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The aim of this paper is to introduce the notion of (L,M)-double fuzzy quasi-
coincident neighborhood system, and investigate the relationships between (L,M)-double fuzzy
quasi-coincident neighborhood spaces and (L,M)-double fuzzy topological spaces in the category
aspect. Also, we give a characterization of (L,M)-DFTOP, which is called compatible antichain L-
double topologies and consider the categorical connections between them. Finally, to better under-
stand (L,M)-DFTOP, several categories were introduced.

2010 Mathematics Subject Classification: 03E72; 18B30; 54A40

© 2015 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction and preliminaries

Kubiak [1] and Sostak [2] introduced the notion of (L-)fuzzy
topological space as a generalization of L-topological spaces
(originally called (L-)fuzzy topological spaces by Chang [3] and
Goguen [4]). It is the grade of openness of an L-fuzzy set. A
general approach to the study of topological-type structures on
fuzzy powersets was developed in [5-8].

As a generalization of fuzzy sets, the notion of intuitionistic
fuzzy sets was introduced by Atanassov [9,10]. Recently, Coker
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and his colleagues [11,12] introduced the notion of intuitionistic
fuzzy topological space using intuitionistic fuzzy sets. Samanta
and Mondal [13,14], introduced the notion of intuitionistic gra-
dation of openness as a generalization of intuitionistic fuzzy
topological spaces [12] and L-fuzzy topological spaces.

Working under the name “intuitionistic” did not continue
because doubts were thrown about the suitability of this term,
especially when working in the case of complete lattice L. These
doubts were quickly ended in 2005 by Garcia and Rodabaugh
[15]. They proved that this term is unsuitable in mathemat-
ics and applications. They concluded that they work under
the name “double”. Under this name, many works have been
launched [16-19].

QO-neighborhood system that was introduced by Pu and
Liu [20] generalized the classical theory of neighborhood
system. Since then, the Q-neighborhood system played an im-
portant role in L-topology. Later, Sostak [21,22] introduced
the fuzzy Q-neighborhood system of fuzzy points in I-fuzzy

1110-256X © 2015 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://dx.doi.org/10.1016/j.joems.2015.02.004


http://dx.doi.org/10.1016/j.joems.2015.02.004
http://www.etms-eg.org
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2015.02.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ahmeda73@yahoo.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.joems.2015.02.004

500

A.A. Ramadan, A.A. Abd El-latif

topological spaces as an extension of Q-neighborhood sys-
tem. Moreover, the relations between I-fuzzy topological spaces
and its Q-neighborhood systems were discussed in [22]. How-
ever, as pointed out by Demirci [23], there were some er-
rors in Sostak’s results, so he proposed some properties of
this kind of fuzzy Q-neighborhood system to correct these er-
rors. Furthermore, in the case L = [0,1], Fang [24] introduced
I-fuzzy quasi-coincident neighborhood system independently.
Later, in case of completely distributive De Morgan algebra
[25], Fang [26] considered L-fuzzy quasi-coincident neighbor-
hood system with respect to L-fuzzy topology, and established
the relationship between them in category-theoretical sense.
Neighborhood system was usually used as a kind of tools,
but we can also regard it as an independent structure and
find the relations between this independent structure and other
structures.

In this paper, we introduce the notion of (L, M)-double fuzzy
quasi-coincident neighborhood system, and construct the cat-
egory of (L,M)-double fuzzy quasi-coincident neighborhood
spaces and their continuous maps, denoted (L,M)-DPrFQN
which contains the category of topological (L,M)-double fuzzy
quasi-coincident neighborhood spaces and their continuous
maps, denoted (L,M)-DFQN as a full subcategory. Also, we
can prove that the category (L,M)-DFQN is isomorphic with
(L,M)-DFTOP and (L,M)-DPrFQN is a topological category
over SET. Finally, we introduce several categories which can be
used to better understand (L,M)-DFTOP.

Let L and M be fuzzy lattices, i.e., a completely distributive
lattices with an order-reversing involution ', if not otherwise
stated. Let 0, (1) and 0y, (1,,) are the smallest (largest) ele-
ments of L and M respectively. Let a,b be elements in a complete
lattice M. An element ¢ € M is said to be coprime if a < bV ¢
implies that ¢ < b or a < ¢. The set of all coprimes of M is de-
noted by ¢(M). Note that we do not regard 0,, € M as a co-
prime in this paper and a € ¢(M) if and only if ¢ is prime.
We say «a is a way below (wedge below) b, in symbols, a < b
(a < b)orb> a (b a),if for every directed (arbitrary) sub-
set DC M,\/ D > b implies a < d for some d € D. If a is a
coprime, we have a < b if and only if ¢ « b. The lattice M
is called continuous (completely distributive) if every element
a € M is the supremum of all elements way below (wedge below)
it. Let X be a non-empty set. The family of all L-fuzzy sets on X
will be denoted by LY. The smallest element and the largest one
of L¥ will be denoted by 0y and 1y respectively. A fuzzy point,
denoted x; (x € X,z € ¢(L)), is an L-fuzzy set from X to L such
that x,(x) =t # 0p and otherwise = 0;; the set of all fuzzy
points is denoted by Pt(L*). Let x; € Pt(L*) and » € LY. We
say that x, is quasi-coincident with X, denoted x,qx [27], if
t $_ A (x), where A’ (x) = A(x)". The relation that “ is not quasi-
coincident with ” is denoted by /¢. The reader should note that
Pt(LY) should not be confused with the notion for points of
a complete lattice—the carrier set used in Stone duality—in
[28, Chapter 2]. Note that for every x; € Pt(LY), ?, denotes the
collection {v € LY : x,qv}, and for all A with x,gA, ?, |\ denotes
the collection {v € L* : v < A and x,;qv}. Let f: X — Y be a
map. Then the Zadeh image and preimage operators of fare de-
fined by: /() (@) = V{A(x) : f(x) =y}, [ (w) = po f, for
all v e LY, ue LY,x € X and y € Y. An L-topology on a set
X is a subset § of L* closed under finite meets and arbitrary
joins. An L-topology on a set is always in Chang-Goguens’s

