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1. Introduction 

At the beginning, several researchers developed the theory of
the Weierstrass points for smooth curves, and for their canon-
ical divisors. During the last three decades, Lax and Wid-
land (see [1–6] ) founded and developed the theory for Goren-
stein curves, where the invertible dualizing sheaf replaces the
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canonical sheaf. Through this context, the singular points of a
Gorenstein curve have to be considered as Weierstrass points. 

The goal of this paper is to develop a technique for com-
puting the distribution of the Weierstrass points on the mem-
bers of any 1-parameter family C a , a ∈ C , of Gorenstein
quintic curves with respect to the dualizing sheaf K C a . Such a
technique is based on the computation of the sequence of in-
tegers which in [7] has been called “K C a -Weierstrass Gaps Se-
quence” ( K C a -WGS for brief), even at singular points. In [9] ,
the first author and F. Sakai classified and investigated the dis-
tribution of Weierstrass points on certain 1-parameter family of
genus 3 curves, named after Kuribayashi quartic curves. 

Actually, the technique we describe, consists of performing
a fixed sequence of computations, and so, it can be applied to
any Gorenstein quintic curve, at any point P , no matter if it
is smooth or singular. In case, P is smooth, the K C a -WGS are
computed by determining the dimension of the linear systems
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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 C a − nP, for every non-negative integer n , and so some con-
act order must be computed. If P is singular, the K C a -WGS 

re given by a suitable combination of the ˜ K ˜ C a -WGS at the 
oints Q 1 , . . . , Q m 

, m ≥ 1, over P in a partial normalization
P : ˜ C a −→ C a of C a at P , where ˜ K ˜ C a is the pull back of K C a . The
˜ 
 ˜ C a -WGS at these points can be computed as the contact order 
f C ω , ω ∈ K C a , and the branches C 

(1) 
a , . . . , C 

(m ) 
a of C a through

 , corresponding to Q 1 , . . . , Q m 

, respectively, one branch at a
ime. Moreover, the study of the branches through P allows to 

argely simplify the computation of the K C a -WGS. This simpli- 
cation is essentially due to the knowledge of the normalization 

ap in terms of blow-up’s, as shown in [7] . 
In both cases, the contact orders are computed by means of 

he osculating conics. Moreover, in the next section, we describe 
 quick way to compute the osculating conics at a point of a
orenstein quintic curve, because in the most spread computer 

lgebra systems there is no built in function to perform that 
omputation. However, as a computing support, to perform the 
omputations described through this paper we use MATHE- 

ATICA and MAPLE programs. 
The layout of the paper is as follows. In Section 2 , we cover

ost of the necessary background material. Section 3 is devoted 

o describe the technique and show its correctness, while, in the 
ast Section 4 , we let the technique work on some interesting
xamples. 

. Notation and preliminaries 

e begin by stating the basic tools that will be used throughout
his paper. 

.1. Weierstrass points 

ere, we briefly recall what we need about Weierstrass points 
n curves. We start by the definition of the K C -Weierstrass gap 

equences (shortly K C -WGS in the following) at a point, singu- 
ar or not, with respect to the dualizing sheaf K C over C . To
his purpose, let C be any projective integral curve of arith metic
enus g over the complex field C . Let us recall a geometri-
al definition of a K C -gap at a point P of C (see [8] , § 2). If
he point P is non-singular, the K C -WGS at P is defined as
ollows: 

efinition 1. Let P be a smooth point on the curve C . The
nteger n is a K C -gap if and only if, dim C (K C − (n − 1) P) >

im C (K C − nP) . The sequence of the K C -gaps is the K C -WGS
t P . 

On the other hand, if P ∈ C is a singular point, let π : ˜ C −→
 is the normalization of C and consider the linear system 

˜ V = 

pan (π∗v 1 , . . . , π∗v g ) over ˜ C , where (v 1 , . . . , v g ) is a basis of
 

0 (C, K C ) . 
A positive integer b ( Q ) is called a ˜ V -gap at a point Q ∈

−1 (P) if and only if, dim C ( ̃  V − (b(Q ) − 1) Q ) > dim C ( ̃  V −
(Q ) Q ) . Since dim C ( ̃  V ) = g and by Riemann –Roch Theorem
im C ( ̃  V − (2 g − 1) Q ) = 0 , it follows that at each Q ∈ π−1 (P)

here are exactly g ˜ V -gap. If ˜ V -WGS is known for each point Q
ying over P , the K C -WGS { a 1 (P) , . . . , a g ( P) } at P can be com-
uted as follows: 

roposition 1. Suppose π : ˜ C −→ C is the normalization of C. 
et Q 1 , . . . , Q m 

be the points of ˜ C corresponding to the branches
entered at a point P of C and { b ̃ V 
1 (Q i ) , . . . , b ̃

