
Journal of the Egyptian Mathematical Society (2016) 24 , 492–498 

Egyptian Mathematical Society 

Journal of the Egyptian Mathematical Society 

www.etms-eg.org 
www.elsevier.com/locate/joems 

Original Article 

Bifurcation analysis of vertical transmission model 
with preventive strategy 

Gosalamang Ricardo Kelatlhegile 

∗, Moatlhodi Kgosimore 

Department of Basic Sciences, Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana 

Received 5 August 2015; revised 2 October 2015; accepted 4 October 2015 
Available online 5 November 2015 

Keywords 

Vertical transmission; 
Threshold; 
Stability analysis; 
Vaccination; 
Bifurcations; 
Reproduction number 

Abstract We formulate and analyze a deterministic mathematical model for the prevention of a 
disease transmitted horizontally and vertically in a population of varying size. The model incorpo- 
rates prevention of disease on individuals at birth and adulthood and allows for natural recovery 
from infection. The main aim of the study is to investigate the impact of a preventive strategy applied 
at birth and at adulthood in reducing the disease burden. Bifurcation analysis is explored to deter- 
mine existence conditions for establishment of the epidemic states. The results of the study showed 
that in addition to the disease-free equilibrium there exist multiple endemic equilibria for the model 
reproduction number below unity. These results may have serious implications on the design of in- 
tervention programs and public health policies. Numerical simulations were carried out to illustrate 
analytical results. 
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V  
transfer of individuals back to the susceptible population or
multiple groups and asymmetry between groups or multiple in-
teraction mechanisms [2] . Studies of bifurcation analysis were
explored in a number of epidemic models of which a few are
cited herein, to characterize the behavior of equilibria, make
predictions on the outcome of the epidemic and derive condi-
tions for prevention and control of diseases [2–9] . These studies
demonstrated existence of multiple positive endemic equilibria
for values of the basic reproduction number below unity and
a backward bifurcation when the reproduction number is one,
particularly in models of vaccination [7,10–14] and/or vaccina-
tion and treatment [15] . 

Vertical transmission can be accomplished through transpla-
cental transfer of disease agents (bacteria, viruses, parasites)
from the mother to an embryo, fetus, or baby during pregnancy
or childbirth [16] . In most studies, it is considered less impor-
tant compared to horizontal transmission, because infectious-
ness and parturition usually occurs at different times [17] . A
number of studies incorporating vertical transmission investi-
gated the effects of various epidemiological and demographical
factors on the disease transmission [2,14,17–19] . For instance,
Busenbuerg and Cooke [18] constructed and analyzed various
compartmental models with vertical transmission to obtain in-
sight on the role of vertical transmission in disease epidemics.
It is noted that vertical transmission alone may not cause an
epidemic and there is a certain threshold above which it may
or may not contribute the epidemic [19] . Thus, it is important
to include vertical transmission in models to evaluate the extent
to which it may contribute to the epidemic and appropriately
inform design of public health policy. 

Xue-Zhi et al. [8] constructed and analyzed an SIS model
with limited resource for treatment. The study established oc-
currence of backward bifurcations due to insufficient capacity
for treatment as well as existence of bistable endemic equilib-
ria as a result of limited resources. Kribs-Zaleta and Velasco-
Hernandez [7] analyzed a simple two dimensional SIS model
with vaccination and found that the model exhibited backward
bifurcation for some parameter values. Furthermore, the results
indicated that a vaccination campaign meant to reduce the dis-
ease reproduction number below unity may fail to control the
disease. van den Driessche and Watmough [9] found multiple
stable equilibria which exhibited backward bifurcation and hys-
teresis for an SIS epidemic model with non-constant contact
rate. Yicang and Hanwu [13] formulated an SIS model with
pulse vaccination to study its dynamical behavior and estab-
lished that the pulse vaccination was more effective than the
proportional vaccination. Li and Ma [20] considered an SIS epi-
demic model with vaccination, temporary immunity, and vary-
ing total population size and derived three threshold parameters
that govern the dynamics of the disease. Gao and Hethcote [17]
considered an SIS model with density-dependent demograph-
ics which incorporated the effects of vertical transmission and
derived contact and growth thresholds that characterized the
transmission dynamics of the disease. 

