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1. Introduction

Following paper [1], the problem of existence of a fixed point
for contraction type mappings in partially ordered metric
spaces has been considered a lot (see, e.g., [2-22] and the
related references therein). Some fixed point theorems were
proved in these papers and they are usually applied in dis-
cussing the existence and uniqueness of solution to matrix equa-
tions, periodic boundary value problems and nonlinear integral
equations.
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Recently, Roldan et al. [17] introduced the notion of coin-
cidence point between mappings in any number of variables
and extended several special notions of, so called, coupled,
tripled, quadrupled and multidimensional fixed/coincidence
points appeared in the literature see, for example, [3], [8],
[14], [15], respectively. Results in [17] also extend some fixed
points ones in the framework of partially ordered complete
metric spaces. In order to guarantee the existence of coinci-
dence point the authors of [17] constructed some Cauchy se-
quences using the properties of mixed monotone mappings
and contractive conditions. The idea was used in a lot of pa-
per (see, e.g., [16], [18], [19]). To prove that more than one
sequences are simultaneously Cauchy’s, seems not so easy. It
is also known that the fixed point problems for isotone map-
pings are easier than that of mixed monotone mappings. Wang
[21] obtained some multidimensional fixed point theorems for
isotone mappings and extended some of the results in coupled,
tripled, quadrupled and multidimensional fixed/coincidence
points for mixed monotone and non-decreasing mappings in
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partially ordered complete metric spaces. She also gave a
simple and unified approach to coupled, tripled, quadrupled
and multidimensional fixed point theorems for mixed mono-
tone mappings.

Motivated and inspired by the above results, we obtain some
new fixed point theorems for G-isotone mappings and investi-
gate the equivalence between unidimensional and multidimen-
sional fixed point theorems.

2. Preliminaries

Let n e N, X be a non-empty set and X" be the Cartesian
product of n copies of X. For brevity, g(x), (x1, X2, ..., Xu),
D1, Y25 -5 Vn)s (215 225 - o5 Z), (V1, Vo, ..o, vy) and (x(]), xé, e,
x;) will be denoted by gx, X, Y, Z, V and X, respectively.

Let {4, B} be a partition of the set A, ={1,2,...,n},
that is, AUB=A, and ANB=0, Que={c: A, —> A,:
o(4)CAand o(B) S Bland @, ;,={0: A, —> A, :0(4) C
Bando (B) C A4}. Letoy, 03, ..., 0, be n mappings from A, into
itself. If (X, <) is a partially ordered space, y, v € X andi € A,
we use the next notation from [17]:

ifi e A,

y =,
ifi € B. (M

yive { Y=,
If elements x, y of a partially ordered set (X, <) are comparable
(i.e. x < y or y < x holds) we will write x &~ y. The product space
X" is endowed with the following natural partial order: for Y, V'
e X"

Y§HV<:>yijfv[,ieA,,. (2)
The mapping p, : X" x X" — [0, +00), given by:

pn(X,Y) = max d(x;, yi), (3)

defines a metric on X”. We denote I" the set of all continuous
and strictly increasing functions ¢: [0, co) — [0, c0), and ¥ the
set of all functions ¥: [0, c0) — [0, 00), such that lim, , . (7) >
Oforeveryr>0and ¥ (1) =0 <= =0.

Definition 2.1 ([11]). A triple (X, d, <) is called an ordered met-
ric space if (X, d) is a metric space and (X, <) is a partially or-
dered set.

Definition 2.2 ([17]). Let g : X — X be a mapping. If (X,
d, <) is an ordered metric space, then X is said to have the
sequential g-monotone property if it satisfies the following
properties:

(1) If (x)men 1s a non-decreasing sequence and lim,,_,
Xm = X, then gx,,< gx for all m € N.

(i1) If (¥m)men 1s @ non-increasing sequence and lim,,,_, o y,, =
», then gy, > gy for all m € N.

If g is the identity mapping, then X is said to have the sequential
monotone property (see [17]) and (X, d, <) is said to be regular
(see [22]).

