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When a system consisting of independent components of the same type, some appro-
priate actions may be done as soon as a portion of them have failed. It is, therefore, important to
be able to predict later failure times from earlier ones. One of the well-known failure distributions
commonly used to model component life, is the modified Weibull distribution (M WD). In this paper,
two pivotal quantities are proposed to construct prediction intervals for future unobservable lifetimes
based on generalized order statistics (gos) from M WD. Moreover, a pivotal quantity is developed to
reconstruct missing observations at the beginning of experiment. Furthermore, Monte Carlo simula-
tion studies are conducted and numerical computations are carried out to investigate the efficiency of

presented results. Finally, two illustrative examples for real data sets are analyzed.
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1. Introduction

Prediction of future events (or reconstructing past events which
have occurred but were unobservable) on the basis of past and
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present available information is one of the main problems in
statistics. This problem has been extensively studied by many
authors, including Lingappaiah [1], Aitchison and Dunsmore
[2], Lawless [3.4], Kaminsky and Rhodin [5], Kaminsky and
Nelson [6], Patel [7], Raqab et al. [8], Barakat et al. [9], El-
AdII[10], EI-Adll et al. [11], Barakat et al. [12] and AL-Hussaini
et al. [13].

The ordered random variables without any doubt play
an important role in such prediction problems. Since Kamps
[14] had introduced the concept of gos as a unification of sev-
eral models of ascendingly ordered random variables, the use of
such concept has been steadily growing along the years. This is
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due to the fact that such concept includes important well-known
models of ordered random variables that have been treated sep-
arately in the statistical literature. Kamps [14] defined gos first
by defining uniform gos and then using the quantile transfor-
mation to obtain the X (1, n, m, k), --- , X (n, n, m, k) based on
cumulative distribution function (cdf) F. The joint probabil-
ity density function (jpdf) of X (1, n,m, k), --- , X (n, n, m, k) is
given by

fX(l,n,rh,k),...,X(n,n‘ﬁLk) (xl X )
. seees Ap

n—1

n—1
=k| [ (H (1- F(x»)’"ff(x;)) (A= fa))* " f ),
j=1

i=1

on the cone F'(0)<x <---<x,<F71(1-) of R"
The model parameters are neN,n>2, k>0,m=
(my,...,m,_y) e R M, = Z;;: m;, such that y, =k+
n—r+M,>0forallre{l,...,n— 1} and y, = k. Particular
choices of the parameters yy, - - - , ¥, lead to different models,
eg.,m-gos (yy=k,yy=k+m—r)im+1),r=1,--- ,n—1),
oos (yy=lLy,=n—r+1,r=1,....n—1, ie, k=1,m =
0,i=1,---,n—=1), sos (yu=0any,=m—r+ Doy, >0,
r=1,...,n—1), pos with censoring scheme (Ry,..., Ry)
w=Ru+lLy=n—r+1+YL R, if r=M-1
and y,=n—r+14+Ry, if r>M) and upper records
(yy=11<r<n ie, k=1m=-1,i=1,...,n—1).
Therefore, all the results obtained in the model of gos
can be applied to the particular models choosing the re-
spective parameters. For more details in the theory and
applications of gos see Kamps [14], Ahsanullah [15],
Kamps and Cramer [16], Cramer [17], Barakat et al. [9],
El-Adll [18], Barakat [19], Atya [20] and Ahmad et al.
[21].

Weibull distribution was originally introduced by the
Swedish Waloddi Weibull (see Weibull [22]) which currently can
be considered as one of the most important distributions in
life testes and reliability engineering. Moreover, for more than
60 years Weibull distribution received increasing attention from
several researchers in a wide variety of applications. Because
of its various shapes of the probability density function and its
convenient representation of the distribution/ survival func-
tion, the Weibull distribution has been used very effectively for
analyzing lifetime data, particularly when the data are censored,
which is very common in most life testing experiments. More-
over, Weibull distribution and its extensions are considered as
the most important models in modern statistics because of its
ability to fit data from various fields, ranging from life data to
weather data or observations made in economics and business
administration, in hydrology, in biology, and in the engineering
sciences. Also, it has been used in many different areas such
as material science, reliability engineering, physics, medicine,
pharmacy economics, quality control, biology and other fields
(for more details and applications of Weibull distribution see
Rinne [23]).

Since 1958, the Weibull distribution has been modified by
many researchers to allow for non-monotonic hazard func-
tions. Lai et al. [24] proposed a three-parameter distribu-
tion known as MWD by multiplying the Weibull cumula-
tive hazard function, ax?, and ¢** which was later general-
ized to exponentiated form by Carrasco et al. [25]. Recent
works of the modified Weibull include Sarhan and Zaindin
[26], Sarhan and Apaloo, Atya [27,20] and Almalki and
Nadarajah [28].

