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1. Introduction 

For last few decades, spectral methods using expansion in
orthogonal polynomials such as Chebyshev or ultraspherical
polynomials (see for instance [1,2] ) is well-known for its high
accuracy. The pseudospectral method has been developed to
obtain more accurate solutions in scientific computation. Doha
et al. [3] constructed the Jacobi–Gauss–Lobatto pseudospectral
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schemes for numerically solving a certain nonlinear Schrodinger
equations. Doha et al. [4] investigated a Chebyshev–Gauss–
Radau collocation method in combination with the implicit
Runge–Kutta scheme to obtain more accurate numerical so-
lutions for hyperbolic systems of first order. Naher et al. [5]
proposed extension of the generalized and improved (G 

′ /G)-
expansion method for constructing class of exact traveling wave
solutions of nonlinear evolution equations. Demiray et al. [6]
combine the (G0/G; 1/G)-expansion method with Maple to
obtain exact travelling wave solutions of the nonlinear wave
equations. 

Rayleigh–Ritz method is used to convert differential equa-
tions to a minimization problem for certain criteria. Many pa-
pers discussed the use of this method to solve several problems,
such as modeling the expansion of an elastic body [7] , approx-
imating part of the spectrum of an elliptic operator [8] and
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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btaining results for the time period and deflection of certain 

odes of vibration of rectangular plates [9] . 
According to the close relation of boundary value problems 

f partial differential equations to physical applications, the 
heory of boundary value problems is very rich. Several tech- 
ological processes and scientific applications yield boundary 
alue problems for PDE’s. Howison and Oliver [10] analyzed 

 free boundary problem arising in a model for inviscid, in- 
ompressible shallow water entry at small deadrise angles. El 
haba et al. [11] used a boundary integral method to solve 
 problem of uncoupled magnetothermoelasticity for an infi- 
ite, elliptical cylindrical conductor carrying a steady axial and 

niform electric current. Khanday [12] treated the temperature 
istribution in multi-layered human skin and subcutaneous tis- 
ues and suggested a model of the solution of parabolic heat 
quation. 

Chen [13] studied a free boundary value problem of the Euler 
ystem arising in the inviscid steady supersonic flow past a sym- 
etric curved cone. Tsai [14] combined the homotopy analysis 
ethod with the method of fundamental solutions and the aug- 
ented polyharmonic spline to solve certain nonlinear partial 

ifferential equations. Feng et al. [15] developed a new frame- 
ork for designing and analyzing convergent finite difference 
ethods for approximating both classical and viscosity solu- 

ions of second order fully nonlinear partial differential equa- 
ions (PDEs) in 1-D. Hosseini et al. [16] applied the operational 
au method with arbitrary polynomial bases to approximate 

he solution of a class of nonlinear transient heat conduction 

quations with some supplementary conditions. 
Khalil et al. [17] developed an operational matrix with 

hifted Legendre polynomials to approximate solution of frac- 
ional differential equations(FDEs) and coupled system of 
DEs with variable coefficients. The proposed method converts 

he problem into a system of easily solvable algebraic equations. 
he authors discussed also the convergence of the scheme and 

olved some test problems to show the efficiency and applicabil- 
ty of the method. Khalil et al. [18] extended the idea of pseudo
pectral method to approximate solution of time fractional or- 
er three-dimensional heat conduction equations on a cubic 
omain. They studied shifted Jacobi polynomials and provide 
 simple scheme to approximate function of multi variables in 

erms of these polynomials. They developed operational matri- 
es for arbitrary order integrations as well as for arbitrary order 
erivatives. 

In the present paper, we numerically solve partial differen- 
ial systems of first order. In fact, we treat with this problem
s follows: We use ultraspherical integral method zero- bound- 
ry (UIZB) method to approximate the unknowns. We apply 
ayleigh–Ritz method to reformulate the problem to be multi- 
bjective constrained optimization problem. The resulting con- 
trained optimization problem is then solved by sequential min- 
mization processes of the Penalty leap frog method. 

