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Ll Abstract  In the present paper, we consider Stancu type generalization of Baskakov—Szasz opera-

g-integers; tors based on the g-integers and obtain statistical and weighted statistical approximation properties

g-Baskakov-Szasz— of these operators. Rates of statistical convergence by means of the modulus of continuity and the

Stancu operators; Lipschitz type maximal function are also established for operators.

Rate of statistical conver-
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1. Introduction

In the recent years several operators of summation-integral type
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where x € [0, co) and

n+k—1 - Xk
pz‘k(x) = |: k ]q k(k l)/QW’ (12)
and
k
(1) = (=) L (1.3)

9%

In case ¢ = 1, the above operators reduce to the Baskakov—
Szasz operators [2].

Later, Mishra and Sharma [3] introduced a new Stancu type
generalization of ¢-Baskakov—Szasz operators, which is defined
as

i q/1-4"
DEPI(f: q: x) = [n], Zpﬁ,k(x)/ g s f
k=0 0

[nlytq™* + o
(s o 0

where p ,(x) and s} (1) are Baskakov and Szasz basis func-

tion respectively, defined as above. The operators D*? (£ ¢; x)
in (1.4) are called g-Baskakov—Szasz-Stancu operators. For o =
0, B = 0 the operators (1.4) reduce to the operators (1.1).

In the recent years several researchers have worked on
Stancu type generalization of different operators and they have
obtained various approximation properties. We mention some
of important papers as [4-8].

Before proceeding further, we recall certain notations of ¢-
calculus as follows. Such notations can be found in [9,10]. We
consider ¢ as a real number satisfying 0 < ¢ < 1.

For
1—¢" 1
[ e
[n]tl {’L g = 1,
and
[n],! = [7],[n — 1]y[n = 2]4...[1];, n=1,2,...,
<, n=0.

Then for ¢ > 0 and integers n, k, k > n > 0, we have
[n+1],=1+4[nl, and [n],+q"lk —n], =[K],
‘We observe that

(I +x); = (=x; @y

A+ U+g0)d+¢*x) - (L+¢"'%), n=1,2,...,
1, n=0.

Also, for any real number «, we have

(I+x)

l+x)0 = — 9.

F90=4 + ¢y

In special case, when « is a whole number, this definition coin-
cides with the above definition.
The g-Jackson integral and g-improper integral defined as

[ = -ga . rag
0 n=0

and
oo/A4

e qn qn
JX)dgx = (1 — q)a f<*>*,
! ;0 A4) 4

provided sum converges absolutely.

The g-analogues of the exponential function ¢* (see [10]),
used here is defined as

oo 00 &
E) =[]0+ -qg =Y ¢¢ 2
=0 s [/,

=1+ U1 =927, lql <1,

where (1 —x)2° = []72,(1 — ¢/x).

2. Moment estimates

Lemma 1. /1] The following hold:

1. D,(1,¢q:x) =1,
2. D,(t,q; x) = x+ L

["]q’
3. Dy, ¢: x) = (1 b )x2+ X A4+ qg+2)
. qlnl, [1],
¢ +q)
+ -
(]2

Lemma 2 ([3]). The following hold:

1. @,(f’ﬂ)(l; g x) =1,
[n]yx + g+
2. D@H (1 g x) = X TITE
» G g x) vl + B
4 1)
3. D (2 g =<w> 2
=, + 7 )
<(1 +q(q +2)[n], + 2a[n]q)x
([n], + B)?
(4 ¢q) +2qa + o
([n]q"_ﬁ)z

)

3. Korovkin type statistical approximation properties

The idea of statistical convergence goes back to the first edition
(published in Warsaw in 1935) of the monograph of Zygmund
[11]. Formerly the concept of statistical convergence was intro-
duced by Steinhaus [12] and Fast [13] and later reintroduced by
Schoenberg [14]. Statistical convergence, while introduced over
nearly 50 years ago, has only recently become an area of active
research. Different mathematicians studied properties of statis-
tical convergence and applied this concept in various areas.

In approximation theory, the concept of statistical conver-
gence was used in the year 2002 by Gadjiev and Orhan [15].
They proved the Bohman—Korovkin type approximation theo-
rem for statistical convergence. It was shown that the statistical
versions are stronger than the classical ones.

Korovkin type approximation theory also has many useful
connections, other than classical approximation theory, in other
branches of mathematics (see Altomare and Campiti in [16]).