Definition 2.3 ([16]). Let F: X" — Xand g: X — X be two map-
pings. A point (x1, X2, ..., X,) € X" is a Y-coincidence point of
Fand gif

F(Xn[a), Xoi(2)s «+ s xa[(n)) = gX;

for i € A,. If g is the identity mapping on X, then
(X1, X2, ...,x,) € X" is called a Y-fixed point of the
mapping F.

Definition 2.4 ([19]). Let (X, d, <) be an ordered metric space.
The mappings F : X" — X and g : X — X are said to be
O-compatible if, for all sequences {x!},u=0, (X2 }nz0,---»
{x"}u=0 C X such that {gx!},=0, {&x2 }ms0s - -, (@X" ) im0 are
monotone and the following limit exists: for all 7,

i PO ) = i e X,
we have
”}Elc}od(gF(x:Zm’ xz;(Z)’ o x:;:‘(”))7

Fgxg™, expi®, ... gxi®)) =0

for all 7.

Definition 2.5 ([17]). Let (X, <) be a partially ordered space,
and F: X" - X and g : X — X be two mappings. It is
said that F has the mixed g-monotone property if F is g-
monotone nondecreasing in arguments with indices in 4 and
g-monotone nonincreasing in arguments with indices in B, i.e.,

forall x;, x5,...,x,,»,z€ X andeachi e {l,...,n},
g 2 g=FX, . Xin, Y Xl - X))
S F (X, Ximt, 20 Xig 1y o5 X))

Definition 2.6 ([20]). Let (X", <) be a partially ordered set, and
T and G self-mappings of X”. It is said that 7T is a G-isotone
mapping if, for any Y, ¥, € X"

G(Y) =, G(Y) = T (YY) =, T(Y2).

Definition 2.7 ([20]). An element Y € X" is called a coincidence
point of the mappings 7: X" - X"and G: X" — X" if T(Y) =
G(Y). Furthermore, if 7(Y) = G(Y) = Y, then is said that Y
is a common fixed point of 7and G.

Remark 2.8. Note that if G = Iy» in Definitions 2.6 and 2.7,
then T is an isotone mapping and Y is a fixed point of T
(see [21]).

Definition 2.9. C a family functions /: [0, 0c0)> — R is called
C-class if it is continuous and satisfies following axioms:

(D fs, 1) <53
(2) f(s,t) = s implies that either s = 0 or = 0;

foralls, ¢ € [0, c0).

Example 2.10. The following functions f: [0, c0)> — R are ele-
ments of C. For each s, ¢ € [0, 00),

() fs.)=ks,0<k <1, f(s,1) =5 =5=0;

Q) f=s—1t f(s)=s=>1=0;

Q) fls)=3E fs)=s=1=0;

4 f(Svt)=l%_t,f(s,t)=S:>S=00rt=0;

() fls,0)=log%,a> 1, f(s) =s=s=00r1=0;

©) [ )= G+D()—L1>1,f(s1)=s=1=0;

(7) f(s, 1) =slog,,,a,a>1,f(s,t)=s=s=00rt=0.

Remark 2.11. Functions of C-class is a natural generaliza-
tion for Banach contraction, as that can see in above example
number (1).



412

S. Wang

3. Main results

Now, we state and prove our main results.

Theorem 3.1. Let (X, d, X) be a complete ordered metric space,
and let T: X — X and G : X — X be two mappings such that
T is a G-isotone mapping, T(X) € G(X) and G is continuous and
O-compatible with T. Assume that there existh € C, ¢ € T and ¢
€ W such that, for all y,v € X with G(y) < G(v),

@d(T(y), T(m)) = h(pd(G(), GO)), Y (d(G(y), G()))).
“4)

Suppose that either

(a) T is continuous or;

(b) G(x,n) = G(x) for all m e N when (X,)men IS a non-
decreasing sequence in X such that x,, — x; G(x,,) > G(x)
for allm € N when (X,,)men IS a non-increasing sequence in
X such that x,, — x.

If there exists yo € X, such that G(yo) ~ T(yy), then T and G have
a coincidence point.

Proof. Since T(X) € G(X), it follows that there is a y; € X such
that G(y;) = T ()). Recursively, we obtain that for every m €
Ny, there is a y,,41 € X such that G(y,,41) = T (). Set zp =
G(yo) and z, 1 = GWpy1) = T (yy) for every m € Ny.