 V 
g (Q i ) } be the ˜ V -

GS at the point Q i , for i = 1 , 2 , . . . , m, then one has: 

 k (P) = 

m ∑ 

i=1 

b ̃ V 
k (Q i ) − k (m − 1) , 1 ≤ k ≤ g. (1)

roof. See ( [7] , Proposition 5.5, p . 285). �

Following [7] , Proposition 5.4, one can define the so called
 th K C -extraweight at the point P , denoted by E k ( P ) as: 

 k (P) = 

∑ 

Q ∈ π−1 (P) 

w ̃

 V 
k (Q ) , 

here w ̃

 V 
k (Q ) = 

∑ k 
i=1 (b ̃

 V 
k (Q ) − i) is the k th 

˜ V -Weierstrass
eight at the smooth point Q . Therefore, at the point P , one

an attach a sequence of integers { E 1 (P) , . . . , E g ( P) } , called the
 C -extraweight sequence at P . By means of the extraweight se-
uence, the K C -WGS { a 1 (P) , . . . , a g ( P) } at P can be computed
s 

 k (P) = 

{ 

E k (P) + 1 if k = 1 , 

E k (P) − E k −1 (P) + k if 2 ≤ k ≤ g. 
(2) 

ence, we also have (see [7] ) 

 k (P) = 

k ∑ 

i=1 

(a i (P) − i) . (3) 

he last two formulas show that it is equivalent to know the
 C -WGS or the extraweight sequence at P . It is clear that the
rst way is easier to compute than the second, because of the
eometrical meaning of the K C -WGS. 

Using a Widland –Lax argument (see [1] and [6] ) or (see [7] ,
roposition 4.5) one can show that for each k 

 k (P) = k (k − 1) δP + E k (P) , 1 ≤ k ≤ g (4)

here w k (P) is a non-negative integer, called k th K C -weight at
he point P and δP = dim C ( ˜ O P (C) / O P (C)) is a numerical in-
ariant linked to the kind of singularity. The sequence of inte-
ers { w 1 (P) , . . . , w g ( P) } is called the K C -weight sequence at P .
he g th K C -weight w g (P) is nothing but the vanishing order at

he point P of the Wronskian of a basis for H 

0 (C, K C ) as defined
n [6] . Hence, the point P is a K C -Weierstrass point if and only if
 g (P) > 0 . Moreover, the total number of the K C -Weierstrass
oints up to their weights is given by the following proposition
 see [6] , Proposition 1 or [7] , Proposition 4.4). 

roposition 2. The total gth K C -weight of the K C -Weierstrass
oint is: 

 C,g = 

∑ 

P∈ C 
w g (P) = (g − 1) g(g + 1) (5)

emark 1. As a consequence to Proposition 1 , if π−1 (P) = { Q } ,
.e. the preimage of P reduces to just one point on C , then the
 C -WGS at P coincides with the ˜ V -WGS at Q . The K C -WGS

nd the ˜ V -WGS coincide also when the point P is smooth. 
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2.2. Flexes and sextactic points 

A smooth point P on a plane curve C is called a flex point if the
tangent line L P meets C at P with contact order at least three,
i.e. I P ( C , L P ) ≥ 3. Furthermore, a flex point P ∈ C is m - flex
if m = I P (C, L P ) − 2 . This positive integer m is called the flex
multiplicity of C at P . Moreover the flex points of an algebraic
curve are the smooth points of the intersection of this curve with
its associated Hessian curve. 

In analogy with tangent lines and flexes on plane curves, one
can consider the osculating conics and the sextactic points . Let
P be a non-flex smooth point on a plane curve C of degree d ≥
3. Then, there is a unique irreducible conic D P with I P ( C , D P ) ≥
5. Such conic D P is called the osculating conic of C at P . 

Definition 2. A smooth, but not a flex, point P on a plane curve
C is called a sextactic point if the osculating conic D P meets C at
P with contact order at least six. Furthermore, a sextactic point
P is called s -sextactic , if s = I P (C, D P ) − 5 . This positive integer
s is called the sextactic multiplicity of C at P . 

Now, we describe a procedure to compute an osculating
conic of a quintic curve C at a certain non-flex point P , in a
very quick way. Let us choose a coordinate affine open subset
of P 

2 containing the point P and let f (x, y ) = 0 be the equa-
tion of the curve C in the chosen open subset, and ( α, β) be the
coordinates of the point P . 

Lemma 1. We can compute the osculating conic D P at P in the
following way: 

(1) Compute the defining equation � P ( x, y ) := y − β − m (x −
α) = 0 of the tangent line L P of C at P. 

(2) Parameterize those irreducible conics passing through the
point P with the tangent line L P : 

� P (x, y ) + A (x − α) 2 + B(x − α) � P (x, y ) 

+ C� P (x, y ) 2 = 0 , 

with A � = 0 as 

x (t) = α − t 
A + Bt + Ct 2 

and 

y (t) = β − t(t + m ) 

A + Bt + Ct 2 

(3) Write 

f (x (t) , y (t)) 

= 

s 2 t 2 + s 3 t 3 + s 4 t 4 + s 5 t 5 + s 6 t 6 + s 7 t 7 + s 8 t 8 + s 9 t 9 + s 10 t 10 (
A + Bt + Ct 2 

)5 , 

where s i ∈ C [ A, B, C ] for i = 2 , . . . , 10 . 
(4) Solve the equations: s 2 = s 3 = s 4 = 0 , with A � = 0, we can

find the osculating conic at P. 