Most studies reviewed in this paper did not consider multiple
group targeted interventions and also ignored effects of vertical
transmission. In this paper, we modify the models in [2,3] to for-
mulate and analyze a mathematical model appropriate for the
implementation of prevention strategy at birth and susceptible
stage for a disease transmitted horizontally and vertically. We
assume that the disease upon recovery does not induce perma-
nent immunity and recovered individuals become susceptible.
Following [2] , we employ elementary methods to establish bifur-
cation behavior based on the number of solutions of a quadratic
equation. The major distinction between our work and those re-
viewed are: (i) the incorporation of vertical transmission and
(ii) the implementation of preventive strategies targeting two
groups of susceptibles (newly borns and susceptible adults). 

The organization of this paper is as follows. Section 2 pro-
vides model formulation and analysis. In Section 3 , we investi-
gate the existence of equilibria of the model. In Section 4 , we
investigate the stability analysis of the model. In Section 5 some
numerical simulations are displayed in detail and close with a
discussion in Section 6 . 

2. Model formulation and analysis 

2.1. Model formulation 

We consider an epidemic model with preventive strategies (e.g.
vaccination, educational campaigns) [10] that incorporates the
effects of vertical transmission. We formulate a mathemat-
ical model consisting of four compartments of susceptibles
( S ( t )), vaccinated susceptibles ( V ( t )), (comprising individuals
protected against infection), infectives ( I ( t )) (assumed to be in-
fectious) and the recovered ( R ( t )). The total host population
is given by N(t) = S(t) + V (t) + I (t) + R (t) . The susceptible
class is replenished through recruitment or births of unvacci-
nated individuals at a constant rate (1 − θε) πs and through
births or recruitment of infection-free individuals from infected
individuals at a rate bω(1 − θε) . A proportion θ , (0 ≤ θ ≤ 1)
of new susceptible individuals are vaccinated and the vaccine
produces a protective immunological response at rate ε, (0 ≤
ε ≤ 1) of those vaccinated. This process results in a fraction
1 − θε of new susceptibles entering the susceptible population,
while the fraction θε enters the vaccinated (protected) popula-
tion. The susceptible individuals are vaccinated at a constant
rate ψ and also enters the vaccinated compartment. The sus-
ceptible population acquires infection at the rate βIS , where
β is the infectivity rate. A proportion ω (0 ≤ ω ≤ 1) of new
births are born infected through mother-to-child transmission
(MTCT) and the remaining (1 − ω) infection-free newly borns
are subjected to vaccination at a rate θε. Since vaccination in-
duces protection among those vaccinated, we assume that vac-
cinated individuals acquire infection at a discounted rate ρβI ,
(0 ≤ ρ ≤ 1), where ρ = 0 means vaccine is perfect and ρ = 1
means that the vaccine is useless. We assume vaccine-induced
immunity decays exponentially at a constant rate σ . All the
compartments are subjected to natural mortality at per capita
rate μ. Infected individuals further experience excess mortality
due to infection at a constant rate δ. Infected class recover with
temporary immunity at a constant rate γ and join a class of the
recovered. Individuals in the recovered class loose their immu-
nity at a constant rate α and return to the pool of susceptibles.
The above description leads to the following system of differen-
tial equations: 

˙ S (t) = πs (1 − θε) + b(1 − ω)(1 − θε) I 

−βIS − (μ + ψ) S + αR + σV, 

˙ 
 (t) = πs θε + ψS + b(1 − ω) θεI − ρβIV − (μ + σ ) V, (1)
˙ I (t) = bωI + βIS + ρβIV − (μ + γ + δ) I, 
˙ R (t) = γ I − (μ + α) R. 
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dding the equations of system (1) , we obtain an equation de-
cribing changes in the total population over time t given by 

˙ 
 (t) = πs − μN − τ I, (2) 

here τ = δ − b > 0 , is the net growth rate of the infectives. For
iological considerations, we study a problem governed by the 

nvariant set �, defined below. 

.1.1. Invariant region 
he vertical transmission model (1) shall be analyzed in a bio- 

ogically meaningful feasible region given by 

= 

{
(S, V, I, R ) ∈ R 

4 
+ : N ≤ πs 

μ

}
. 