Since G(yo) ~ T(yo), we assume that G(yo) < T(yo), that is,
zo= z; (the case G(yo) = T(yo) is treated similarly). Assume that
Zm_1 < z,, for some m € Ny, that is, G(y,,_1) < G(¥,). Since T
is a G-isotone mapping, we get

Zm = T(ym—l) = T(ym) = Zm+1-

This actually means that the sequence (z,)men, iS non-
decreasing. If z,, 1 = z, for some my € Ny, then y,, is a coin-
cidence point of 7T'and G. Thus, we may assume that z,,.| # z,
for every m € Ny.

By G(y_1) <X G(y,) and (4), we have that

@(d i1, Zm)) = @d(T Ym), T m-1)))
= h(ﬁﬂ(d(G()/m), G(ym—l)))v W(d(GO/m), G(ym—l))))
=< @(d(Zm, Zm—l))v m e N. (5)

From (5), since ¢ is strictly increasing, we obtain

d(zm+lv Zm) = d(Zm, mel)v m € N.

Hence, the sequence (8,,)men, given by 8,, = d(Zy11, Zpn) is noN-
increasing and bounded below. Therefore, there exists some § >
0 such that lim,, . 8,, = 8. We shall prove that § = 0. Assume
that § > 0. Using the properties of ¢ and ¥, we have ¢(§) >
©(0) > 0 and lim,, 00 ¥ (8,—1) > 0. Using Definition 2.9, we
know that when /A(s,¢) =, then s =0 or =0 and A(s, 1) <
s when s > 0 and ¢ > 0. Then, by letting m — oo in (5) and
using the properties of /2, we have

0(®) = h(p(®), lim Y (8,-1)) = h(@®), im v (1) < @),

which is a contradiction. Thus, lim,,_, 6,, = 0.
We claim that (z,,)men, is @ Cauchy sequence. Indeed, if it
was false, then there would exist an € > 0 and the subsequences

Zmay)ien and (z,y)ien Of (Zm)men, such that n(/) is the mini-
mal in the sense that n(l) > m(l) > I, d(z,q), z,) > €, and
dZmay» Znay-1) < €.

Using the triangle inequality, we obtain

€ <dZmays Znty) = dEmays Zmiy-1) + d Emay-15 Zny-1)
+dzoay-15 Znaty)
< dGCutys Zmwy-1) + dCnar-15 Zmay) + dEmays Zuay-1)
+d(Zuiy-1> Zuat))
=< 2d(zpq) Zmay-1) + € +d(Zuay-1, Zay)-

Letting / — oo in the above inequality, we get
hm d(Zm(/), Zn(/)) = hm d(zm(/)—h Zn(/)—l) = €. (6)
l—00 [—00

Since f’l(l) > m([)a we have Zm(h)—1 =< Zn(l)—15 i.e., G(ym(/)—l) =<
G(Yuy)—1). From (4), it follows that

o(dZuiys Zmay)) = @@ (T Yuay-1)s T Gmay-1))
< e @(GWuiy-1), GWmay-1))), Y (@d(GGnay-1)s
G(Vmir-1))))
= Mo dZuiy-1> Zmy—1))s Y (dZny=15 Zmay=1)))-

Using the properties of ¢ and v, we have ¢(¢) > 0 and
lim; _, ¥ (r;) > 0, where r; = d(z,4y-1, Zmay-1)- Letting [ — oo
in the above inequality and using (6), it follows that

p(€) = hip(e), lim (1)) < ¢ (e),

which is a contradiction. Hence, the sequence (z,,)men, iS
Cauchy’s in the metric space (X, d). Since (X, d) is a complete
metric space, then there exists z € X such that lim,, . z,, = z,
that is,

lim 7(y,) = lim G(y,) = z. @)

m— 00

As G is continuous, we have
lim G(GGw) = G). ®)

By the O-compatibility of 7T"and G, we have
lim d(G(G(ynH_l)), T(G(ym)))

m—>00

Now suppose that 7' is continuous. It follows from (7)-(9) that z
is a coincidence point of 7'and G.