sense. The pair (8,6*) is called an L-double topology on X
if § and &* are L-topologies on X and 8§ C &*. The triplet
(X,8,6%) is called L-double topological space. Let (X,8,5)
and (Y,6,,65) be L-double topological spaces. Then a map
[ (X.,61.8)) = (Y.,5,,85) is continuous if for each v e,
(resp. ved}), f“(v)ed (tesp. f~(v) €d]). The follow-
ing definitions and results will be used frequently in the
sequel.

Proposition 1.1 ([29] ). Let M be a complete lattice. The follow-
ing conditions are equivalent:

(1) M ia a completely distributive;
(1) M is a distributive continuous lattice with enough co-
primes;
(iii) M is a distributive and both M and M°P are continuous.

It is well-known that both the way below relation in a continu-
ous lattice and the wedge below relation in a completely distribu-
tive lattice have the interpolation property, hence if a < b in a
completely distributive lattice M and a is a coprime there is some
coprime ¢ € M such that a < ¢ < b. The way below relation on
a complete lattice M is said to be multiplicative if a < b and
a K c implies a < b A ¢ for all a,b,c € M. The way below rela-
tion on a completely distributive lattice M is called locally multi-
plicative if for every coprime a € c(M),a < banda < cimplies
a K bAcforall be e M. Clearly, if the way below relation on
a completely distributive lattice is multiplicative, then it is locally
multiplicative [30].

Definition 1.2. For a given nonempty set X, a double quasi-
coincident system on X is a family of (Q,Q%) = {(Q,,,Q% ) :
Q,,,9* C L* x, € Pt(L*)} fulfilling the following conditions:

Q1) Q. € Q5;

(Q2) & € Q,,,1 € QF, implies x,gA;

(Q3)VavelX ifveQ, (resp. ve Q) and A > v then,
L€ Q, (resp. A € Q7).

(Q4)Vrve LY, ifve Q, (resp.v e Q;)and 1 € Q,, (resp.
A€ Q;)then, L Av € Q,, (resp. A Av € Q).
(2.9") = {(2Q+,9Q%) : x, € Pr(L¥)} is the double quasi-
coincident neighborhood system of some L-double topol-
ogy on X if and only if it satisfies:

(Q5) V A € Q (resp. A € Q7)) there is v < A such that x,qv
andv € Q) (resp.v € QF )V yiqv.

A triplet (X,9,9*) is called double quasi-coincident neigh-
borhood space. Let f: (X,P,P*) — (Y,Q,9%) be a map from
a double quasi-coincident neighborhood space (X,P,P*) to an-
other double quasi-coincident neighborhood space (Y,0Q,0%).
[ is continuous if V x, € Pt(LY), [ (1) € Py, (resp. [ (1) €
Py ) foreach A € Q- (y, (tesp. A € Q_*ﬁ )

Let DQN(LY) denote the complete lattice of all double
quasi-coincident neighborhood systems on X. Trivially the el-
ements in DQN(LY) corresponds bijective to the L-double
topologies on X. If we denote the category by L -DQN, of
which objects are triplet (X,9,0*) and morphisms are con-
tinuous maps as usual, the corresponding relation can be re-
stated as L-DQN is isomorphic to L-DTOP in category
terminology.
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Definition 1.3 ([31]). The pair (7,7*) of maps 7,7*: LY — M
is called an (L,M)-double fuzzy topology on X if it satisfies the
following conditions:

(DFT1) T (1) < (T*(A)), for each A € L¥,

(DFT2) T(0x) = T(1x) = 1y, 7*Ox) = T*(1x) = On,
(DFT3) T(u Ada) =T AT () and T(hy Ada) <
T*()\.l) \% T*()\.Q), for any Aj,Ay € LY.
(DFT4)  T(\,ook) = Ner TG)  and

Vier T*(Ay), forany {&; : i e T} € LY.
The triplet (X,7,7*) is called an (L,M)-double fuzzy
topological space. If (7;,7;") and (7>,75") are two (L,M)-
double fuzzy topologies on X, we say that (7;,7,") is
finer than (7,,75%) (or (72,75 is coarser than (7;,7,%)),
denoted by (72,7;%) < (T1,77) iff T2(A) <Ti(») and

T (A) = T*(A), for each A € LX.

T*(Vierhi) =

Let f: (X, 7..,7) = (Y., 72, 7,") be a map between (L,M)-
double fuzzy topological spaces (X,7:,7;) and (Y.,75,7,9).
Then f is said to be continuous if for each u e LY, To(n) <
Ti(f = (w) and T3 (1) = Ty (f < ().

Thus we have the category (L,M)-DFTOP where the objects
are (L,M)-double fuzzy topological spaces and the morphisms
are continuous maps.

Definition 1.4 ([32] ).

(1) Category A is said to be a subcategory of category B pro-
vided that the following conditions are satisfied:
(a) Ob(A) € Ob(B);
(b) for each 4,4" € Ob(A), homp(A,A") C homg(A4,4);
(c) for each A-object A, the B-identity on A is the A-
identity on 4;
(d) the composition law in A is the restriction of the com-
position law in B to the morphisms of A.
(2) A is called a full subcategory of B if, in addition
to the above, for each A,4" € Ob(A), homy(A,A") =
homg(A,4").