The outline of this paper is arranged as follows. In the 
ext section, some properties of ultraspherical polynomials 
nd ultraspherical integral matrix is investigated. In Section 3 
odel of the problem is introduced. In Section 4 , the proposed
ethod, namely, the ultraspherical integral zero- boundary- 
ayleigh–Ritz (UIZB-RR) method is constructed for solving 

he proposed problem. Error estimates and convergence index 
s investigated in Section 5 . Some numerical examples are pro- 
osed in Section 6 to show the accuracy of our method. Finally,

n Section 7 , some observations and conclusions are presented. 
. Ultraspherical integral method 

he ultraspherical polynomials { G k ( λ, x ) } ∞ 

k =0 , where λ > −0 . 5
s a parameter, are defined by: 

 k +1 ( λ, x ) = 

2( k + λ) 

k + 2 λ
x G k ( λ, x ) 

− k 

k + 2 λ
G k −1 ( λ, x ) , k = 1 , 2 , . . . , (2.1) 

 k ( λ, x ) = 

d 
dx 

[
1 

2( k + 1 ) 
G k +1 ( λ, x ) 

− k 

2( k + 2 λ)( k + 2 λ − 1 ) 
G k −1 ( λ, x ) 

]
. (2.2) 

Eq. (2.1) defines the ultraspherical polynomials starting with 

 1 ( λ, x ) = x, G 0 ( λ, x ) = 1 , whereas Eq. (2.2) can be used to
efine the integration of the ultraspherical polynomials(by sim- 
le integration) see El-Hawary et al. [19] . 

We define the collocation points to be the ultraspherical ze- 
os points combined with the two boundary points of the inter-
al, that is: 

= { x j | G N ( λ, x j ) = 0 , k j = 1 , 2 , . . . , N − 1 , x 0 = −1 , x N = 1 }
(2.3) 

With this definition, we have 

 x i 

−1 
f (x ) dx = 

∑ N 

k j =0 
S 

[ λ] 
i j f 

(
x j 

)
, (2.4) 

here the element of the ultraspherical integral matrix of first 
egree S, are defined by [17] : 

 

[ λ] 
i j = 

N ∑ 

k =0 

� j G k ( λ, x j ) 

αk 

∫ x i 

−1 
G k (x ) dx, i, j, = 0 , 1 , . . . N, 

(2.5) 

nd G k (x ) is the ultraspherical polynomial of degree k , where
 j and αk obtained by 

 j = 

1 ∑ N 
k =0 

� j ( G k ( x j ) ) 
2 

λk 

, 

αk = 

j!�( λ + . 5 ) �( k + λ + . 5 ) �( K + λ) �( 2 λ) 

2 1 −2 k −2 λ−τ�( 2 k + 2 λ + 1 ) �( k + 2 λ) �( λ) 
, (2.6) 

ith 

= 

{
1 , i f λ = k = 0 
0 , otherwise. 

(2.7) 

. Model of the problem 

e consider the general form of system of nonlinear boundary 
alue problem of first order PDE. It can be defined by the fol-
owing equations: 

 k 

(
u, 

∂u 
∂x 

, 
∂u 
∂y 

, ν, 
∂ν

∂x 

, 
∂ν

∂y 

)
= χk ( x, y ) , 

 = 1 , 2 and ( x, y ) ∈ � = [ −1 , 1 ] × [ −1 , 1 ] , (3.1) 

ith Dirichlet boundary condition 
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u ( −1 , y ) = f 1 ( y ) , u ( x, −1 ) = f 2 ( x ) , (3.2a)

v ( −1 , y ) = f 3 ( y ) , v ( x, −1 ) = f 4 ( x ) , (3.2b)

u ( 1 , y ) = f 1 ( y ) , u ( x, 1 ) = f 2 ( x ) , (3.3a)

v ( 1 , y ) = f 3 ( y ) , v ( x, 1 ) = f 4 ( x ) . (3.3b)

Note that any problem defined on any interval [ a, b ] can be
transformed to the above problem making use of the change of
variable: 

x̄ = a + 

( b − a ) ( x + 1 ) 
2 

, ȳ = a + 

( b − a ) ( y + 1 ) 
2 

. (3.4)

4. The proposed method 

The ultraspherical integral zero- boundary (UIZB-RR) method
is constructed as follows: 

4.1. Ultraspherical integral zero- boundary (UIZB) method 

Each of the first partial derivative of the variables in the prob-
lem, { ∂u 

∂x , 
∂u 
∂y , 

∂ν

∂x , 
∂ν

∂y } , must be approximated by some variable,
then the unknown variables in the problem { u, ν} , can be ap-
proximated by simple integration and making use of ( 2.4 )–(2.7).