To show that all solutions of system (1) are uniformly 
ounded in a proper subset � ⊂ R 

4 
+ . Let (S, V, I, R ) ∈ R 

4 
+ ,

e any solution with a non-negative initial conditions. Using 
he theorem of differential inequality cited in [21] , 

im sup 

t→∞ 

S(t) ≤ πs 

μ
, 

he time derivative of the total population size N along the so-
ution path 

˙ 
 (t) = πs − μN − τ I, 

here 

= δ − b, 

educes to 

˙ 
 = πs − μN − τ I ≤ πs − μN, 

hich upon integration yields, 

 ≤ πs 

μ
+ N 0 e −μt , 

esulting in 

 ≤ N ≤ πs 

μ

s t → ∞ . 
Therefore, the problem is well-posed in the invariant set 

= 

{
(S, V, I, R ) ∈ R 

4 
+ : N ≤ πs 

μ
= k 

}
. 

hus, � is positively invariant and it is sufficient to consider 
olutions in �. Hence, all solutions of system (1) starting in �

emain in � for all t ≥ 0. All parameters and state variables for
odel system (1) are assumed to be non-negative for t ≥ 0 since

t monitors changes in the human population. 
. Equilibria and bifurcation analysis 

o obtain the steady state solutions of system (1) , we set the
ight hand side of the system to zero, so that 

s (1 − θε) + b(1 − ω)(1 − θε) I ∗ − (μ + ψ) 

+ βI ∗) S 

∗ + αR 

∗ + σV 

∗ = 0 , 

s θε + ψS 

∗ + b(1 − ω) θεI ∗ − ρβI ∗V 

∗ − (μ + σ ) V 

∗ = 0 , (3) 

ωI ∗ + βI ∗S 

∗ + ρβI ∗V 

∗ − (μ + γ + δ) I ∗ = 0 , 

I ∗ − (μ + α) R 

∗ = 0 . 

ssuming 

+ γ + δ − bω > 0 , and defining R 0 V = 

β

μ + γ + δ − bω 

, 

s the basic reproductive number under vertical transmission 

demographic replacement number) [12,19] or the average num- 
er of secondary cases caused by one primary case through 

irth during its infectiousness, then from the third equation of 
3) , we have 

I ∗ = 0 , (4) 

r 

R 0 V S 

∗ + ρR 0 V V 

∗ = 1 or simply R 0 V S 

∗ = 1 − ρR 0 V V 

∗. 

(5) 

.1. Disease-free equilibrium 

olution (4) leads to the disease-free equilibrium with coordi- 
ates 

E 0 = 

[(
σ + μ(1 − θε) 

μ + ψ + σ

)
k, 

(
ψ + μθε

μ + ψ + σ

)
k, 0 , 0 

]
. 

(6) 

.1.1. The model reproduction number 
he fact that we have a population which is not completely sus-
eptible, we shall speak of an effective reproduction number in- 
tead of the basic reproduction number. We shall use � 0 P denote
he effective reproduction number of model (1) and the effective 
eproduction number is given by 

� 0 P = 

(
μ + σ + ρψ 

μ + σ + ψ 

)
( 1 − θφ) kR 0 V , (7) 

here φ = 

με(1 − ρ) 

μ + σ + ρψ 

. 

From Eq. (7) we have determined the amplification factors 
nd thresholds φ, � 0 P , and R 0 V , characterizing and defining the
eneration of secondary infections, and the impact of preventive 
trategies in the disease transmission dynamics. The threshold 

uantity � 0 P defines the effective reproduction number, which 

s the average number of secondary infectives produced by an 

nfected individual either horizontally or vertically in the pres- 
nce of prevention programs. The parameter φ is commonly 
alled the prevention impact and it summaries the measure of 
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prevention imperfections [11] . The critical prevention coverage
necessary for elimination of the disease is given by 

θc = 

(
1 

χφ

)(
χ − 1 

kR 0 V 

)
. 

In the absence of vertical transmission result (7) reduces to 

� 

V 
0 P = χ(1 − θφ) R 0 , 

which yields a critical prevention coverage level for elimination
of the disease 

θ∗ = 

(
1 
φ

)(
χ − 1 

R 0 

)
, 

where χ = ( 
μ+ σ+ ρψ 

μ+ σ+ ψ ) and R 0 = 

kβ

μ+ γ+ δ . 
The parameter R 0 , denotes the basic reproductive number,

which is the average number of secondary cases caused by one
primary case introduced into a population that is wholly sus-
ceptible [12,22] . 

In absence of vaccination at the susceptible stage ( ψ = 0 ) the
effective reproduction number (7) reduces to 

ˆ � 0 P = (1 − θφ) R 0 , 

which yields the critical prevention coverage level in the absence
of vaccination 

ˆ θ∗ = 

(
1 
φ

)(
1 − 1 

R 0 

)
. (8)

This result is analogous to the findings in [7,11,12] . 