Definition 1.5 ( [32,33]).

(1) A category C is called a topological category over SET
with respect to the usual forgetful functor from C to SET
if it satisfies the following conditions:

(TC1) Existence of initial structure: For any set X,
any class J, and family ((Xj,sj))jgj of C-object and
any family (f;: X — X 7 jer of maps, there exists the
unique C-structure & on X which is initial with respect
to the source (fj: X — (Xj,éj))jgj, this means that
for a C-object (Y,n),amapg: (Y.,n) —» (X,§)isa C-
morphism iffforall j € J,fjog: (Y.,n) — (X;.§;)isa
C-morphism.

(TC2) Fibre-smallness: For any set X, the C-fibre of X,
i.e., the class of all C-structure on X, which we denote
C (X),is a set.

(2) Let B be a category and E be a class of B-bimorphisms. A
full subcategory A of B is called E-reflective (or bireflec-
tive) in B provided that each B-object has an A-reflection

arrow in E as a bimorphism. This means that, for any B-
object B, there exists an A-reflection (or A-reflection bi-
morphism) r : B— A4 from B to an A-object 4 with the
following universal property: for any morphism f : B —
A’ from B into some A-object 4’, there exists a unique
A-morphism f”: 4 — A’ such that f"or = f.

For undefined notions about categories and completely dis-
tributive notions, we refer to [7,29,32,34,35].

2. Category (L,M)-DFQN isomorphic to (L,M)-DFTOP

Definition 2.1. An (L,M)-double fuzzy quasi-coincident neigh-
borhood system (briefly, (L,M)-dfqn system) on X is defined to
be a set (0.0%) = {(Qy,.0%) : x; € Pr(L*)} of maps Q.,.0% :
LY — M such that VA,u € LY,

(DFQ1) 0, (2) < (%, (1))
(DFQ2) Qx,(lX) = lMaQ.n(OX) = 0y, il(lx) =0y and
% (Ox) = 1y
(DFQ3) 0., (A) # 04,05, (A) # 1a implies x,g.
(DFQ4) 0, 0. Ap) = 0, () A O () and Q% (h A ) =
(A VO ().

The triplet (X,0,0") is called an (L,M)-double fuzzy
quasi-coincident neighborhood space (briefly, (L,M)-
dfqn space), and it will be called topological if it satisfies
moreover, for all x, € Pt(L¥),» € LY,

(DFQS) 04 () = V= Ay O, (1),
/\Me?,uv}’stm ().
A continuous map between two (L,M)-dfqn spaces
(X,P,P*) and (Y,Q0,0%) is a map f : X — Y such that
for each x, € Pt(L¥)and v e LY,
O, (V) = Py (f~(v)), and O, (v) = PL(f7 (V).
The category of (L,M)-dfgn spaces and their continu-
ous maps is denoted by (L,M)-DPrFQN, and (L,M)-
DFQN the full subcategory of (L,M)-DPrFQN consist-
ing of topological (L,M)-dfgn spaces.

and Q3 (h) =

Remark 2.2. For all x; € Pt(LY) and v € L*,Q,,(v) can be
thought as the degree of v being a quasi-coincident neighbor-
hood of x; and Q7 (v) can be thought as the degree of v being
non-quasi-coincident neighborhood of x;.

Let X be a nonempty set and (7,7*) be an (L,M)-double
fuzzy topology on X. Define Q;,C, T LY S M as:

X

T = \/{T(v) cvex Al if xigh

Xt OMa lf x;ﬂ)\.
07 G = NT @) v ex, 1), if xqh

Xt lM, lf xtﬁk,

for each x, € Pt(L¥) and A € L*. Then we have:

Proposition 2.3. The set of (07,0 ) =1{(QT,07 ):x e
Pt(L)} is a topological (L,M) -dfqn system on X, called induced
topological (L,M) -dfgn system from (T, T*) .
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Proof. (DFQI1)-(DFQ3) are true trivially.

(DFQ4): From the definition of Q7 and leT ,
v,h € LY such that v < A, then 07 (v) < QT () and Q" (v) >
Qj.IT* (A). Thus for each A,u e L¥ we have: Qg AAp) <
0L () A QT (1) and Q7 G Ap) =07 (WV QY (n). On
the other hand, for each « € ¢(M) such that anz M)A
07 (w), we have <107 (1) and «<1Q (). Thus there exist
A,y € LY such that x;qA; < A,a < T (A) and x,qu; < o <
T (1), respectively. Therefore o < T (A1) AT (1) < T (A A
wi). It is clear that x,q(A; A 1) < A A . Then, by the def-
inition of Q7. & < T (A1 A 1) < QF (A A ). Hence, Q7 (1 A

nw) > QI A) A Q;rt (w). It remains to prove that: Q{k AAp) <
0 Gy v o (). So let <0y (A Ap).B € c(M). Then,
there exists v € LY such that x,qv <A Apu and B < T*(v).
This implies that x,qv < A, < T*(v) and x,qv < u, < T*(v).
Then <0 () and B <0 (u). Thus B <07 (M)V
(). Hence, 02 o Ap) < 0 )V O ().

(DFQS) ¥ pex; |1, we have T = /\WQTM <
OT(w <0l and T*(w) =V, .00 =07 (W=
Q;T* (A). Therefore,

we have: if

ol =\/ Tw =\ Aol =<0l ),
pexyn e, PP

and

ol = ATwz= AVa w=0 0.
/Lex,l)L /.LEX,M}‘(IM

\/uexf\x/\yqu;‘(“) and Q;{*(A)Z

This means,

ol () =
/\ME.’ZM\/}M;LQ{' (). O

Lemma 2.4.
Ve @ (1),

V Ae LY T = N\, 0 ) and T*(h) =

Proposition 2.5.