The pdf of the MWD is given by

a(B + rx)xP et x> 0;
6 ) - (1.1)

, x <0,

f(x;a,/\,ﬂ)={

where «, B, A are positive real numbers. The distribution func-
tion (cdf) is

0, x <0;

_axBerx
—e s

F(x;a, 1, B) = { (1.2)

x> 0.

The rest of this paper is organized as follows. In Section 2,
the predictive pivotal quantities and their exact distributions are
obtained. Section 3, includes simulation studies. Some applica-
tions for real data are presented in Section 4.

2. Pivotal quantities and their distributions

In this section, three pivotal quantities are proposed, two of
them are used to construct prediction intervals for future ob-
servations from MWD based on gos, while the third is used to
reconstruct missing observations. The cdf for each of the piv-
otal quantities is derived and then the limits of the predictive
confidence interval are obtained. Furthermore, an approximate
value of the expected upper limit for each predictive confidence
interval is derived.

2.1. Prediction intervals of future observations

Suppose that X (1, n, m, k), ..., X (n, n, m, k) are gos based on
MWD with cdf given by (1.2). Define the following two pivotal
quantities

Y(s,n,m k) —Y(r,nmk
P] = P] (r, S, n,ﬁ’l,k) = (5”17}7;/’(,.)” n~/l (]:)’Lm’ ),
Y(s,n,m k) —Y(r,n,m,k)

T;‘, n

@.1)

P, = P(r,s,n,m, k) =

2.2)

where
Y (i, nom, k) = a(X (i n, i, k)P Xnmb i 2 n, (2.3)
Tow=Y vi(Y(i.n k) = Y(i—1,nm k), with

i=1

Y (0, n, i, k) = 0. (2.4

The main aim of this subsection was to derive the exact distribu-
tions of P; and P, and to show that their distributions are free of
the original distribution parameters, o, 8 and A. The results are for-
mulated in the following two theorems.

Theorem 2.1. Suppose that X (1, n,m, k), ..., X (r,n, m, k) are the
first observed gos based on MWD with pdf (1.1) . Then the exact
cdf of the pivotal quantity Py, Fp (p1), is given by
K r (r)
a; " (s)a;(r) -
Fp(p)=1-Co1 Y. Z%(Vjﬂfm) L om0,

1

i=r+1 j=1
2.5)
where,
5 r 1
Coa=[]varn= ] ——— 1<i<r=n
=1 =l Yjn — Yin
u 1
anda?”(s): H - r+l<i<s<n
Jmr i Yin — Vin

Consequently, an observed 100(1 — 8)% predictive confidence interval
(PCI) for X (s,n,m, k), s > ris (¢, uy), where £ = x,, and u; can be com-
puted numerically from the relation
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u‘lge“l = (1 +p1,5)xrﬂek"‘". (2.6)

Moreover, the expected value of the upper limit of a 100(1 — §)% PCI of
X (s, n, m, k) can be approximated by solving the nonlinear equation

1 U
(E[U])P U = Ml +P1,a);yi L (2.7

where x, is an observed value of X (1, n, m, k) and p, s satisfies the nonlin-
ear equation Fp (p1s) =1 —34.

Proof. The joint pdf of X (r, n, m, k) and X (s, n, m, k), f.(x,, Xy),
was derived in [16]. Namely,

S r f(x) Yin
Srsir ) = Cotn 3 Zaﬁ”maj(r)(nxi))

i=r+1 j=I

r<s=<mn x <X

L) S
F(x,)) =2 2
X () 50 Fo

(2.8)

For simplicity, we write X; instead of X (i, n, m, k) and Y; instead
of Y (i, n, m, k). Since the transformations, y, = otx,ﬂ e and p; =
(%‘:)ﬂe’\(”’"") — 1, are monotone increasing from (0, 00) x (0, 0o)
into (0, 00) x (0, 00), the joint pdf of P, and Y, can be obtained by
a standard method of transformations of random variables. That

is,

Sy, (P1.ye) = 1 fxx, G (p1s ye), Xo(p1, yi))

s r
=Gt Y0 YAV @y vty

i=r+1 j=1
p1>0, y,>0,
where
= dx, Oxg | xpxl 7P
= ay, dpy - a(B+Ax,) (B + Axs)erss’

By noting that fp, (p1) = [~ f.y, (P1. yr)dy,, we have

frion =Cot Y > a”©)a;Oyin+ viap 17, p1 > 0.