3.2. Endemic equilibrium 

Solution (5) leads to the endemic equilibrium in terms of I ∗

given by 

E 1 = 

[
1 

R 0 V 
− ρV 

∗, V 

∗, I ∗, 
γ I ∗

μ + α

]
, (9)

where 

 

∗ = 

b(1 − ω) R 0 V θεI ∗ + πs θεR 0 V + ψ 

R 0 V (μ + σ + ρω + ρβI ∗) 
. 

To obtain a closed form solution for the endemic equilibrium,
we eliminate S 

∗ and V 

∗ in result (5) . This yields in term of R 0 V

and � 0 P the quadratic polynomial in I given by 

−k 2 R 0 V I ∗
2 + k 1 (R 0 V − ϕ) I ∗ + k 0 (� 0 P − 1) = 0 , (10)

where k 2 = ρβ[ μ(μ + γ + α) + (μ + α) τ ] , k 1 = (μ + α)[ μρβk
+ bθε(1 − ω)(σ + ρμ + ρψ)] , 

k 0 = μ(μ + α)(μ + σ + ρψ) and 

ϕ = 

μρβ

μρβk + bθ (1 − ω)(μ + ρμ + ρψ) 
. 
 

The threshold parameter ϕ can be interpreted as the crit-
ical value at which the severity effect of vertical transmission
changes. 

From result (10) , we obtain 

I ∗ = F ±(R 0 V , � 0 P ) = F ±(•) , (11)

F + (•) = 

k 1 (R 0 V − ϕ) + 

√ 

k 

2 
1 (R 0 V − ϕ) 2 + 4 k 0 k 2 R 0 V (� 0 P − 1) 

2 k 2 R 0 V 

(12)

and 

F −(•) = 

k 1 (R 0 V − ϕ) −
√ 

k 

2 
1 (R 0 V − ϕ) 2 + 4 k 0 k 2 R 0 V (� 0 P − 1) 

2 k 2 R 0 V 
. 

(13)

We want to establish the feasibility of the steady states (11) in
the regions � 0 P ≤ 1 and � 0 P > 1. 

It is evident that as � 0 P approaches one, the system settles to
either the disease-free state governed by 

I ∗ = F −(•) = 0 , (14)

irrespective of the values of R 0 V or a unique endemic steady
state governed by 

I ∗ = F + (•) = 

k 1 (R 0 V − ϕ) 

k 2 R 0 V 
, provided R 0 V > ϕ . (15)

It is worth-noting that when R 0 V = ϕ, solution (13) collapses
to the disease-free equilibrium to coalesce with solution (12) .
In the case � 0 P > 1, the discriminant dominates the term
k 1 (R 0 V − ϕ) , leading to a positive solution characterized by
I ∗ = F + (•) and a negative solution given by I ∗ = F −(•) , thus
there exists a unique endemic equilibrium for the model. How-
ever, if � 0 P < 1 and R 0 V > ϕ then Eq. (10) has two positive
solutions I ∗ = F ±(•) , while if R 0 V < ϕ there are two negative
solutions. This result can be summarized as follows: 

Theorem 3.1. Consider Eq. (10) : 

1. If � 0 P > 1 there exists a unique endemic equilibrium state
corresponding to I ∗ = F + (•) for all values of R 0 V > 0. 

2. If � 0 P = 1 there exists a unique endemic equilibrium state cor-
responding to I ∗ = F + (•) satisfying R 0 V > ϕ and coalesce with
the disease-free equilibrium at R 0 V = ϕ. 

3. On the other hand, if R 0 P < 1 and R 0 V > ϕ then there exist
two endemic equilibrium points corresponding to I ∗ = F ±(•) .

Otherwise, there are none. 

3.3. Backward bifurcation 

Consider Eq. (10) , we think of R 0 V as a variable with the other
parameters and thresholds as constants. Here we wish to carry
out qualitative analysis of the equilibria curve in the neigh-
borhood of the critical threshold � 0 p = 1 . Through implicit
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ifferentiation of (10) with respect to R 0 V , we get 

k 1 (R 0 V − ϕ)− 2 k 2 R 0 V I ) 
dI ∗

dR 0 V 
= k 2 I 2 − k 1 I ∗ − k 0 kχ(1 − θφ) . 