@ If (,7) and (T2,7)) are two (L,M) -double fuzzy
topologies on X which determine the same topological
(L.M) -dfqn system, then (T:,7;") = (T2, T,").

(i) Suppose that f: (X, T,7") = (Y. T2, T,") is a continu-
ous map between (L,M)-double fuzzy topologlcal spaces.
Then, f: (X,0",0* a )y — (Y,0%,0* 4 ) is also continu-
ous with respect to induced topological (L,M)-dfgn sys-
tems.

Proof.

(1) Hold by Lemma 2.4.
(i) Since f: (X, T1,7;*) — (Y., T2, 75%) is continuous, then for
each u € L" we have, T,(1) < Ti(f< (1)) and T (n) =

T (f<(n)). Notice that, Q@(u):\/ve‘ ,T(v) and
Q;f* (W) = A\, .z, T* (). It follows that:

femexif<w

T~ ) < O/~ (),

0%, =\ Tw= HWw)

vef(xX)ln

=V

Femexif<w

and

-

Ot = N\ Tz N\ Tw
uef(_;),m Femexlf<w

%

A

FemeExlf<w

T W) = Q (f(_(ﬂ))

O

From the above proposition, we have obtained a functor
from (L,M)-DFTOP to (L,M)-DFQN which is injective on ob-
jects.

Let (Q.0") = {(0Q,,,0%) :x; € Pt(L¥)} be a topological

(L,M)-dfgn system on X. Define a pair (TQ,T*Q*) of maps

T [X 55 M as:
ANQ. M), if A # Oy
TQ(}‘) = 3\ xqr
Lar, if A=0y,
o V@), if a # 0y
T* (}‘) = Xtqh
Oy, if A =0y.

Then we have:

Proposition 2.6.

@) ('TQ,T*Q*) defined above is an (L,M) -double fuzzy topol-
ogy on X, called induced (L,M) -double fuzzy topology
from (Q,0*) . Moreover, if (P,P*) and (Q,Q*) are two
topological (L,M) -dfgn systems on X which determine the
same (L,M) -double fuzzy topology, then (P,P*) = (Q,0")

@) If a map f: (X,P,P*) — (Y,0,0%) is a continuous map
between topological (L,M) -dfgn spaces, then f is contin-
uous with respect to induced (L,M) -double fuzzy topolo-
gies.

Proof.

(1) (DFT1)~(DFT3) are easily proved.
(DFT4) For each {u; : i € '} € L*, we have:

() p o)t (e

qu(\/isF/‘“i) iel’ iel xiqu; iel’
= AN\ Qo) = AT,
i€l xiqu; el

and

'T*Q* (\/Mi)
iel’

\/ ¢, (\/m)

xq(Vier i) iel

<V V2w =\/T (.

iel’ xiqu; iel’

~VVe, (\/u,-

iel xiqu; iel’

A

)
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Hence, (72,7 ) is an (L,M)-double fuzzy topology.
In addition, suppose that (7,7*) is the same (L,M)-
double fuzzy topology. Then, for each x;, € Pt(LY) and

re L,
P,0=\/ A\P.w=\ Tw=\/ N\, w=0,0),
pex; s pexila pex; B
and
roy= A\ Vew=N\Tw=N\ \a w=0,0).
pex; s pexilh pex; B

Hence, (P,P*) = (Q,0%).
(i) Since x;¢f (w) if and only if = (x,) = f(x),qu.¥Y u €
LY, and
v e Pr(L)  yiqu} 2 {f(x), € Pe(L”) : x, € Pr(LY),
and  f(x)qp}

we can get 1 : (X,TP,T*P*) — (Y,TQ,T*Q* )) is continu-
ous.

The next results follow from Propositions 2.3, 2.5 and 2.6.
|

Theorem 2.7. (L,M)-DFQN is isomorphic to (L,M)-DFTOP.

Corollary 2.8.
(L,M)-DPrFQN.

(L,M)-DFTOP is concretely bireflective in

Theorem 2.9. (L,M) - DPrFQN is a topological category over
SET with respect to the usual forgetful functor.

Proof. By Definition 1.5, we need to check the conditions
of fibre-smallness and existence of initial structures for this
category. The fibre-smallness condition is trivial. We need to
prove that it fulfills the existence of initial structures. Let
fi: X - (X/,0,0") } o, be asource in (L,M)-DPrFQN and
(0,0 = {(0+,.0%) : 0,,,0%, : L¥ — M.x, € Pt(L¥)} defined
by: Vx, € Pt(LY) V1 € LY,

0. = \/ Y AQf- () i 2 € LN £ <A,

FeJ<v | jeF jeF

and

0, = NV 0 h e LN 70 <2

FeJ<v | jeF jeF

We will show that (Q,0*) is the unique (L,M)-DPrFQN-
structure on X which is initial with respect to the source

{f/ X - (Xj’Qj’Q*/)}jeJ'

Step 1 (V-lift): (Q,0") is (L,M)-DPrFQN-structure on X,
ie., (Q,0%) is (L,M)-dfgn system on X and (Q,0*) makes
/; continuous for each j € J.
(DFQI1) and (DFQ2) are trivial, (DFQ3) is routine.
(DFQ4) From the definition of Q,, and Q3 , we know
that Q,,(v) < Oy, () and Q3 (v) > 0% (1), when v < A.
Therefore, for each A, € LY, we have:

01, (A A ) < 0, (W) AQx, () and 0%, (h A ) = 0%, () v 0% (1.