Proof. For the assertion (2), it suffices to parameterize the in-
tersection points of the conic with the pencil of lines � P ( x, y ) −
 ( x − α) = 0 . �

2.3. On the roots of a polynomial 

We need to determine the multiplicities of the repeated roots
of a polynomial. If a polynomial f ( x ) has no parameters, then
we can do it by using the Euclidean algorithm. However, this
way fails if the polynomial f ( x ) has a parameter. Here we use
the subresultants method (for more details about resultants and
subresultants theory we refer to [10] and [11] ). We denote by
R 

( k ) [ f ( x ), g ( x ); x ] the subresultant of degree k for the polynomials
f ( x ) and g ( x ). 

Lemma 2. The polynomials f ( x ) and g ( x ) have a non-constant
common factor of multiplicity at least t if and only if,
R 

(k ) [ f (x ) , g(x ) ; x ] = 0 , for all k = 1 , 2 , . . . , t. k = 1 , 2 , . . . , t. 

Definition 3. For a polynomial f ( x ) = c 
∏ t 

i=1 ( x − a i ) n i , where
a i � = a j for i � = j and c is a complex number, we define s :=
s ( f ), if R 

(k ) [ f (x ) , f ′ (x ) ; x ] = 0 , for all k = 1 , . . . , s and
R 

(s +1) [ f (x ) , f ′ (x ) ; x ] � = 0 . We set r ( f ) = max { n i | i = 1 , . . . , t } .
Lemma 3. 

(i) Take a polynomial f ( x ) = c 
∏ t 

i=1 ( x − a i ) n i , where a i � =
a j for i � = j and c is a complex number. Then s ( f ) =∑ t 

i=1 ( n i − 1 ) . 
(ii) If V ( f , f ′ , . . . , f (r −1) ) � = ∅ , but V ( f , f ′ , . . . , f (r ) ) = ∅ ,

then r = r ( f ) . 

Remark 2. 

(i) If r ( f ) = 2 , then f ( x ) = c 
∏ s 

i=1 ( x − a i ) 2 g(x ) , where the
polynomial g ( x ) has distinct roots and g ( a i ) � = 0 for all
i = 1 , . . . , s. 

(ii) We regard a polynomial f (x, a ) ∈ C [ x, a ] as a 1-
parameter family of polynomials depending on the value
of a . Consider the ideal I k = ( f , f ′ , . . . , f (k ) ) , where the
f ( i ) denote the i th differentiation with respect to the vari-
able x . By using Groebner basis methods, we can com-
pute the ideal J k = I k ∩ C [ a ] in C [ a ] . If a 0 ∈ V ( J r −1 ) ,

a 0 / ∈ V ( J r ) , then we conclude that r ( f (x, a 0 )) = r.
Also if R 

(1) [ f (x, a 0 ) , f x (x, a 0 ) ; x ] = · · · = R 

(s ) [ f (x, a 0 ) ,
f x (x, a 0 ) ; x ] = 0 , but R 

(s +1) [ f (x, a 0 ) , f x (x, a 0 ) ; x ] � = 0 ,
then we infer that s ( f (x, a 0 )) = s. 

To describe the repeated roots of a polynomial, we use the
following convention. 

Convention. Let f ( x ) be a polynomial. We write T ( f ) =
(n α, m β, . . . ) , n, m ∈ Z 

+ , if f ( x ) has α roots of multiplicity n ,
β roots of multiplicity m , and so on. For instance, the poly-
nomial f (x ) = x (x − 1)(x + 1) 2 (x 

3 − 8) 4 is of type T ( f ) =
(4 3 , 2 1 , 1 2 ) . 

Example 1. Consider the following polynomial with a parame-
ter a : f (x, a ) = 5 x 

8 − 6(a 2 − 1) x 

6 + (−2 a 4 − 5 a 2 + 2) x 

4 + 6 a 2

(a 2 − 1) x 

2 + 5 a 4 , By using MATHEMATICA, we find 

R 

(1) [ f (x ) , f x (x ) ; x ] = 8192000 a 12 (P(a )) 4 (Q (a )) 2 , 

R 

(2) [ f (x ) , f x (x ) ; x ] = 2457600 a 6 (a 2 − 1)(P(a )) 3 Q (a ) R (a ) , 

R 

(3) [ f (x ) , f x (x ) ; x ] = 614400 a 2 (a 2 − 1)(P(a )) 2 R (a ) S(a ) , 

R 

(4) [ f (x ) , f x (x ) ; x ] = −25600 P(a ) S(a ) T (a ) , 

R 

(5) [ f (x ) , f x (x ) ; x ] = −6400(47 a 4 − 4 a 2 + 7) T (a ) . 

Where P(a ) = 19 a 4 − 43 a 2 − 1 , Q (a ) = 4 a 8 + 204 a 6 − 71 a 4 +
84 a 2 + 4 , R (a ) = 2 a 8 + 107 a 6 − 98 a 4 + 37 a 2 + 2 , S(a ) = 4 a 8 +
148 a 6 − 149 a 4 + 68 a 2 + 4 and T (a ) = 38 a 8 + 244 a 6 − 275 a 4 +
116 a 2 + 2 . 

Hence, we obtain the following four cases: 

(1) If a = 0 , we have a | R 

( k ) for k = 1 , 2 , 3 but Res [ a , R 

(4) ; a ]
� = 0. Then s ( f ) = 3 , 

(2) If Q (a ) = 0 , we have Q ( a ) | R 

( k ) for k = 1 , 2 but Res [ Q ( a ),
R 

(3) ; a ] � = 0. Then s ( f ) = 2 , 
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Table 1 Smooth Weierstrass points on a Gorenstein quintic 
curve. 

w (P) G ( P ) Geometry 

1 {1, 2, 3, 4, 5, 7} 1-flex 
1-sext. 