To apply UIZB method for the problem ( 3.1 )–(3.3), We put

∂u 
∂x 

= ζ and 

∂u 
∂y 

= η. (4.1)

Integrating ( 4.1 ) and using conditions ( 3.2a ), we get respec-
tively: 

u (x, y ) = 

∫ x 

−1 
ζ ( ̌x , y ) d ̌x + c 1 , u (x, y ) = 

∫ y 

−1 
η(x, y̌ ) d ̌y + c 2 , 

(4.2)

thus, c 1 = u ( −1 , y ) = f 1 (y ) , c 2 = u ( x, −1 ) = f 2 (x ) . 
Making use of ultraspherical integral approximations ( 2.4 )–

( 2.7 ), we obtain 

u ( x i , y j ) = 

N ∑ 

k =0 

S ik ζ ( x k , y j ) + f 1 ( y j ) , ˜ u ( x i , y j ) 

= 

N ∑ 

(k =0) 

S ik η( x i , y k ) + f 2 ( x i ) . (4.3)

The resulting two approximate solution obtained in ( 4.3 )
must be equal. So, we take as a condition to be satisfied that:

u ( x i , y j ) = ˜ u ( x i , y j ) . (4.4)

For the unknown variable ν, we have similar approximations,
that is: 

∂ν

∂x 

= ζ̄ and 

∂ν

∂y 
= η̄. (4.5)
Then with similar calculations, we have 

v ( x i , y j ) = 

N ∑ 

k =0 

S ik ̄ζ ( x k , y j ) + f 3 ( y j ) , 

˜ v ( x i , y j ) = 

N ∑ 

(k =0) 

S ik ̄η( x i , y k ) + f 4 ( x i ) . (4.6)

v ( x i , y j ) = ˜ v ( x i , y j ) . (4.7)

4.2. Applying Rayleigh–Ritz method 

The Rayleigh–Ritz Method for problem ( 3.1 )–(3.3) is to find the
minimum of [20] 

F 1 = 

∫ 1 

−1 

∫ 1 

−1 

(
L 1 

(
u, 

∂u 
∂x 

, 
∂u 
∂y 

, ν, 
∂ν

∂x 

, 
∂ν

∂y 

)
− 2 χ1 

)
ud xd y, 

(4.8)

F 2 = 

∫ 1 

−1 

∫ 1 

−1 

(
L 2 

(
u, 

∂u 
∂x 

, 
∂u 
∂y 

, ν, 
∂ν

∂x 

, 
∂ν

∂y 

)
− 2 χ2 

)
vd xd y. 

(4.9)

Making use of ( 2.4 )-( 2.7 ), we have: 

F 1 = 

N ∑ 

i=0 

N ∑ 

j=0 

S 

[ λ] 
Ni S 

[ λ] 
N j [ L 1 ( u ( x i , y j ) , ζ ( x i , y j ) , η( x i , y j ) , v ( x i , y j ) , 

ζ̄ ( x i , y j ) , η̄( x i , y j ) ) − 2 χ1 ( x i , y j )] u ( x i , y j ) , (4.10)

F 2 = 

N ∑ 

i=0 

N ∑ 

j=0 

S 

[ λ] 
Ni S 

[ λ] 
N j [ L 2 (u ( x i , y j ) , ζ ( x i , y j ) , η( x i , y j ) , v ( x i , y j ) , 

ζ̄ ( x i , y j ) , η̄( x i , y j )) − 2 χ2 ( x i , y j )] v ( x i , y j ) (4.11)

This is a multi-objective function of the optimization prob-
lem. We can reformulate it as one objective function as follows
[21] : 

R = F 1 + F 2 . (4.12)

So, to obtain the unknown values ζ , η, ζ̄ and η̄, we construct
the following constrained optimization problem making use of
( 4.12 ), ( 4.4 ), ( 4.7 ), ( 3.3a ), ( 4.3 ), ( 3.3b ) and ( 4.6 ): 

Minimize R , subject to 

I [ 1 ] i j = 

[ 

N ∑ 

k =0 

S ik ζ ( x k , y j ) + f 1 ( y j ) 

] 

−
[ 

N ∑ 

k =0 

S ik η( x i , y k ) + f 2 ( x i ) 

] 

= 0 , i, j = 0 , 1 , . . . , N, 

(4.13)