On the other hand, let « € ¢(M) such that «<1Q,, (1) A
Oy, (1). Then, @<1Q,, (1) and a<1Qy, (). By the defini-
tion of Q,,, there exist {)»]-}J.EF1 with /\].EFl SO <A,
and there exist {11} jer, with /\jerf_ﬁ(uj) <, such
that @ < Ajep Qe i () and @ < Njep Q7 ) (1),
respectively, where F{ and F are two finite subsets of J.
Let F = FF UK and

Ajs JER,] ¢ B
Vi =M, j ¢ hjeh
)\.j/\/,bj, ]GEHB

Then Fis a finite subset of J and we have:

= N0 A NFw)

JjeR jeR

_ < i

= /\/; v and @ < /\Qfﬁ(m(”f)'
JeF Jjer

Thus o < Q,, (A A ). From the arbitrariness of «,
we have, O, (A Aw) >0, A)AQy (). It remains
to prove that, Q7 (A Ap) <0y M)V 05 (n). So, let
B € c(M) such that B<Q; (A A ). Then, there ex-
ists {)Lj}jeF}, where F; is a finite subset of I', with

Njer SOy <dnpand B <V p Qf?_% o )
Then, Acnf; () <i B < \/jerQféﬁ(m(Aj), and

Neri 00 < B <V e, @7 ()- Thus,
B=<0;() and B <Q;(n) , this implies that
B =<0,V O ().

Since B is arbitrary, Oy (A A p) < 05, (1) v OF (). Fur-
thermore, from the definition of Q, and Q) we
have: 0., (fi~(3)) = Qf- ) (), and O3, (fi7 () =
Qj'/ﬁ(m()‘j)’ for each 2; € L. Then, [ (X,0,09 —

J

(X7,07,0*) is continuous for each j € J.

Step 2 (Initial V-lift): It is easy to show that (Q,Q%) is initial
V-lift, i.e., for an (L,M)-DPrFQN-object (Y,S,S*) a map
/i (Y.,8,8%) — (X,0,0%) is continuous if and only if
fiof:(Y,S,8%) — (X/,0/,0") is continuous, for each
jeld.

Step 3 (Unique initial V-lift): Suppose that (X,P,P*)
is another initial V-lift with respect to the source
fi: X — (X«f,Q«f,Q*’)}jEJ. Let idy: (X,P,P*) —
(X,0,0%). Since, (X,0,0*) is initial V-lift and
fjoidy = f;is continuous for all j € J, then idy is con-
tinuous. Hence, Py, (A) > Oy, (A) and P} (1) < 07 (),
for each A € L*. Then, (P,P*) > (Q,0%). Using the
similar argument, we have (P,P*) < (Q,0*). There-
fore, (P.P*) = (Q,0%). Hence, (L.M)-DPrFQN is a
topological category over SET. [J

Theorem 2.10. (L,M) - DFQN is bireflective in (L,M) -

DPrFQN ; hence (L,M) - DFQN is a topological category over

SET with respect to the usual forgetful functor.

Proof. Assume that (X,0,0%) is an (L,M)-dfqn space, we

assert that its (L,M)-DFQN-reflection is defined by idy :

(X,0.0 — (X,07.0") where, (0,0 ) ={(Q1.0% )
" o LY > M,x, e Pt(L¥)}, and for each x, €

SVED 5
*H*
PULY)0 € LY, Q1) =V, Ay () and €3 () =

/\VE;M\/}WQ;‘,:(U). Then, (X,Q”,Q*"*) is a topological
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(L,M)-dfgqn space, ie., (X,07,0") is (L.M)-TDFQN-
object, idy : (X,0,0") — (X,QH,Q*H*) is continuous and it
is bimorphism in (L,M)-DPrFQN, and for each topological
(L,M)-dfgqn space (Y,P,P*) and each map f: X — Y, the
continuity of f: (X,0,0%) — (Y,P,P*) implies the continuity
of £ (X,0",0""") = (v,P,P*). O]

3. Category DLaTQN isomorphic to (L,M)-DFTOP

In this section, through a categorical aspect, we establish a
natural relation between (L,M)-double fuzzy quasi-coincident
neighborhood systems in (L,M)-double fuzzy topology and
quasi-coincident neighborhood systems in Z-double topology.
Note that M is fuzzy lattice with locally multiplicative property
in this section.

Definition 3.1. The category DLaQN contains objects in the
form (X,g.g") where X is a set, g.g* :c(M) — DQN(LY)
is a map such that for each « € ¢(M), the source {idy :
(X.g(),g*(@)) - (X,g(a).g*(@))} is initial. The morphism
in DLaQN is a map f: (X,g.g") — (Y.,hh*) such that f:
(X, g(a),g" (@) — (Y ,h(a),h*(a)) is continuous for all « €
c(M). DLaTQN denotes the full subcategory of DLaQN con-
sisting of those objects (X,g,g*) such that for each @ € ¢(M),
(g(a).g*(«)) is double quasi-coincident neighborhood system
of some L-double topology on LY.

Proposition 3.2. Suppose that (X,Q0,0*) is an (L,M) -dfgn
space. Define g.g* : c(M) — DQN(LY) by: g(a)(x;) ={r €
LY a0 < O, (M)} and g (@) (x) = {A € L' : O} (M) <},
for each x, € Pt(LX) and each a € c¢(M) . Then we have:

(1) (X.g.g*) is an object in DLaQN ;

(1) (X.g.g") is an object in DLaTQN if (X,0,0%) is topolog-
ical (L,M) -dfgn space;

(i) If a map f: (X,P,P*) — (Y,Q,0%) is continuous, then
[ (X.g.g") — (Y.,hh*) is continuous, where g and h
(resp. g and h* ) are induced from P and Q (resp. P* and
o).