Let us recall the concept of a limit of a sequence extended
to a statistical limit by using the natural density § of a set K of
positive integers:

§(K) = lim n~'{the number k < n such that k € K}

whenever the limit exists (see [17], p. 407). So, the sequence
x = (xy) is said to be statistically convergent to a number L,
meaning that for every € > 0,

Stk lxi—L| > ¢} =0
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It is denoted by st — lim x,, = L.

In [18] Dogru and Kanat defined the Kantorovich-type mod-
ification of Lupas operators as follows:

Ri(f: i x) = n+112(/[" f(t)dt>(>

1]
N q—qu(k 1)/2xk(1 _ x)(n—k)
(I=x+4+gx)--- (I —x+¢g"'x)

3.1)

Dogru and Kanat [18] proved the following statistical
Korovkin-type approximation theorem for operators (3.1).

Theorem 1. Let g = (g,),0 < g < 1, be a sequence satisfying the
following conditions:
st —limg, = 1, st — lim g,
1
= a(a < Dandst —lim — =0, (3.2)
n [n]q

then if fis any monotone increasing function defined on [0, 1], for
the positive linear operators R,(f; q; x), then

st — linm 1R, (f:q:) = fllegoy =0

holds.

In [19] Dogru gave some examples so that (¢,) is statistically
convergent to 1 but it may not be convergent to 1 in the ordinary
case.

Now, we consider a sequence ¢ = (¢,), ¢, € (0, 1), such that

lim ¢, = 1. (3.3)

n—00

The condition (3.3) guarantees that [n],, — oo asn — oo.

Theorem 2. Let DP be the sequence of the operators (1.4) and
the sequence q = (q,) satisfies (3.2). Then for any function f €
Cl0, v] C [0, 00), v > 0, we have

st —lm [P (f1¢;) — f =0, (3.4)

where C[0, v] denotes the space of all real bounded functions f
which are continuous in [0, v].

Proof. Let f; = ¢/, where i = 0, 1, 2. Using %7 (1; ¢,; x) = 1,
it is clear that

st —1im |7 (15 g5 x) — 1] = 0.

Now by Lemma (2) (ii), we have

. [nlyx + g+«
@B (frgx)—x|| = [|[—= LT
IO @) =X = | H
_ gt B
X.
T, +8 (g +B)

For given € > 0, we define the following sets:

L=1{k: 98P g x) — x| > €},

and
Lt P } (3.5)

L' =1k: X
{ [kly+8 [kl +8
It is obvious that L C L, it can be written as

S({k < n 1957 (15 qis x) — xI| = €})

< 5<{k

By using (3.2), we get

st — lim <
n

So, we have

([

then

(q+a)

B

K+

(kl, + B

(g+a) B

[, +8 [0, +B
(gt ) B
“[nl,+ B [+ B

st —lim [P (t; g,; x) — x| = 0.
n

|

x) —o.
x}> o,

Similarly, by Lemma (2) (iii), we have

”9;(1&.,3)([ Qru X) — X ” H (

i

-
gl

(1 +q) + 2qo + o?

)

a,,:(
h=(
=

+

-
+(2
o

(I 4+ q(q + 2))[n], + 2an],

([n], + B)?
(1 +q) + 2qo + o?

[n],(g[nl, + 1)

([n]; + B)?

[, (glnly + 1)
q(nl, + B)*

)1y

(1 + q(q + 2))[nl, + 2an],

2

2

)

[n], (gln], + 1)
q(nl, + B)?

)+

(Inl, + B)?

(], + B)?

[n], (qln], + 1)
q([nl, + B)?
(1 + q(g + 2))[n], + 2an],

(), + B)?
(1+¢) +2qa +a

([, + B)?

where 2 = max{vZ, v, 1} =%
Now, if we choose

q([nl, + B)?
(1 + q(q + 2))[n], + 2an],

_1>,

)]

(1 4+q) +2q0 +«a

(nly + B)?

(], + B)?

now using (3.2), we can write

Now for given € > 0, we define the following four sets

n—o00

U=k
Z/[1={k50tk
U2={k3,3k
usZ{kl)’k

\% v

%
t.\)‘ m tm‘ ™ tm‘ m

——

[ —

n—o00

)

st—hm(xn_O_sz—llmﬂn—St—llmyn

)

)

DEP (1 gs x) — x| = €},

I

)

(3.6)
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It is obvious that &/ < U; UlU, UUs. Then, we obtain

6({k <n DR (12 g x) — X = e})

Using (3.6), we get
st — lim [D@P) (1% g,; x) — X*| = 0.
Since,

IDA (5 gus x) — fII < 1D (1% g x) — X7 ||
+ 1D (15 gu; x) — x|l + 1DP (15 g5 x) — 1],

we get

st — Hm DD (f; gu; x) — fI < st
n—o0

lim D (1% g,; x) — x|
n— 00

+st — lim [[DP (15 g, x) — x|| + st
n— 00

lim [D@F (1; g,; x) — 11,

which implies that
st — lim [|DP (f; gu; x) — [ = 0.