Now suppose that condition (b) holds. Since (z,,)men, 1S
a non-decreasing sequence and z, — z (m — o0), then
G(G(yn)) < G(z) for every m € Ny. From (4), we obtain

@(d(T(G(ym)), T (2)))
< h(ed(G(G(m)), G(2))), ¥ (d(G(G(ym)), G(2))))
= ¢d(G(G(ym)). G(2))) (10

for m € Ny. From (10), since ¢ is strictly increasing, we have

d(T(G(ym)), T(2)) =d(G(G(ym)), G(2)), m € No. (11
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Letting m — oo in (11), we obtain

From (8), (9) and (12), we have that z is also a coincidence point
of T'and G in this case. O

Corollary 3.2. Under hypothesis of Theorem 3.1, if y € X is a
coincidence point of T and G, then G(y) also is a coincidence point
of T and G.

Proof. Suppose that G(y) = T'(y). Then we can choose y,, =
y for all m > 0 as in the previous proof. We have just prove
that G(y,,) — z as m — oo and z is a coincidence point of T
and G. In this case, G(y,,) = G(y) - G(y) as m — oo and so
G(y) also is a coincidence point of 7'and G. This completes the
proof. [

Theorem 3.3. In addition to the hypotheses of Theorem 3.1, sup-
pose that for all coincidence points y,v € X of mappings T and
G, there exists u € X such that G(u) is comparable to G(y) and
G(v). Then T and G have a unique coincidence point z such that
G(z) =z

Proof. Put u; = u and define the sequence (G(u,))men by:
G(ups1) = T (uy,) for m € N. We may assume that G(y) < G(u;)
(the case G(y) = G(u) is treated similarly). Since 7'is a G-isotone
mapping, we have G(y) = T (y) < T (u;) = G(u). By induction
we obtain G(y) < G(u,,), for every m € N. From (4), we have
that

@(d(Gmi1), G))) = @(d(T (um), T (¥)))
< h(ed(G@um), G1))), Y (d(Gum), G(1))))
= od(G(uw), G())) (13)

for m € N. Then, since ¢ is strictly increasing, we have

d(G (1), G) =d(G(uy), G(y)), meN,

that is, the sequence (B,,)men defined by B, = d(G(u,,), G(»))
is non-increasing. Hence, there exists B > 0 such that
lim,, oo B,» = B. We prove that 8 = 0. Suppose, conversely, that
B > 0. Using the properties of ¢ and ¥, we have ¢(B8) > 0 and
limg, .5 ¥ (By) > 0. Letting m — oo in (13), we get

®(B) < h(p(B), ’32130 V¥ (Bn)) < hip(B), ﬁETﬁ v (Bm) < @(B),
which is a contradiction. Thus 8 = 0, that is,

lim d(G(un), G(y)) = 0. (14)
Similarly, we find that

lim d(G(u,), G(v)) = 0. (15)

m—00

From (14) and (15), we obtain
G(y) =GO). (16)

By Corollary 3.2, we find that z := G(y) is a coincidence point
of the mappings 7 and G. Using (16) with v = z, we obtain

z=G(y) = G(2). a7

To prove the uniqueness, assume that z’ is another coincidence
point of mappings 7 and G. Then by (17) we get 2/ = G(Z') =
G(z) =z, asclaimed. [

Remark 3.4. Note that if there exists # € X such that 7T(u) is
comparable to 7(y) and 7' (v), then Theorem 3.3 still holds.
Indeed, using a similar argument to the proof Theorem 3.3,
we only have to check that G(y) < G(u,,) for m > 2. We as-
sume that 7(y) < T(u;) (the case T(y) > T(u,) is treated sim-
ilarly). Since y is a coincidence point of 7" and G, we have
G(y) = T(y) < T (u;) = G(uy). By the G-isotone property of 7,
we have G(y) = T (y) < T (u2) = G(u3). So, G(») < G(u,,) for
m > 2 by induction, as claimed.