(16) 

t I ∗ = 0 , we have 

 1 (R 0 V − ϕ) 
dI ∗

dR 0 V 
= −k 0 kχ(1 − θφ) < 0 . (17) 

f the sign of [ dI ∗
dR 0 V 

] I ∗=0 and R 0 V − ϕ) > 0 then backward bi-
urcation will occur, while if (R 0 V − ϕ) < 0 a unique endemic 
quilibrium will exist (forward bifurcation). It worth noting that 
 

∗ is a linear function in R 0 V , hence the bifurcation curve in-
reases as R 0 V increases. The bifurcation curve has a positive 
lope at equilibrium values with (R 0 V − ϕ) > 0 and negative 
lope if (R 0 V − ϕ) < 0 . To gain more insight into the transmis-
ion dynamics of the disease, we derive the critical value, � 

∗
0 P for

he saddle-node bifurcation, which relates to the appearance or 
isappearance of two positive equilibria in the backward bifur- 
ation framework. To compute this critical value, we solve the 
quation 

 

2 
1 (R 0 V − ϕ) 2 + 4 k 0 k 2 R 0 V (� 0 P − 1) = 0 , 

hich is equivalent to 

 0 P = 1 − k 1 

4 k 0 R 0 V 
(R 0 V − ϕ) 2 = � 

∗
0 P < 1 . (18) 

Qualitative bifurcation diagram describing the backward bi- 
urcation for Eq. (10) are depicted in Fig. 1 for selected pa-
ameter values. The critical value � 

∗
0 P is nonlinear function of 

 0 V . The dependence of bifurcation parameter � 0 P on R 0 V (lin- 
ar dependence) demonstrate complications that may result in 

ersistence of the epidemic in the host population under con- 
itions where the disease should be clearing from the popula- 
ion. The results show that backward bifurcation occurs when 

 0 P is below unity. Implications of this result is, the existence of
he equilibrium state depends on the sizes of the different sub 

opulations of the model, leading to persistence of the disease 
n the community. Meanwhile, reducing � 0 P below the saddle- 
ode bifurcation value , may lead to the reduction of the disease.
herefore, determining this sub-thresholds may have a crucial 

ignificance in prevention of the disease in the host population. 
Implication of these results demonstrate that in the region 

 0 P < � 

∗
0 P the disease clears from the population, while in the
ig. 1 Qualitative bifurcation diagrams for the backward bifurcation. T
egion � 0 P ≥ � 

∗
0 P the disease persists. The study reveals that ei-

her � 0 P < � 

∗
0 P or R 0 V = ϕ and � 0 P = 1 are sufficient condi-

ions for the elimination of the disease from the host popula-
ion. These results show that vertical transmission plays a cru- 
ial role in the persistence of the epidemic, that is, even under
reventive strategies capable of reducing the reproduction num- 
er below unity, the epidemic may fail to be controlled. Hence,
hese results confirms the findings in [2,3,7] . 

. Stability analysis 

he Jacobian matrix of system (1) at the disease-free equilib- 
ium, E 0 = (S 

∗, V 

∗, 0 , 0) , is given by 

 E 0 = 

( 

A B 

0 C 

) 

(19) 

ith 

A = 

( 

−(μ + ψ) σ

ψ −(μ + σ ) 

) 

, 

 = 

( 

b(1 − ω)(1 − θε) − βS 

∗ α

b(1 − ω) θε − ρβV 

∗ 0 

) 

nd 

 = 

( 

−(μ + γ + δ − bω)(1 − R 0 V ) 0 

γ −(μ + α) 

) 

, 

here S 

∗ and V 

∗ are as given in (5) . The eigenvalues of J E 0 are
btained by solving the characteristic equations of matrices A 

nd C . Thus, we solve | A − λI | = 0 and | C − λI | = 0 , yield-
ng λ1 = −μ, λ2 = −(μ + σ + ψ) , λ3 = −(μ + α) and λ4 =
(μ + γ + δ − bω)(1 − R 0 V ) , respectively. Hence, λ4 < 0 when
 0 V < 1. 

Clearly, all eigenvalues of J E 0 have negative real parts only if
 0 V < 1. The stability of the disease-free equilibrium point can
e summarized with the following theorem. 

heorem 4.1. The disease-free equilibrium point is locally asymp- 
otically stable if R 0 V < 1 and unstable if R 0 V > 1. 