This completes the proof of theorem. [

4. Weighted statistical approximation

In this section, we obtain the Korovkin type weighted statistical
approximation by the operators defined in (1.4). A real func-
tion p is called a weight function if it is continuous on R and
lim p(x) =00, p(x) > 1 for all x € R. Let B,(R) denote the

|x|—00

weighted space of real-valued functions f'defined on R with the

property |f(x)| < Myp(x) for all x € R, where M is a constant

depending on the function f. We also consider the weighted sub-

space C, (R) of B, (R) given by C,(R) = {f € B,(R): f'continu-

ous on R}. l\lIfot()el that B,(R) and C,(R) are Banach spaces with
flx

Ifll, = sup R In case of weight function py = 1 4+ x?, we
XER

[/ ()]
1+ x2

have | fl,, = sup Now we are ready to prove our main
XER

result as follows:
Theorem 3. Let D" be the sequence of the operators (1.4) and

the sequence q = (q,) satisfies (3.2). Then for all nondecreasing
function f'e C,, we have

st = Hm 1D (f5 g ) = flly =0,

Proof. By Lemma (2) (iii), we have ®" (¢%: g,; x) < Cx2,

where C is a positive constant, DEP 15 qu; x) 1s a sequence of

positive linear operators acting from C,[0, oco) to B,[0, c0).
Using DB (1, ¢n; X) = 1, it is clear that

st —Lm [ D (15 g3 x) = 1,5 = 0.

Now, by Lemma (2) (ii), we have

1D (85 qu; x) — x|
14+ x2
(q+a) B
T [nly+B (nl+B)

1D (15 ¢u; x) — x|,y = sup

x€[0,00)

Using (3.2), we get

((q+oe) B >=0
[, + B8 (nl,+B) '

st — lim
n

then

st — lim 1D (85 gus x) — xl| 5, = 0.

Finally, by Lemma (2) (iii), we have

1D (1% gy x) — X215
[n],(gln]l, + 1) x?
= ( @l + B l)xe&)‘,&)m
(D ),
([nly + B)? xelo.00) 1+ X2
(1 + q) + 2ga + o?
([nl, + B)?
- ([n]q(q[n]q +D 1) n ((1 +q(q +2))[n], + 20![n]q)
—\ q(n], +p)? ([n], + B)?
(1 +q) +2ga + o’
([n], + B)?

Now, If we choose

o <[n]q<q[n]q+ D 1)’
g(l, + B

b, = ((1 +q(q+2)nl, + 2a[n]q)

! ([nly + B)? ’
_ <q2(1 +q) + 2qa +a2>
"= (1], + B)? ’

then by (3.2), we can write

st — lim o, =0 =st — lim B, = st — lim y,. 4.1)

n—00 n—o00

Now for given € > 0, we define the following four sets:

S = {k: D@ (1% qi; x) — XN, = €},

€
Sl={k10lk2§},

€
S2==k:ﬂk25},

€
S3={k:VkZ§}-

It is obvious that S € S; U S, U S;. Then, we obtain

S({k = n 1D (%5 gui x) — X7y = €})

ooz o)) ofrznin=3))
+8<{ksn:ykz g})
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Using (4.1), we get
st — lim | (1% g3 x) — X2l = 0.
n—o0

Since

1D (f5 qus X) = [l
< NDEP P qus x) — Xy + IDF (15 gz x) — Xl
+1DEP(1; g x) — 1l

we get
st — 1m 1D (5 gui x) — [l
n—oo
< st — lim 9P (1% g,; x) — ¥l
n—o0
+st — lim |DP (1; gu; x) — x|,
n—oo
+st — lim |9 (15 gu; x) — 1l
n—o0
which implies that
st — 1im |9 (f; g4 x) — [l = 0.
n—0o0

This completes the proof of the theorem. [

5. Rates of statistical convergence

In this section, by using the modulus of continuity, we will study
rates of statistical convergence of operators (1.4) and Lipschitz
type maximal functions are introduced.

Lemma 3. Let0 < g < 1anda €0, bg], b > 0. The inequality

b b
/lt—xldqtf(/ |t—x|2dqt>

is satisfied.