Theorem 3.5. Let (X, d, <) be a complete ordered metric space,
and let T : X" — X" and G= (g, g, ..., : X" — X" be two
mappings such that T is a G-isotone mapping, T(X") C G(X") and
G is continuous and O-compatible with T. Assume that there exist
heC, o e and y € V such that, for all Y, V € X" with G(Y)

=, G(V),

e(p(T(Y), T(V))) = h(p(pa(G(Y), G(V))),
V(o (G(Y), G(V))))

where p,, is defined by (3). Suppose that either

(a) T is continuous or;
(b) X has the sequential g-monotone property.

If there exists Yy € X", such that G(Yy) ~ T(Y,), then T and G
have a coincidence point. Furthermore, suppose that for all coin-
cidence points Y, V € X" of mappings T and G, there exists U €
X" such that G(U) is comparable to G(Y) and G(V). Then T and
G have a unique coincidence point Z such that G(Z) = Z.

Proof. Since (X, d, <) is a complete ordered metric space,
so is (X", p,, <,). Now we shall prove that condition (b) of
Theorem 3.1 holds with respect to (X", p,, <,). Suppose that
(Zn) men, 1s a non-decreasing sequence in X" such that Z,, — Z
(m — 00). Thatis, Z,, <, Z,..1 forallm € Nyand z/, - z'(m —
o0) for all i € A,. Thus, (z},),en, is @ non-decreasing sequence
when i € A and (z),)en, 18 @ non-increasing sequence when
i€ B. If i € A, as X has the sequential g-monotone property,
then we have gz/, < gz’ for all m € Ny. Similarly, if / € B, then
we deduce that gz!, > gz' forallm € Ny. Since G = (g, g, . .., 2),
then G(Z,,) =, G(Z) for every m € Ny. The other case is treated
similarly.

By our assumptions, all conditions of Theorem 3.1 and
Theorem 3.3 hold with respect to (X", p,, =,). Using
Theorem 3.1, T and G have a coincidence point. Moreover, it
follows from Theorem 3.3 that 7 and G have a unique coinci-
dence point Z € X" such that G(Z) = Z. O

Remark 3.6. The metric p, in Theorem 3.5 can be replaced by
some other metrics on X”, for example, by the next one:

1
pn(Y’ V) = ;[d(yl, V]) + d(}h, V2) +- d(ym Vn)]v (18)

and the result will be also true. As the proof of Theorem 3.5,
Theorem 3.5 is a consequence of Theorems 3.1 and 3.3.
Note also that taking » =1 in Theorem 3.5, we can obtain
Theorems 3.1 and 3.3 immediately. So, Theorem 3.5 is equiv-
alent to Theorems 3.1 and 3.3.
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Taking h(s,t) = s — t and g = Iy in Theorem 3.5, we obtain
the following result.

Corollary 3.7 (/21]). Let (X, <) be a partially ordered set and
suppose that there is a metric d on X such that (X, d) is a complete
metric space. Let T : X" — X" be an isotone mapping for which
there exist ¢ € T and € V such that, for all Y, V € X" with
Y=, v

e(Pn(T(Y), T(V))) < @(pu(Y, V) = (pu(Y, V),
where p,, is defined by (18). Suppose that either

(a) T is continuous or;
(b) (X, d, =) is regular.

If there exists Yy € X", such that Yy ~ T(Yy), then T has a
fixed point. Furthermore, suppose that for all fixed points Y, V €
X" of T, there exists U € X" such that U is comparable to Y and
V. Then T has a unique a fixed point.

Corollary 3.8. Let (X, d, <) be a complete ordered metric space.
Let Y = (01, ...,0,) be a n-tuple of self-mappings of A, such
that o; is a permutation for all i € A,, 0; € Q. pif i € A and
o; € Q;LB ifie B.Let F: X" — Xandg: X — X be two mappings
such that F has the mixed g-monotone property on X, F(X") C
g(X), g is continuous and O-compatible with F. Assume that there
exists ¢ € T and € W such that

O d(F(x1, X2, ..., X0), FOL 2 oo v0))
< w(gfg;d(gxhgyf)) - w(ggd(gx;,gy;)) (19)

for which gx;<; gy; for all i € A,.. Suppose that either F is contin-
uous or X has the sequential g-monotone property. If there exist
Xos X3, ..., X € X such that:

i oi(1)
gx6 fi F(XOI )

xg"(z), L XTy (20)
forallie A,, then F and g have, at least, one Y-coincidence point.