2 {1, 2, 3, 4, 5, 8} 2-sext. 
3 {1, 2, 3, 4, 5, 9} 3-sext. 
4 {1, 2, 3, 4, 5, 10} 4-sext. 
5 {1, 2, 3, 5, 6, 9} 2-flex 

{1, 2, 3, 4, 5, 11} 5-sext. 
9 {1, 2, 3, 6, 7, 11} 3-flex 
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(3) If P(a ) = 0 , we have P ( a ) | R 

( k ) for k = 1 , . . . , 4 but
Res [ P ( a ), R 

(5) ; a ] � = 0. Then s ( f ) = 4 , 
(4) Otherwise, we have s ( f ) = 1 . 

Moreover, using the Groebner basis of the ideal ( f , f x , f xx ) we
btain 

f , f x , f xx ) = (a 4 , a 2 x, −a 2 + 2 x 

2 ) . 

hus, we have ( f , f x , f xx ) ∩ C [ a ] = (a 4 ) . It follows that f ( x , a )
as repeated roots of multiplicities ≥ 3 if and only if, a = 0 . In
act f (x, 0) = x 

4 (5 x 

4 + 6 x 

2 + 2) . Now, by using Lemma 3 we
an describe the repeated roots of f ( x , a ) as follows: 

(1) ′ If a = 0 , then T ( f ) = (4 1 , 1 4 ) , 
(2) ′ If Q (a ) = 0 , then T ( f ) = (2 2 , 1 4 ) , 
(3) ′ If P(a ) = 0 , then T ( f ) = (2 4 ) , 
(4) ′ Otherwise, we have T ( f ) = (1 8 ) . 

. The technique 

s declared in the Introduction, the main purpose of what fol- 
ows is to describe a technique which effectively allows to com- 
ute the distribution of K C a -Weierstrass points on the members 
f certain 1-parameter family C a , a ∈ C , of Gorenstein quin-
ic curves with respect to the dualizing sheaf K C a . The dualiz- 
ng sheaf on C a is cut out by the conics of P 

2 (C ) , which form
 linear system of dimension 5, i.e. h 0 (C a , K C a ) = 6 equals, as
ne may expect, to the arithmetic genus of C a . For the sake of
revity, we say weight sequence instead of K C a -weight sequence, 
nd it will be simply denoted by 

 (P) = { w 1 (P) , . . . , w 6 (P) } . 

f w 6 (P) > 0 , we call P a Weierstrass point instead of K C a −
eierstrass point. Analogously 

 (P) = { E 1 (P) , . . . , E 6 (P) } , 

ill be the sequence of the extraweights at P and 

 (P) = { a 1 (P) , . . . , a 6 (P) } , 

s the WGS at P . 
Let us notice that if P lies on a smooth curve, the weight

s the same as the extraweight, and the gap sequence coincides 
ith the classical one known for smooth curves. So, at a smooth
oint P , one may define Weierstrass gaps and the semigroup of
on-gaps and prove the results completely similar to the classi- 
al case ( Table 1 ) . 

Geometrically, a smooth point P ∈ C a is a Weierstrass point 
f and only if there is a unique conic D P with I P ( C a , D P ) ≥ 6. It
urns out that either D P = 2 L P ( P is a flex and L P is the tangent
ine at P ) or D P is an irreducible conic ( P is a sextactic point).
or a smooth point P ∈ C a , one can find a basis { D 1 , . . . , D 6 } of
 

0 (C a , O C a (2)) so that: I P ( C a , D 1 ) < ��� < I P ( C a , D 6 ). Let n i =
 P ( C a , D i ) + 1 , then the sequence G (P) = { n 1 , . . . , n 6 } is the gap
equence at P . We can classify the smooth Weierstrass points on
 a as follows: 

emma 4. Let C be a Gorenstein quintic curve. Then, we classify
mooth Weierstrass points on C as follows: 
roof. Assume first that P is not a flex and that the contact
rder of the osculating conic at P is α. Then the gap sequence of
 is { 1 , 2 , 3 , 4 , 5 , α + 1 } . On the other hand, assume that P is a
ex and that the contact order of the tangent line at P is μ. Then
he gap sequence of P is { 1 , 2 , 3 , μ + 1 , μ + 2 , 2 μ + 1 } . �

According to the previous considerations, the technique con- 
ists of the following sequence of computations, starting from 

he equation C a : f a (x, y ) = 0 in the chosen affine open subset
f P 

2 (C ) . 

1. Study the points at infinity, if they are singular points then
go to 2 and if they are smooth points then determine whether
they are flexes or sextactic points or neither flexes nor sextac-
tic points. 

2. Determine the singularity of C a , Sing ( C a ). Let P ∈ Sing ( C a ),
the ˜ K ˜ C a -WGS at the points Q 1 , . . . , Q m 

over P can
be computed as the contact order of conics and the 
branches C 

(1) 
a , . . . , C 

(m ) 
a of C a through P , corresponding to

Q 1 , . . . , Q m 

, respectively, one branch at a time. Thus, the
WGS at P , G (P) = { a 1 (P) , . . . , a 6 (P) } , are computed ac-
cording to the formula (1) . In particular, if π−1 (P) = { Q } ,
i.e. the preimage of P reduces to just one point on C , then
according to Remark 1 we can find the weight sequence (and 

hence the 6th weight) at P , just by computing the condition
imposed by P on the conics passing through it. 