172 12

( / bd,,z) (5.1)

Let Cp[0, 00), the space of all bounded and continuous func-
tions on [0, co) and x > 0. Then, for § > 0, the modulus of
continuity of f'denoted by w(f; ) is defined to be

o(f;8) = sup |f (1) — f(x)|.1 €[0, 00).

|t—x|<8

It is known that gil% w(f;8) =0 for fe Cp[0, 0o0) and also, for
any § > 0 and each ¢, x > 0, we have

[t — x|

0 = f)] < o a><1 + T) (5.2)

Theorem 4. Let (q,) be a sequence satisfying (3.2). For every
non-decreasing f'€ Cg[0, 00), x > 0 and n € N, we have

D (f qui x) — [(O)] < 20(f;5 /8,(x)),
where

[n]q(q[n]q + 1) 2[”]4 ) 2
Sn = ———=4+1-

) ( q([n), + )2 o, +p)"
[n]q + qz[n]q - 2‘113 - 2q,3>
- ( ([, + B)? *
(1 +q) + 2qo + o?
(], + B)>

Proof. Let f'€ Cg[0, co) be a non-decreasing function and x >
0. Using linearity and positivity of the operators ©*’ and then
applying (5.2), we get for § > 0

1DH) (5 qus x) — ()] < DEB(f (1) — £(X)]; g X)

1
<o(f, a){@,&“*’“(l; Gus X) + 5@5’*’“0: —x[; x)}.

Taking ©*” (1; ¢,; x) = 1 and using Cauchy-Schwartz in-
equality, we have

1D (f; gus x) — f(x)]

1
<o(f; 6){1 S ORGP ) PDEA (1 gy x)‘”)}

sw(f;s)[1+;{([n]q(q[n]"ﬂ)+1 L >x2

q(nl,+p* [, +B
([n]q +¢’ln), — 208 — 2q/3>x
([n], + B)?
¢ +q) + 2o+
([n), + B)’ } ]

Taking ¢ = (¢,), a sequence satisfying (3.2) and choosing § =
8,(x) as in Theorem 4, the theorem is proved. O

Now we will give an estimate concerning the rate of approx-
imation by means of Lipschitz type maximal functions.

In [20], Lenze introduced a Lipschitz type maximal function
as

Lf (1) = f ()]

Ja(x,y) = sup
|t — x|

1>0,1#£x

In [21], the Lipschitz type maximal function space on E C
[0, c0) is defined as follows

Mi;xEOandyeE},
(I +y)

where f'is bounded and continuous function on [0, co), M is a
positive constant and 0 < « < 1.
Also, let d(x, E) be the distance between x and E, that is,

d(x, E) = inf{|x — y[; y € E}.
Theorem 5. If D" be defined by (1.4), then for all f € V, g

DA (f: g x) — f(0)] < M52 +d°(x, E)), (5.3)
where
2 — _
(O wwr )
2 2
faspipes

Proof. Let x, € E, where E denote the closure of the set E such
that |x — x¢| = d(x, E), where x € [0, 00). Then we have

() = FOI =1/ @) = f(xo)l + 1/ (x0) = f(X)].
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Since D“? is a positive and linear operators, f € 170(, £ and us-
ing the above inequality

D (f5 qui x) — [ <DEP (S (1) = f(xX0)]: qus X)
+ (If (x0) = fIDNDP (15 g; x)
< M(DEP (1t = X0 gus X) + |x — Xo|*D P (15 g, x)).
(5.5)

Therefore, we have
DR (1t — xol%; g3 x) < DEP (|1 — XI%; gus x)
+1x = xo“D P (15 gy x).

2

@-o and by using the Holder’s

Now, we take p= 2 and g =
inequality, one can write

DD ((t — X); guy X) < D@ (1 — %)% g x)*/
x DD (L5 g3 )27 4 |x = xo[*DF P (15 g3 x)
= 87 4l — Xl

Substituting this in (5.5), we get (5.3). This completes the proof
of the theorem. [

Remark 1. Observe that by the conditions in (3.2),

st —lim4, = 0.

By (5.2), we have

st —limw(f;6,) =0.

This gives us the pointwise rate of statistical convergence of the
operators D (£ g,; x) to flx).

Remark 2. If we take E = [0, 00) in Theorem 5, since d (x, E) =

0, then we get for every f € IN/HY[O,OO)

P (f gus x) — £ (0] < M8,
where §, is defined as in (5.4).
Remark 3. By using (4.1), It is easy to verify that

st — lim §, = 0.

n—oo
That is, the rate of statistical convergence of operators (1.4) to
the function f'are estimated by means of Lipschitz type maximal
functions.
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