I [ 2 ] i j = 

[ 

N ∑ 

k =0 

S ik ̄ζ ( x k , y j ) + f 3 ( y j ) 

] 

−
[ 

N ∑ 

k =0 

S ik η̄( x i , y k ) + f 4 ( x i ) 

] 

= 0 , i, j = 0 , 1 , . . . , N, 

(4.14)

I [ 3 ] j = 

[ 

N ∑ 

k =0 

S ik ζ ( 1 , y k ) + f 1 ( y j ) 

] 

− f 1 ( y j ) = 0 , j = 0 , 1 , . . . , N,

(4.15a)
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Fig. P1.1 Approximation solution with N = 10 (Left) and analytic solution (Right) for problem 1. 
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[ 4 ] 
i = 

[ 

N ∑ 

k =0 

S ik η( x k , 1 ) + f 2 ( x i ) 

] 

− f 2 ( x i ) = 0 , i = 0 , 1 , . . . , N,

(4.15b) 

 

([5]) 
j = 

[ 

N ∑ 

k =0 

S ik ̄ζ (1 , y k ) + f 3 ( y j ) 

] 

− f̄ 3 ( y j ) = 0 , 

j = 0 , 1 , . . . , N, (4.16a) 

 

([6]) 
i = 

[ 

N ∑ 

k =0 

S ik ̄η( x k , 1) + f 4 ( x i ) 

] 

− f̄ 4 ( x i ) = 0 , 

i = 0 , 1 , . . . , N. (4.16b) 

This problem can be solved by Penalty leap frog method [22] . 

. Error estimates 

ot all of the nonlinear partial differential equations have avail- 
ble analytic solutions. If the analytic solution is found for the 
roblem, we use the following error definitions to measure the 
ifference between the numerical and analytic solutions: 

 u = E ( u i j ) = 

1 
N 

2 

⎡ 

⎣ 

N ∑ 

i=0 

N ∑ 

j=0 

(
u e i j − u a i j 

)2 

⎤ 

⎦ 

0 . 5 

, i = 0 , 1 , . . . , N, 

(5.1) 

 v = E ( v i j ) = 

1 
N 

2 

⎡ 

⎣ 

N ∑ 

i=0 

N ∑ 

j=0 

(
v e i j − v a i j 

)2 

⎤ 

⎦ 

0 . 5 

, i = 0 , 1 , . . . , N. 

(5.2) 
here u e i j and u a i j the exact and approximate solutions, respec- 
ively. In the other hand, If the analytic solution is not found
or the problem, we estimate the error in the optimization pro-
ess by two indices, the first is the value of the minimized cost
unction R of Eq. (4.12) . The second is to ensure satisfying the
onditions ( 4.13 )–(4.16), that is, the value of 

 = 

N ∑ 

i=0 

N ∑ 

j=0 

[ 
I [ 1 ] i j + I [ 2 ] i j 

] 
+ 

N ∑ 

i=0 

[ 
I [ 4 ] i + I [ 6 ] i 

] 
+ 

N ∑ 

j=0 

[ 
I [ 3 ] j + I [ 5 ] j 

] 
. 

(5.3) 

Must be small enough. 

. Numerical experiments 

n this section some numerical examples are presented. 
Problem 1 
We now consider the inhomogeneous nonlinear system 

∂u 
∂x 

+ ν
∂u 
∂y 

+ u = 1 , 
∂v 
∂x 

− u 
∂ν

∂y 
− v = 1 , 

( x, y ) ∈ � = [ −1 , 1 ] × [ −1 , 1 ] , (P1.1) 

ith the boundary conditions 

u ( −1 , y ) = e y +1 , u ( 1 , y ) = e y −1 , 

 ( x, −1 ) = e −( x +1 ) , u ( x, 1 ) = e −( x −1 ) , (P1.2) 

v ( −1 , y ) = e −( 1+ y ) , v ( 1 , y ) = e 1 −y , 

 ( x, −1 ) = e x +1 , v ( x, 1 ) = e x −1 . (P1.3) 

The exact solutions of the problem ( 3.1 )–(3.3) are 

 x, y ) = e y −x , v ( x, y ) = e x −y . (P1.4) 

The approximate solution of u ( x, y ) of ( 4.3 ), v ( x, y ) of
 4.6 ) and the exact solution related to ( P1.4 ) are introduced in
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Table P1.1 Optimization indices and error estimates of prob- 
lem 1 with N = 10. 