Proof.

(1) It suffices to show that (g(a)(x,).g"(«)(x,)) satisfies
(Q1)—(Q4) of Definition 1.2, for each x; € Pt(LY) and
each o € ¢(M).

(Q1)—(Q3) are easy proved.

Q4 V rvel®, if »xeg(@)(x,) and v e gla)(x,) ,
then ¢ <€ Q,,(A) and « < Q,,(v). From the local
multiplicative of the way below relation on M, we
have o < Q,, (M) A Oy, (v) = Oy, (A Av). Then, A Av €
g(a)(x,). Also, if Aeg*(@)(x,) and v e g (a)(x;) ,
then Q07 (A) < o' and Q7 (v) K o'. Thus QF (A AV) =

L)V O; (v) Ko’ Then, A Av € g"(a)(x,).

(i1) It suffices to show that (g(a)(x,),g"(«)(x,)) satisfies
(Q5) of Definition 1.2, for each x, € Pt(L¥), and each
o € c(M). When A e g(a)(x,), we have o < Oy, (1).
Since Q,, (1) = \/ueZp\/\ysqu}’x(U)’ by the coprimality
of «, there is some v e;, |A such that o « /\y_\q”QyS(v).
Then, o < 0, (v), for each y,qv. This implies that,
xqv <A and vegla)(y), for each y,gv. When

A e gi(a)(x), we have (A L Since

V) =N, Vi@, (v), then for each v ex,
2V @ () o' Then, Q5 (v) <o, for each
ysqv. This implies that x,qv < A and v € g"(«)(y;), for
each y,qv.

(iii) Itis clear. OJ

By the above proposition, we get a functor from (L,M)-
DPrFQN to DLaQN and this functor maps the subcate-
gory of (L,M)-DPrFQN consisting of those objects fulfilling
(DFQ5) into DLaTQN. Conversely, given an object (X ,/,h*)
in DLaQN, let us define (Q,0") = {(0,,.0%) : x; € Pt(L¥)}
so that, Q. () =\V{ae€c(M):xeh(@)(x)}and OF (1) =
N’ € e(M) : € h*(a)(x,)}, for each x, € Pr(LY) and each
A € L. Then we have:

Proposition 3.3.

(1) (X,0,0%)isan (L,M) -dfgn space;

(1) (X,0,0%) is topological if (X,h,h*) is an object in
DLaTQN ;

(i) If a map [ : (X.g.g") — (Y ,h,h*) is continuous, then f
(X,P,P*) — (Y,0,0%) is also continuous, where P and Q
(resp. P* and Q* ) are induced from g and h (resp. g* and
).

Proof. (DFQ1)-(DFQ3) are easily checked.

(DFQ4) It is easy to show that Q,(AAp)<
0., (M) A Qy () and Q% (A A p) = Q% (W) Vv O (1), for each
x; € Pt(LY) and A,ue LY. So it remains to prove that,
0,0 AR = 0, () A Qy (1) and Q5 (M A ) < 0%, () v
Q% (), for each x, € Pr(LY) and A,u e L. Let k € ¢(M)
with k < Oy, (A) A Qy, (). Take coprimes B,y € ¢(M) such
that: kK B Ky € Qy,(A) A Oy, (1), by the interpolation
property of the way below relation. Then y « Q,, (1) and
Y K Oy (n). Since Oy, (2) = \{a € c(M) : 1 € h(a)(x,)} and
y is coprime, there exists some «; € ¢(M) such that y < o, and
A € h(ay)(x,). Similarly, there exists some «,, € ¢(M) such that
y <a, and p € h(a,)(x,). Hence, B K y < a; A«ay. There-
fore, 1 A u € h(B)(x,), which implies, k < Q,, (A A u). From
the arbitrariness of k we have, Oy, (A A ) > Oy, (X)) A Oy, ().
Now, suppose that there is a € ¢(M) and A,u € L¥ such
that, O AAw) >a> QM) Vv Q; (u). Take a coprime
ke c(M) such that, Q% (A Ap) >a=k> 0 (W) V O (w).
Then Oy (A) <k and QF (n) < k. Thus A € h*(k')(x;) and
w € h*(k')(x;). By (Q4) of Definition 1.2, A A u € h*(k')(x;).
Thus Q5 (A A ) < a. It is a contradiction. Then OF (A A p) <

© (L) Vv Q% (w) foreach A, € LY.

(i) We need to prove that, O, (1) = \/ueYrM I\yan Ors (),
and Q5 (A) = /\#EZM\/},_W * (), for each x; € Pr(L*) and
2 € L*. On the one hand, Q. (%) > \/ME;M/\J,WQ}.X(M) and

© (L) < /\ue?m\/ystm (1), are trivial. On the other hand,
suppose that @ € ¢(M) witha < Q,, (1). Since Q,, (A) = \/{x €
¢(M) : ) € h(a)(x,)}, then there exists some B € ¢(M) such
that @ < B with A € i(B)(x;). Then, by (Q5) of Definition 1.2,
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there exists v < A such that x,qv and v € h(B)(y,) for all y,qv.
Thusa o << 13 S /\)"S‘IV Q}’x(‘)) therefore’ (o4 S \/VE;—:M/\){;(]U Q}’x(‘))'
Consequently, Q. (1) < \/veﬁ\x/\mv 0,,(v). It remains to
prove that, QO (1) > /\ue;:M\/y.\qVQ*'s(v)' suppose that
there exists a € c(M) and A € LY such that, 0;, () <a<
/\vexﬂxvy.qu r.(v). Take a coprime k e ¢(M) such that:

(M) <k<a< /\ue?,uvyqu v (v).  Since Q7 (M) Kk,
then Afe: 2 € h*(@)(x,)} < k. Thus there exists some
oy € c(M) such that A € h*(ay)(x;) and o < k. By (Q5) of
Definition 1.2, there exists v € LY such that x,qv <\ and
v € I*(ar)(ys) for all ysqv. This implies, \/_VW 05 (v) <.
Thus /\ve;m\/)y,“_un;v(v)) <ay <a, a contradiction. Thus

jc; \) = /\ue.?,uvysqv ;\-(V)’V he L.
(iii) Obvious. [J

By the above proposition, we get a functor from DLaQN to
(L,M)-DPrFQN, which maps DLaTQN into (L,M)-DFQN. It
can be easily showed that it is inverse to the functor defined in
Proposition 3.2. Therefore, we have:

Theorem 3.4. (L,M) - DPrFQN is concretely isomorphic to
DLaQN , and (L,M) - DFQN o0 DLaTQN .

4. Category L-AIDTOP isomorphic to (L,M)-DFTOP

In this section, we will construct the category L -AIDTOP in-
duced from indexed families of L-double topologies, which is
isomorphic to (L,M)-DFTOP. Thus, the close relation between
(L,M)-double fuzzy topology and L-double topology is estab-
lished, as desired. In the following, LDTO( X ) denotes all L-
double topologies on a nonempty set X, and note that LDTO(
X) is complete lattice.

Given an (L,M)-double fuzzy topology (7,7*) on X, we
can obtain a collection of L-double topologies {(7,,7.) :
a € c(M)} on X where, T, ={r € LY : T(A) > a},T) = {)
LY : T*(1) < «'}. Moreover, if we let 47 (a) =/, Tp and
B (@) = Vo Ty Where @ € e(M), then {(h7 (@).i* (a)) :
a € ¢(M)}is compatible antichain of L-double topologies in the
sense that < B = h7 () D A7 (B) and #*7" () D I*7" (B). It is
clear that, h (@) = \/ 5, A7 (B), and i*" (@) = \/ 5 """ ().

Lemma 4.1. Let (T,7*) be an (L,M)-double fuzzy topology.
Then T (L) = «, for all » € h” () and T*(A) < o', for all » €
T ().

Proof. It is trivial. (J

Definition 4.2. An object of the category L -AIDTOP is a
triplet (X,h,h*), where X is a nonempty set and, 2,h* : ¢c(M) —
LDTO(X) such that V o € c(M), h(@) = \/ 5 ,h(B).h(1y) =
{Oy,1x}, and h*(a) = \/ﬁ»uh*(ﬁ),h*(lM) = {Ox,1x}. A mor-
phism f: (X,h,h*) — (Y,g.g*) in L-AIDTOP is a map
f:X —Y such that V o €c(M), f:(X.,h(a)h"(x)) —

(Y,g(a),g"()) is continuous. An object (X,h,h*) of L -
AIDTOP is called a compatible antichain L-double topologi-
cal space and (4,h*) is said to be a compatible antichain of L-
double topology on X. From the definition of hT,h*T* above, we
know that (X,47,4* ) is an object of L -AIDTOP.

Proposition 4.3.

(i) If two (L,M) -double fuzzy topologies on X determine the
same object in L - AIDTOP , then they are equal.

(i) If a map f:(X,S,8*) — (Y.,T,T%) is continuous be-
tween two (L M) -double fuzzy topological spaces, then
f XS — (YT ) is continuous.

Proof.

(1) Let (7,7*) and (S,S*) be two (L,M)- double fuzzy
topologies on X satisfying &7 = 45 and " = 1" . We
want to show that 7 = S and 7* = S*. On the one hand,
suppose that A € L¥ and o € ¢(M) with o <« T (1). Fix
a coprime B € ¢(M) such that, « < B <« T (A). Then,
»€Ts ChT (@) = hS(a). By Lemma 4.1, we get S(1) >
«. From the arbitrariness of « , we have 7 (1) < S(A).
Suppose that, there exist A € LY and o € ¢(M) such that
T*(\) < a < S*(A). take B € ¢(M) such that T*(A) <
B <a<S*). Then, L € T} C \/ﬁ,>a, s — (o) =

e (¢). By Lemma 4.1, we get S*(A) < «, a contradic-
tion. Then, 7#(A) > S*(1),Y A € LY. On the other hand,
by the similar way, we can show that 7 (1) > S(1) and
T*(A) < S*(M),YAe LY Hence, T = Sand T+ = S*.
(i1) Suppose that a map f : (X,S,S*) — (Y,7,7%) is con-
tinuous. To show that f: (X5 ) — (Y. 070 )

is continuous, we have to show that: for each
aeccM),f<() ehS) for  each Areh”(a)
and f<(X) e e () for each A€ " (a). Let

rehT (@) =\ ,s,h"(B), we know that A has a
form of A= Vje//\kel(,»)“jk» where K; is finite in-
dexed set for all j € J and A; € h7 (Bi) (Bjx > @). By
Lemma 4.1, T (i) = Bjx > a. Thus, S(f () =
T (kjx)) > a. Moreover, < (i) € h¥(a). Therefore,
=) =V jerNeer, /™ (i) € 1S (a). Also, we can put
A in the form A = \/jEJ/\keK/-vjk’ where K; is finite in-
dexed set for all j € J and vy € e (Bjr) (Bji > a). By
Lemma 4.1, T*(vjy) < ﬂ}k < o'. Thus, S*(f“ (vjx)) <
T*(vjx)) < o'. Moreover, S p) € e (). There-
fore, /(1) = Ve Auer, /= (i) € 1 (@). O

By the above proposition, we have a functor from
(L,M)-DFTOP to L-AIDTOP which is injective on ob-
jects. Conversely, given a compatible antichain L-double
topology (h,h*) on X, then we can construct an (L,M)-double
fuzzy topology (7,7%) on X such that V A e LY, T,(1) =



506

A.A. Ramadan, A.A. Abd El-latif

Ve € c(M): 1€ h(a)} and
h*(a)}. Then we have,

) =N ec(M):re

Proposition 4.4. (7,,7,%) is an (L,M)-double fuzzy topology on
X, called induced (L,M)-double fuzzy topology from (h,h*).