3. Computing the resultant of the defining equation f a ( x , y ) of
C a and its associated Hessian H f a , we obtain the locations
and the weights of the flexes. 

4. Determine the locations and the weights of the sextactic 
points by compute the Wronskian W ( x , a ) of {1, x , y , xy ,
x 

2 , y 2 } which can be written as 

W (x, a ) = 4 y ′′ [40(y (3) ) 3 − 45 y ′′ y (3) y (4) + 9 
(
y ′′ 

)2 y (5) ] , 

here one can compute the term y ( k ) by the implicit differ-
entiation. For instance, it is well known that y ′′ = ( f x 2 f 2 y −
2 f xy f x f y + f y 2 f 2 x ) / f 3 y . 

5. Finally, note that the Weierstrass points on Gorenstein quin- 
tic curves are 

W (C a ) = Sing ( C a ) ∪ { flexes } ∪ { sextactic points } , 

(see [6] and [9] ). Since the arithmetic genus g of C a is 6, then,
by formula (5) , we have 

∑ 

P∈ C a \ Sing ( C a ) 

w (P) + 

∑ 

P∈ Sing ( C a ) 

w 6 (P) = 210 . (6) 
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Table 2 Geometry of points at infinity. 

Q 

(∞ ) 
i 

a 2 + 1 = 0 2-flex 
(a 2 + a − 1)(a 2 − a − 1) = 0 5-sext. 
Otherwise 1-sext. 
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4. Applicable examples 

In this section, we give two examples illustrating our technique.
Both of the examples is a family of the irreducible nonrational
plane quintic curves C a . One of them has only singular points
on certain values of the parameter a , while in the second one, the
family C a has a singular point for all values of the parameter a .

4.1. The first example 

Let C a be quintic curves with defining equations 

 a : F a (X , Y , Z) = Y 

5 − X (X 

2 − Z 

2 )(X 

2 − a 2 Z 

2 ) , a ∈ C . 

We apply our technique as follows: 

1 . Points at infinity 

The curve C a can be expressed as 5-sheeted covering of
P 

1 (C ) by the function x : C a −→ P 

1 (C ) . Let Q 

(∞ ) 
i = [1 : ζ i : 0]

be the fiv e points ov er x = ∞ , where ζ is a primitive 5th root
of unity, i = 0 , 1 , 2 , 3 , 4 . Using Groebner basis methods or us-
ing Lemma 1 , we can compute the osculating conics D i at Q 

(∞ ) 
i ,

i = 0 , 1 , 2 , 3 , 4 , 

D i : (a 2 + 1) 3 Z 

2 + 5(2 a 4 − a 2 + 2) ζ 5 −2 i Y 

2 

− 5(3 a 4 − 4 a 2 + 3) ζ 5 −i Y X + 5(a 4 − 3 a 2 + 1) X 

2 = 0 . 

It is clear that when a 2 + 1 = 0 , we have 

D i : (Y − ζ i X ) 2 = 0 , i = 0 , 1 , 2 , 3 , 4 , 

and in this case the points Q 

(∞ ) 
i are 2-flexes. 

In the following, we consider a 2 + 1 � = 0 . Computing the re-
sultant of the defining equation f a (1, y , z ) of C a and the conics
D i (1, y , z ) (in a chosen affine open subset of P 

2 (C ) ) with respect
to y , we have 

Res [ f a , D i ; y ] = z 6 b 4 (z, a ) , 

where 

b 4 (z, a ) = (1 + a 2 ) 15 z 4 + 25(1 − 3 a 2 + a 4 ) 

× (1 − 288 a 2 + · · · + a 24 ) z 2 + 250(1 + a 2 ) 

× (1 − 3 a 2 + a 4 ) 2 (31 + · · · + 31 a 16 ) . 

Computing the Groebner basis of the ideal (b 4 , 
∂b 4 
∂z , 

∂ 2 b 4 
∂z 2 ) we

obtain (
b 4 , 

∂b 4 
∂z 

, 
∂ 2 b 4 
∂z 2 

)
= ((1 − 3 a 2 + a 4 ) 2 , (1 − 3 a 2 + a 4 ) z, 

11 − 37 a 2 + 23 a 4 − 4 a 6 + 6 z 2 ) 

Thus we have (
b 4 , 

∂b 4 
∂z 

, 
∂ 2 b 4 
∂z 2 

)
∩ C [ a ] = ((1 − 3 a 2 + a 4 ) 2 ) 

= ((−1 − a + a 2 ) 2 (−1 + a + a 2 ) 2 ) . 

Hence, b 4 has repeated roots of multiplicity ≥ 3 if and only
if, a 2 ± a − 1 = 0 . Actually, when a 2 ± a − 1 = 0 , the defining
equations of the osculating conics D i at Q 

(∞ ) 
i will be 

D i : Z 

2 + (4 − a 2 ) ζ 5 −2 i Y 

2 + (a 2 − 4) ζ 5 −i Y X = 0 , 

i = 0 , 1 , 2 , 3 , 4 , 
and C a ∩ D i = { Q 

(∞ ) 
i } . This means that Q 

(∞ ) 
i are 5-sextactic

points, otherwise, Q 

(∞ ) 
i are 1 -sextactic points and we obtain

Table 2 . 