λ R J E u E v 

0.0 6.76e −14 4.81e −12 6.18e −09 7.81e −09 
0.5 3.86e −14 6.78e −12 4.28e −09 5.21e −09 
1.0 6.34e −14 8.65e −12 7.68e −09 8.84e −09 
λ∗ = 0.523 1.45e −14 9.85e −13 1.99e −09 2.65e −09 
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Fig. P1.3 The solutio
Fig. P1.1 . Moreover, optimization indices R of ( 4.12 ), J of
( 5.3 ) and error estimates E u , E v of ( 5.1 ) and ( 5.2 ) are in-
troduced in Table P1.1 . These amounts are evaluated at λ =
0 , 1 . 0 , 0 . 5 , which corresponds to Chebyshev approximation
of first, second kind, and Legendre approximation. The eval-
uation at λ∗, the best experimental evaluation is included.
The convergence of the proposed method is displayed in
Fig. P1.2 , while in Fig. P1.3 , the approximate solution for
( −1 , y ) , ( 1 , y ) , ( x, −1 ) , ( x, 1 ) are we presented. These values
10
1

posed method for problem 1. 
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n for problem 1. 
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Fig. P2.1 Approximation solution with N = 10(Left) and analytic solution (Right) for problem 2. 
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Table P2.1 Optimization indices and error estimates of prob- 
lem 2 with N = 10. 

λ R J E u E v E w 

0.0 5.51e −13 9.85e −12 8.98e −06 8.71e −06 9.92e −06 
0.5 3.79e −13 7.98e −12 7.68e −06 7.61e −06 7.16e −06 
1.0 8.64e −13 9.75e −12 8.62e −06 7.94e −09 8.74e −06 
λ∗ = 0.487 2.45e −13 8.45e −12 6.96e −06 6.15e −06 6.85e −06 

a  

a
(  

e

re clearly close to the exact solution by Table P1.1 . The
pproximate solution at the middle of the interval, namely, 
 0 , y ) , ( x, 0 ) are plotted compared with the exact solution to
nsure the accuracy of the approximate solution. 

Problem 2 
We now consider the nonlinear system 

∂u 
∂x 

− ∂v 
∂y 

∂w 

∂y 
= 

3 
2 

− 1 
2 

e −2 x , 
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Fig. P2.3 The solution for problem 2. 

 

 

 

 

 

 

 

 

 

 

 

 

∂v 
∂x 

− ∂u 
∂y 

∂w 

∂y 
= 

3 
2 

− 1 
2 

e 2 x , 

∂w 

∂x 

− ∂u 
∂y 

∂v 
∂y 

= 2 , 

and x, y ∈ � = [ −1 , 1 ] × [ −1 , 1 ] , (P2.1)

with the boundary conditions 

u ( −1 , y ) = e y − 1 , u ( 1 , y ) = e y + 1 , 

u ( x, −1 ) = e −1 + x, u ( x, 1 ) = e 1 + x, (P2.2)

v ( −1 , y ) = e −y − 1 , v ( 1 , y ) = e −y + 1 , 

v ( x, −1 ) = e 1 + x, v ( x, 1 ) = e −1 + x, (P2.3)

w (−1 , y ) = 

1 
2 
( e y + e (−y ) ) − 1 , w (1 , y ) = 

1 
2 
( e y + e (−y ) ) + 1 , 

w ( x, −1 ) = 

1 
2 
( e −1 + e 1 ) + x, w ( x, 1 ) = 

1 
2 
( e 1 + e −1 ) + x. 

(P2.4)
The exact solutions of the problem (P2.1)–(P2.4) are 

u ( x, y ) = e y + x, v ( x, y ) = e −y + x, w ( x, y ) = 

1 
2 

(
e y + e −y ) + x.

The results are introduced in Fig. P2.1 , Table P2.1 , Figs. P2.2
and P2.3 with the same introduction the previous example. 

7. Conclusion 

In this paper, we have proposed a numerical algorithm to solve
the nonlinear systems of partial differential problems of first or-
der using ultraspherical integral approximation with Rayleigh–
Ritz(UIZB-RR) method and an optimization technique for ob-
taining the solution of the resulting nonlinear algebraic equa-
tion system. 

The numerical results given above ensure the good accuracy
of proposed method. Moreover, The procedure discussed here
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