Proof. We need to check the axioms of (DFT1)-(DFT4).

(DFT1) and (DFT2) are clear and omitted.

(DFT3) Let a be a coprime element (a € ¢(M)) such that
a < Ty(M) A Ta(). Take b € ¢(M) such that a < b < T,(M) A
Ta(). Then b < T;(1) and b <« T;(u). By the definition of
Tn()), there exists some «y € ¢(M) such that b <y and A €
h(w;). Similarly, by the definition of 7,(n) there exists some
o, € c(M)suchthath <o, and u € h(e,). Thena K b < a; A
a,. Then, A € h(a) and pu € h(a). It implies that A A u € h(a),
since /1(a) is an L-topology. That is, 7, (A A 1) > a. From the
arbitrariness of a, we obtain 7,(A A n) > T, (X)) A Tp(u). Sup-
pose that there exists A, € L¥ and « € ¢(M) such that, 75 (A A
w) > o >TL() Vv Tri(w). Take a coprime b € c¢(M) such that

TOAR) >a>b> TE0) v T (). Then, b T (h) and
b > T} (n). Then, there exists b, € c¢(M) such that b > b} and
& € h*(b;). Also, there exists b, € ¢(M) such that b > b, and
w e h*(b,). Then, o’ < b < b, A b/w Then, A € h*(«') and 1 €
h*(a'). Since h* (o) is L-topology, A A € h*(a’). Then 75 (A A
) < (&) =a, a contradiction. Then, TX(A A p) < Ti(1) V
TE()Y au e LY.

(DFT4) Let a € ¢(M) and a family of {v;:jeJ} C L¥
such that ¢ « /\jeﬂj,(vj). Take b € ¢(M) such that ¢ € b K
NjesTu(v). Thus T, (v;) > bY j € J. By the definition of 7j,
there exists a; > b > a such that v; € h(«;) for all j € J. Hence
we obtain, \/jejvj € \/ﬁ»ah(ﬁ) = h(a). Thus a < 77,(\/].6ij).
Therefore, 7;(\/‘/.€va,-) > /\‘/.EJ’E(vj) from the arbitrariness of
a. Suppose that there is a family of {v;:je J} C LY and
o € ¢(M) such tat, T2 (\/;c,v) > a >\, Ti(v)). Take b e
c¢(M) such that: 7% (\/jejvj) >a>b> \/jeﬂj;t (v;). Then,
b> T,V jeJ. By the definition of 7, there exists «; €
¢(M) such that b > o and v; € i*(a;). Then, o’ <V < a;.
This implies that v; € h*(«;) € h*(a'),V i € J. Since h*(a') is
L-topology, \/,,v; € h*('). Then T2 (\/;;v)) < @) =a,a
contradiction. Then, 7,5 (\/,.,v;) < V., 7,i(v)), for each {v; :
jeJycLX. O

Proposition 4.5.

1) If (X.gg") and (Y ,h,h*) are two objects in L-AIDTOP
and they determine the same (L,M)-double fuzzy topology
on X, then they are equal.

() Ifamap [ (X,g,g") — (Y,h,h*) is continuous, then f is
continuous with respect to induced (L,M) -double fuzzy
topologies.

Proof.

(1) Let (7,7*) be the same (L,M)-double fuzzy topology
induced by (4,h*) and (g.g"). We want to show g=rh

and g = /" ie, gla) = h(x) and g (o) = h*(a),Y o €
c¢(M). Let v € h(«). Then, there exists 8 € ¢(M) such
that v € #(B) and B > «a. Then, T,(v) = T,(v) = B >
a. Since T,(v) > «, there exists y € ¢(M) such that
y > o and v € g(y). Then, v € g(a). Thus A(x) C g(a)
V «a € ¢(M). By the same manner we can prove that,
g(a) Ch(a) V a € ¢(M). Hence, h = g. It remains to
show that i* = g*. Let v € h*(a),« € ¢(M), then there
exists B € ¢(M) such that 8 > o and v € h*(B). Then,
TrW) =T < p <Ko’ Since Ti(v) <o, there ex-
ists y € ¢(M) such that y’ <&’ and v € g*(y). Then,
v € g"(a). Thus /*(a) C g"(a),Y @ € ¢(M). In the same
manner, we can show /*(«) 2 g*(x),Y @ € ¢(M). Then,
h* =g
(1) Itis clear. a

From Propositions 4.4, and 4.5, we have the following theo-
rem:

Theorem 4.6. (L,M) - DFTOP is isomorphic to L - AIDTOP .
At the end of this paper, we summarize the results as follows:
Theorem 4.7.

(1) If L and M are completely distributive lattice, then the
categories (L,M) - DFTOP , (L,M) - DFQN and L -
AIDTOP are isomorphic to each other.

(1) If M is a lattice with locally multiplicative property, then
these categories (L,M) - DFTOP , (L,M) - DFQN ,
DLaTQN and L - AIDTOP are isomorphic to each other.
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