Furthermore, assume that for all pairs of Y -coincidence points
(X1, X2, - s X)), V1, V25 .. ¥0) € X" of F and g there exists
(uy, uy, ..., uy) € X" such that (gu,, gus, . .., guy,) is comparable,
at the same time, to (gx1, gxa, . .., gx,) and to (gy1, &2, - - -, &n)-
Then F and g have a unique Y -coincidence point (zy, z,, . .., z,) €
X" such that gz; = z; for i € A,.

Proof. Consider the mappings 7: X — X" and G : X" — X"
defined by

TY)=(F Qoy(1)s Yor@)s -+ > Voram)s -+ »

F(Yo;(1)s Yoy2)s o+ s Yoym) ) s -+ s

F Yoy(1)s You @)+ -+ You))) (21)
and
G(Y) = (1,22 > &n) (22)

for Y € X". Note that 7 and G are O-compatible with respect
to (X", p,, <,). Indeed, suppose that {Y,,},, -0 C X" such that
{G(Y,,)}m =0 1s monotone and the following limit exists:

lim 7(Y,) = lim G(Y,,) € X".
From (21) and (22), we see that, for sequences {y!}.=o,

{yé}mzo’ cees {yg}sz C X such that {g)’,l,,}mzos {gyf,,}mzo’ EER)
{gvi}m=0 are monotone and the following limit exists:

for all 7,

lim F(yoih, yoi@

m—>00

) = lim gy, € X.
Since F and g are O-compatible, we have

lim p,(GT (Y,,), TG(Y,))

= lim maxd(gF (5P, y5® .

m—oo 1<i<n

o,
Fn af®, .. a0 =0.

By our assumptions, we deduce that 7(X") € G(X") and G is
continuous.

Now, we shall deduce that 7" is a G-isotone mapping. In-
deed, suppose that G(X) <, G(Y), VX, Y € X". By (2) and (22),
we have gx,< gy, when ¢ € 4 and gx, > gy, when ¢ € B. For
each i € A, we have o; € Q4 5. S0, gX5,1) = &,y VI € A and
8Xo;t) = &Vo;1), Yt € B. Thus, by the mixed g-monotonicity of F,
we have F(Xg,(1), X625 - - - Xo;) = F Do), Voy2)s - 5 Vo)
for all i € A. Similarly, we have F (X, 1), Xo,2)s « - - 5 Xo;01)) =
F (Yo, Yoy2)s - - - » Yoy, for all i € B. Thus, by (2) and (21),
we deduce that 7' is a G-isotone mapping.

Since o; is a permutation for all i € A,,, we have

max d(gVe,1)» &Vo;(1)) = {gfg;d(gyn gv) = pp(G(Y), G(V))

1<t<n
(23)
foralli € A,. From (19) and (23), we have
(o (T(Y), T(V)))
= (0({T<1§1<?’(1d(F(Va,(1), Yoij2)s -+ yq,m)),
F(Va,-(l), Voi(2)s + - Va,(n))))
= Ela()i(p(d(F(ny(l), yn,-(2)7 o ,yri,-(n))v
F(va,'(l)’ Voi(2)s «+ > Vaf(n))))
= max[(¢ — ¥)(max d(gXo,(), &or(j))]
<9 (G(Y), G(V))) — ¥ (o (G(Y), G(V))) (24)

fori € A, and G(Y) <, G(V). It follows from (24) that

P(ou(T(Y), T(V))) < h(p(pa(G(Y), G(V))),
Y (on(G(Y), G(V)))), (25

for G(Y) <, G(V), where h(s,t) = s —t.

It follows from (20) that G(Xp) <, T(Xp). If Fis continuous,
then 7 is continuous.

Using Theorem 3.5, we deduce that 7" and G have a coin-
cidence point and Z € X" is a unique coincidence point such
that G(Z) = Z. That is, F and g have a Y-coincidence point and
(z1, 22, ..., zy) € X" is a unique Y-coincidence point of Fand g
such that gz; = z; forie A,. O

Remark 3.9. As an application, we give a simple proof of
Corollary 3.8, which is similar to Theorems 14 and 20 in [19].
The techniques are used in [23-25].
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