2. Singular points 

The quintic C a having singular points if and only if, the param-
eter a = 0 , ±1 . We find that C 0 having a cusp at O = [0 , 0 , 1]
with δO 

= 4 , and C ±1 having two cusps at P 1 = [1 , 0 , 1] and
P −1 = [ −1 , 0 , 1] with δP 1 = δP −1 = 2 . 

Now, we compute the WGS at O . For this purpose, let θO 

:
˜ 
 0 −→ C 0 be the partial normalization of C 0 at the point O and

let ˜ O = θ−1 
O 

(O ) . To find the WGS at O it is sufficient to find the
˜ K ˜ C 0 

-WGS at ˜ O , putting in a system the equation of a generic
conic of P 

2 (C ) and the defining equation of C 0 (in a chosen
affine open subset of P 

2 (C ) ). The linear system 

˜ K ˜ C 0 
is base point

free, so I O 

( C 0 , D 0 ) = 0 , where 

C 0 : y 5 − x 

5 + x 

3 = 0 , 

D 0 : ax 

2 + by 2 + cxy + dx + ey + h = 0 . 

The strategy consists of eliminating the indeterminate y between
the two previous equations. The computations, practically im-
possible to deal with it by hand, have been performed using
MATHEMATICA. From the elimination we obtain the family
of polynomials: 

P(x ; a, b, c, d, e, h ) = (a + b + c )(a 4 + a 3 b + · · · + c 4 ) x 

10 

+ · · · + 5 dh 4 x + h 5 . 

For generic values of the parameters ( a , b , c , d , e , h ) one gets, as
one can easily check: 

ord 0 P(x ; a, b, c, d, e, h ) = 0 , ord 0 P(x ; a, b, c, d, e, 0) = 3 , 
ord 0 P(x ; a, b, c, d, 0 , 0) = 5 , ord 0 P(x ; a, b, c, 0 , 0 , 0) = 6 , 
ord 0 P(x ; a, 0 , c, 0 , 0 , 0) = 8 , ord 0 P(x ; a, 0 , 0 , 0 , 0 , 0) = 10 , 
ord 0 P(x ; 0 , 0 , 0 , 0 , 0 , 0) = ∞ , 

which claims that the WGS at O is G (O ) = { 1 , 4 , 6 , 7 , 9 , 11 } and
hence by using formulae (3) and (4) , the weight sequence at O is
w (O ) = { 0 , 10 , 29 , 57 , 92 , 137 } . 

By a similar manner, we can compute the WGS and the
weight sequences at P 1 and P −1 . We find 

G (P 1 ) = G (P −1 ) = { 1 , 3 , 5 , 6 , 8 , 11 } , 
w (P 1 ) = w (P −1 ) = { 0 , 5 , 15 , 29 , 47 , 73 } . 
3 . Smooth points 

Let C a be a smooth plane quintics defined by 

 a : f a (x, y ) = y 5 − x (x 

2 − 1)(x 

2 − a 2 ) = 0 . 

Here, we assume that a � = 0, ±1, we have 

div (x ) = 5 O −
4 ∑ 

i=0 

Q 

(∞ ) 
i , 
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div (y ) = O + P 1 + P −1 + P a + P −a −
4 ∑ 

i=0 

Q 

(∞ ) 
i , 

iv (dx ) = 4(O + P 1 + P −1 + P a + P −a ) − 2 
4 ∑ 

i=0 

Q 

(∞ ) 
i , 

here O, P 1 , P −1 , P a and P −a are the ramification points (for the
unction x and all of them are 3-flexes) on C a over x = 0 , 1, −1 ,
 and −a, respectively. 

Computing the resultant of the defining equation f a ( x , y ) of
 a and its associated Hessian H f a 

, we obtain the locations and
he weights of the flexes: 

es 
[

f a , H f a 
; y 

] = const.x 

3 (x 

2 − 1) 3 (x 

2 − a 2 ) 3 (h (x, a )) 5 , 

here 

 (x, a ) = 5(1 + a 2 ) x 

6 + 3(1 − 8 a 2 + a 4 ) x 

4 

+ 3 a 2 (1 + a 2 ) x 

2 + 2 a 4 . 

t is easy to classify the types of h ( x , a ) as follows: 

 (h ) = 

⎧ ⎨ 

⎩ 

(2 1 , 1 4 ) if a 2 + 1 = 0 , 
(3 2 ) if (a 2 + 4 a − 1)(a 2 − 4 a − 1) = 0 , 
(1 6 ) otherwise. 

hus, we have 

Table 3 Classification of flexes on C a . 