. Numerical simulation 

n order to support and complement the analytical results, we 
imulate system (1) through the implementation of different 
accination programs, by considering different assumptions on 
he bifurcation parameter is the control reproduction number � 0 P . 
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Table 1 Parameter values. 

Parameters Parameters values Citation 

π s 10000 Estimated 
ψ 0.05 [11] 
ρ 0–1 [11] 
β 0.012 [11] 
σ 0.8 Estimated 
δ 0.5 [11] 
μ 0.02 [23] 
ε 0.7 [19] 
γ 0.5 Estimated 
b 0.003 Estimated 
α 0.5 Estimated 
ω 0.04 [11] 
θ 0.08 [11] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

measures of efficacy (the degree of protection), the rates of re-
covery and the role of vertical transmission. We considered a
prevention strategy that targeted new recruits (or newly born in-
dividuals) and susceptible population (adulthood). The param-
eter values in Table 1 below were used in the simulation. This
parameter values were extracted from the existing literature and
those not available were estimated. 

Variation on the level of protection ρ, induced by the preven-
tive strategy shows that increasing ρ has the effect of increasing
the proportion vaccinated while reducing the proportion of the
infected population. Increasing the proportion of newly born
individuals infected through vertical transmission has the effect
of increasing endemicity. The results of the study further show
that in the early stages of infection the disease rapidly develops
into an epidemic Fig. 2 (a) before settling at an endemic equi-
librium level. Furthermore, the study shows that the epidemic
can be sustained through vertical transmission. Thus, vertical
transmission has the potential of increasing the transmission.
The result depicted in Fig. 2 (b) reveals that an increase in ρ has
the effect of reducing the proportion of the infected population
and increasing the vaccinated population. 
Fig. 2 We vary ρ and fixed the other parameter values: β = 0 . 012 ; b =
0 . 4 ; ψ = 0 . 5 ; θ = 0 . 8 ; μ = 0 . 02 . 
6. Discussion 

To discuss the findings of this paper we make reference to two
key threshold parameters that describe the transmission dynam-
ics of the disease. The effective reproduction number, � 0 P , which
measures the average number of secondary cases generated by
an infectives individual introduced in a population where a pro-
portion of individuals are subjected to preventative strategy at
birth as well as at adulthood. The threshold parameter, R 0 V

characterizing the generation of secondary infectives due to de-
mographic replacement of infected individuals due to the pres-
ence of vertical transmission. 

The results of this study can provide an insights on resur-
gence of some diseases such as STI, HIV/AIDS despite the
low incidence of diseases. The study further, demonstrates the
potential for resurgence of traces of epidemic in situations at
which the preventive programs are expected to mitigate against
the epidemics. The study revealed that even if � 0 P is reduced
below unity, there still can exist an endemic equilibrium mainly
characterized by the presence of vertical transmission. Impli-
cations of the study are that there is a critical threshold, pa-
rameter ϕ below which the role vertical transmission is insignif-
icant and above which the role of vertical transmission is sig-
nificantly increasing the burden of disease infection. The study
identified two sufficient conditions for the elimination of the dis-
ease in the host population: ( i ) the effective reproduction num-
ber � 0 P below the critical value for the saddle-node bifurca-
tion ( � 0 P < � 

∗
0 P ) and ( ii ) the effective reproduction number at

unity, coupled with demographic replacement threshold at some
critical value (R 0 V = ϕ) . These results concurs with most of
backward bifurcation analysis studies, except for an additional
condition emanating from vertical transmission [2,3,7] . These
results advocates for multiple interventions on the control of in-
fections transmitted both horizontally and vertically. The study
reveals challenges that blanket implementation of preventive
strategies and pauses a critical question of targeted intervention
on the mode of transmission. The other critical question is the
level of intervention: target susceptible population visa infected
population. For instance, in case of HIV treatment of infectives
 0 . 03 ; γ = 0 . 5 ; π = 10000 ; σ = 0 . 5 ; δ = 0 . 3 ; ε = 0 . 5 ; α = 0 . 5 ; ω = 
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esults have been found to induce prevention on the population 

t risk, while educational campaigns and male circumcision ren- 
er protection to the susceptible population. 

The result have implications regarding the complexity con- 
rol strategies, that are non-discriminating and are able to bring 
own the epidemic levels to zero, while maintaining the pool of 

nfected individuals in the population with less negative impact 
n disease transmission dynamics, particularly on diseases with- 
ut cure. 
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