose two lines l and t such
that l · C = 3 R and t · C = 2 P + S. We find that P 

′

= S 

′ = O with multiplicity sequence m P ′ = 

{ ( 

2 

1 

) 

2 

} 

,

and R 

′ = B with m R ′ = (3 , 2) . 
 II , 27) : We begin with the quintic curve C with Data (C) =[ ( 

2 

1 

) 

, (2 3 ) 

] 

. We choose two lines l and t such that

l · C = 4 O + R and t · C = 2 O + 3 P. We find that P 

′
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( I

 

( I

 

( I
 

 

( I  

 

( I
 

 

A

T  

h

R

 

 

 

 

 

 

 

 

[  

[  

[  

[  

[  
= O with multiplicity sequence m P ′ = 

{ ( 

2 

1 

) 

3 

} 

, and 

O 

′ = N with m O 

′ = (2) . 
I , 28) : We start with the quintic curve C with Data (C) = ⎡ 

⎣ 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

, (2 2 ) 

⎤ 

⎦ . We choose two lines l and t such 

that l · C = 4 O + R and t · C = 2 O + 3 P. We find that

P 

′ = O with multiplicity sequence m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 

3 

⎫ ⎬ 

⎭ 

, 

and O 

′ = N with m O 

′ = (1) . 
II , 10) : We begin with the quintic curve C with Data (C) = [ 

(2 2 ) , (2 3 ) , 

( 

1 

1 

) ] 

. We choose two lines l and t such 

that l · C = 2 O + 3 R and t · C = 3 O + 2 A . We find
that R 

′ = B with multiplicity sequence m P ′ = (3) , and 

O 

′ = O with m O 

′ = 

( 

2 

1 

) 

. 

II , 16) : In this case, we begin with the cubic curve C with 

Data (C) = { (2) } . We choose two lines l and t such
that l · C = 2 R + S and t · C = 3 P. We find that R 

′ =
S 

′ = B with multiplicity sequence m R ′ = 

{ ( 

2 

1 

) } 

, and 

P 

′ = O with m R ′ = (3 2 ) . 
II , 25) : We begin with the cubic curve C with Data (C) = { (2) } .

We choose two lines l and t such that l · C = 2 R + S
and t · C = 3 P. We find that R 

′ = S 

′ = B with mul-

tiplicity sequence m R ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 
⎫ ⎬ 

⎭ 

, and P 

′ = O with 

m R ′ = (3 2 0) . 
II , 38) : We begin with the quartic curve C with Data (C) = 

{ (2 3 ) } . We choose two lines l and t such that l · C =
O + 3 R and t · C = O + 2 P + A . We have that P 

′ =

O 

′ = O with multiplicity sequence m P ′ = 

⎧ ⎨ 

⎩ 

( 

2 

1 

) 2 4 
⎫ ⎬ 

⎭ 

, 

and R 

′ = B with m R ′ = (3) . 
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