1-flex 2-flex 3-flex 

a = 0 10 0 2 
a = ±1 10 0 1 
a 2 + 1 = 0 20 5 5 
(a 2 + 4 a − 1)(a 2 − 4 a − 1) = 0 0 0 15 
Otherwise 30 0 5 

By computing the Wronskian W ( x , a ) of {1, x , y , xy , x 

2 , y 2 }.
e have 

 (x, a ) = const. ( h (x, a ) g(x, a ) ) /y 51 , 

here h ( x , a ) as above and 

(x, a ) = 9375(1 + a 2 )(1 − a 2 + a 4 ) 2 x 

26 

+ · · · + 603 a 16 (1 + a 2 ) x 

2 + 6 a 18 . 

oreover, we find that 

es [ h, g; x ] = const.a 72 (a 2 − 1) 36 (a 2 + 1) 2 

× (a 2 − 4 a − 1) 12 (a 2 + 4 a − 1) 12 . 

omputing the Groebner basis of the ideal (g, ∂g 
∂x , 

∂ 2 g 
∂x 2 ) we 

btain 

g, 
∂g 
∂x 

, 
∂ 2 g 
∂x 

2 

)
∩ C [ a ] 

= (a 24 (a 2 − 1) 12 (a 2 + 4 a − 1) 2 (a 2 − 4 a − 1) 2 ) . 

ence, g ( x , a ) has repeated roots of multiplicity ≥ 3 if and only
f, (a 2 ± 4 a − 1) = 0 . Actually in this case, as one can easily
heck T (g) = (6 2 , 1 14 ) . Now, by using Lemma 3 and Remark 2 ,

e have G
(1) If a 2 + 1 = 0 , then T (g) = (1 24 ) , 

(2) If a 2 ± 4 a − 1 = 0 , as we mentioned T (g) = (6 2 , 1 14 ) , 

(3) If a 2 ± a − 1 = 0 , then T (g) = (1 22 ) , 

(4) If P(a ) = 0 , In this case, we have P ( a ) | R 

( k ) for k = 1 , 2 but
the resultant Res [ P ( a ), R 

(3) ; a ] � = 0, It follows that s (g) =
2 . Therefore T (g) = (2 2 , 1 22 ) , where P(a ) = 46221
499388152810743 a 72 + · · · + 46221499388152810743 , 

(5) Otherwise, we have T (g) = (1 26 ) . 

By checking the repeated and common roots of h ( x , a ) and
 ( x , a ), we can classify the types of h ( x , a ) g ( x , a ) as follows: 

(1) ′ If a 2 + 1 = 0 , then T (hg) = (1 28 ) , 

(2) ′ If (a 2 ± 4 a − 1) = 0 , then T (hg) = ( 

the roots of h ︷︸︸︷ 
9 2 , 1 14 ) , 

(3) ′ If (a 2 ± a − 1) = 0 , then T (hg) = (1 28 ) , 

(4) ′ If P(a ) = 0 , then T (hg) = (2 2 , 1 28 ) , 

(5) ′ Otherwise, we have T (hg) = (1 32 ) . 

Take D = 2 
∑ 5 

i=1 Q 

(∞ ) 
i and consider the divisor 

 := 6 D + div (W (x, a )) + 15 div (dx ) . 

Then, w (P) := the multiplicity of P in the divisor M (see [12] ,
hapter VII, §4). Now, recall that the curve C a can be expressed
s 5-sheeted covering of P 

1 (C ) , by considering the formula (6)
note that w 6 (O ) = 137 and w 6 (P 1 ) = w 6 (P −1 ) = 73 ) and using
ables 2 and 3 we can classify the Weierstrass points on C a as in
able 4 . 

Table 4 The distribution of Weierstrass points on C a . 

Sing 1-flex 2-flex 3-flex 1-sext. 2-sext. 5-sext. 
( C a ) 

a = 0 1 10 0 2 45 0 0 
a = ±1 1 10 0 1 45 0 0 
a 2 +1 = 0 0 20 5 5 120 0 0 
(a 2 ± 4 a − 1) = 0 0 0 0 15 75 0 0 
(a 2 ± a − 1) = 0 0 30 0 5 110 0 5 
P(a ) = 0 0 30 0 5 115 10 0 
Otherwise 0 30 0 5 135 0 0 

e note from Table 4 that for any value of a the curve C a has no
-sextactic and 4-sextactic points. 

.2. The second example 

et C a be plane quintic curves given by 

 a : F a (X , Y , Z ) := Y 

3 Z 

2 − X (X 

2 − Z 

2 )(X 

2 − a 2 Z 

2 ) , a ∈ C . 

We apply our technique as follows: 

 . Singular points 

It is easy to show that the singular points of the quintic C a 

or a = 0 , ±1 are P 0 = [0 : 0 : 1] , P 1 = [1 : 0 : 1] and P −1 = [ −1 :
 : 1] with δP 0 = 3 , δP 1 = δP −1 = 1 . Furthermore, for all values of
 ∈ C , C a has P ∞ 

= [0 : 1 : 0] with δP ∞ 

= 2 as a singular point. 
By a similar strategy to that used in the first example, the

GS and the weight sequences at the points P ∞ 

, P 1 and P −1 are
iven by Table 5 . 

Furthermore, the point P 0 is a triple point, let Q 1 , Q 2 and
 3 be the preimages of P 0 on the normalization 

˜ C of C ,
y computing the gap sequences at these points, one gets 
 ( Q 1 ) = G ( Q 2 ) = G ( Q 3 ) = { 1 , 2 , 3 , 4 , 5 , 7 } . Thus, by using 
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Table 5 The WGS and Weierstrass weight sequences of the sin- 
gular points on C a . 

Point P P ∞ 

P 1 and P −1 

G ( P ) {1, 3, 5, 6, 8, 11} {1, 3, 4, 5, 6, 7} 
w (P) {0, 5, 15, 29, 48, 73} {0, 3, 8, 15, 24, 35} 

 

C

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formulae (1), (3) and (4) , we find that the WGS at the point P 0

is G ( P 0 ) = { 1 , 2 , 3 , 4 , 5 , 9 } , hence w ( P 0 ) = { 0 , 6 , 18 , 36 , 60 , 93 } . 
2 . Smooth points 

Let C a be smooth affine plane quintic curves defined by 

 a : f (x, y ) := y 3 − x (x 

2 − 1)(x 

2 − a 2 ) . 

By assuming that a � = 0, ±1, we have 

div (x ) = 3 A − 3 P ∞ 

, 

div (y ) = A + B + C + D + E − 5 P ∞ 

, 

div (dx ) = 2 A + 2 B + 2 C + 2 D + 2 E − 4 P ∞ 

, 

where A , B , C , D , E and P ∞ 

are the ramification points (for the
function x ) on C a over x = 0 , 1 , −1 , a, −a and ∞ , respectively.
It is easy to show that all of the points A , B , C , D and E are
1-flexes. 

By computing the resultant of the defining equation f a ( x ; y )
of C a and its associated Hessian curve H f a , we obtain the loca-
tions and the weights of the flexes 

Res [ f a , H f a ; y ] = 216(x (x 

2 − 1)(x 

2 − a 2 ))(h (x, a )) 3 , 

where 

h (x, a ) = −5 x 

8 + 9(a 2 + 1) x 

6 − 20 a 2 x 

4 + 3 a 2 (a 2 + 1) x 

2 + a 4 . 

It turns out that the types of h ( x , a ) are 

T (h ) = 

{
(2 2 , 1 4 ) , if P(a ) = 0 , 
(1 8 ) , otherwise , 

where 

P(a ) = 2187 a 8 + 24948 a 6 − 52478 a 4 + 24948 a 2 + 2187 . 

Thus, we have Table 6 

Table 6 Classification of flexes on C a . 

1-flex 2-flex 3-flex 

a = 0 8 0 0 
a = ±1 13 0 0 
P(a ) = 0 17 6 0 
Otherwise 29 0 0 

The Wronskian W ( x , a ) of (1, x , y , x 

2 , xy , y 2 ) can be written
as, 

 (x, a ) = const. (h (x, a ) g(x, a )) /y 29 , 

where h ( x , a ) is as above and g ( x , a ) is given by 

g(x, a ) = −350 x 

36 + 4860(1 + a 2 ) x 

34 

+ · · · − 216 a 16 (1 + a 2 ) x 

2 − a 18 . 
Moreover, we find that 

Res [ h, g; x ] = const.a 84 (a 2 − 1) 36 (P(a )) 6 . 

Computing the Groebner basis of the ideal 
(
g, g x , g xx 

)
, we

have 

(g, g x , g xx ) ∩ C [ a ] = ((a 2 − 1) 12 a 24 P(a )) . 

Hence, g ( x , a ) has repeated roots of multiplicity ≥ 3 if and only
if, P(a ) = 0 . In fact, in this case, we have T (g) = (3 2 , 1 30 ) . Now,
by using Lemma 3 and Remark 2 , we have 

(1) If P(a ) = 0 , then T (g) = (3 2 , 1 30 ) as we mentioned, 
(2) If Q (a ) = 0 , then T (g) = (2 2 , 1 32 ) because Q ( a ) | R 

( k ) for
k = 1 , 2 but Res [ Q ( a ), R 

(3) ; a ] � = 0, therefore s (g) = 2 ,
where Q (a ) = const.a 112 + · · · + const., 

(3) Otherwise, we have T (g) = (1 36 ) . 

By checking the repeated and common roots of h ( x , a ) and
g ( x , a ), one can classify the type of h ( x , a ) g ( x , a ) as follows: 

(1) ′ If P(a ) = 0 , then T (hg) = ( 

the roots of h ︷︸︸︷ 
5 2 , 1 34 ) . 

(2) ′ If Q (a ) = 0 , then T (hg) = ( 2 2 , 1 40 ) . 

(3) ′ Otherwise, T (hg) = (1 44 ) . 

Take D = 10 P ∞ 

and consider the divisor 

M := 6 D + div ( W (x, a ) ) + 15(dx ) . 

Then, w (P) := the multiplicity of P in the divisor M . 
Now, recall that the curve C a can be expressed as 3-sheeted

covering of P 

1 (C ) . By considering the formula (6) (note that
w 6 (P ∞ 

) = 73 , w 6 (P 1 ) = w 6 (P −1 ) = 35 and w 6 (P 0 ) = 93 ) and us-
ing Tables 5 and 6 , one can find the distribution of the Weier-
strass points on C a as in Table 7 . 

Table 7 The distribution of Weierstrass points on C a . 

Sing ( C a ) 1-flex 2-flex 3-flex 1-sext. 2-sext. 

a = 0 2 8 0 0 36 0 
a = ±1 2 13 0 0 54 0 
P(a ) = 0 1 17 6 0 90 0 
Q (a ) = 0 1 29 0 0 96 6 
Otherwise 1 29 0 0 108 0 
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