i=r+l j=1

Hence (2.5) follows directly by evaluating the integration
' fp (u)du. The limits of a 100(1 — 8)% PCI of X; can be ob-
tained by noting that Fp (p15) = Pr(P < p1s) = 1 — 8. Which can
be rewritten as
PrXfPer < XPrM < (1 4+ prs)XPe™) =1-34. (2.9)
Clearly, a lower limit of the future observation x; is the preceding
observed value x,. On the other hand, the actual lower limit of PCI
defined by (2.9) is a value ¢ satisfied the equation x?e** = ¢#e*.
Since the equation f(x) = xf¢** is monotone increasing (for all
x > 0), then f(x,) = f(£) has a unique solution, which is £ = x,.
This shows that the actual lower limit of PCI defined by (2.9) is
X,. An approximate upper limit, «; can be obtained by solving the
nonlinear Eq. (2.6). The expected value of the upper limit can be
approximated using (2.9) by the following sequence of inequalities

(ELXD ) < E[X[ ] < E[(1+ po) XFer™]

= E[(I+pa)Vl=(1+pis) > v
i=1

which completes the proof of the theorem. [J

Lemma 2.1. The random variable T,, defined by (2.4) follows
C(r, 1) = gamma(r, 1) distribution with shape parameter r and scale
parameter 1. Moreover, the random variables T,, and the subrange

W,y =Y (s,n,m, k) — Y (r,n,m, k) are independent.

Proof. It can be proved that the random variables Y (i, n, m, k), i =
1,2,...,n are gos based on standard exponential distribution
Exp(1) by obtaining their joint pdf. The proof is similar to the
proof of Lemma 2.1 of [11] with suitable modifications. Therefore,
by Theorem 3.5.5 of [14], T;.,, ~ I'(r, 1). Furthermore W, can be
written as

W.e = Y(s,n,mk)—Y(r,nmk)
=Y (YG.nsm k) —Y(@i—1,nmk)

i=r+1

= Z Z(i,n,m, k)/Vin.

i=r+1

where the normalizing spacings Z(i,n,m,k),i=1,2,...,n, are
independent and identically distributed according to Exp(1)
(see [14] Theorem 3.3.5). Therefore, W,, is independent of

Z(i,n,m,k),i=1,2,...,r. Hence the lemma. (J

Theorem 2.2. Under the same conditions of Theorem 2.1, the cdf of
the pivotal quantity, P, takes the form

Cot 4 .
Er(p)=1— 2= 3 “—=(+yip) "
ey -

7 >0, (2.10)

i

Therefore, an observed 100(1 — 8)% PCI for X (s,n,m, k), s > r is
(€, up), where £ = x,, and u, can be obtained numerically from the
relation

aul e = t,,pr 5+ axf e

Furthermore, the expected value of the upper limit for the PCI of
X (s, n, m, k) can be approximated from the nonlinear equation

,
(B[P = rpy s+ 3"y,
i=1

2.11)

where t,, is an observed values of T, and p, s satisfies the nonlinear
equation, Fp,(p25) =1 —6.

After obtaining the distribution of W,,, the proof of
Theorem 2.2 became similar to the proof of Theorem 2.1 with
suitable modifications, so we omitted it.

2.2. Reconstructing missing observations

In this subsection a pivotal quantity is introduced to reconstruct
missing observations. The proposed pivotal quantity is defined
as
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Y n,k)y— Y@, nmk
Py = Py(r, 5, n, i, k) = (S’n’n;’(s)n ﬁq(;()nm ),

(2.12)

where Y (i, n,m, k),i = 1,2, ..., nare defined by (2.3).

Theorem 2.3. Based on MWD, assume that the first
gos, X(1,n,m,k),...,X(s—1,n,m, k) are missing and that
X (s,n,m, k), ..., X(n,n,m, k) are observed gos. Then the cdf of
the pivotal quantity, P;, is

Fp,(p3) = P(P; < p3)

— e Y Y a6y ’”

fnd e vilyi + i—vppsl’
2.13)

0<p3§1,

Moreover, a 100(1 — 8)% observed reconstructive confidence in-
terval (RCI) for X (r,n,m,k),r <s is ({3,u), where u= x,
and €5 can be calculated numerically from the relation Zf M =
(1- p3,5)xfe“"‘, where xg is an observed value of X (s, n, m, k).
In addition,a 100(1 — §)% the expected lower limit for the RCI
of X (r,n,m, k) based on Ps, can be approximated by solving the
nonlinear equation,

1 s
(ELLsD e = — (1= p3s) 3 v, (2.14)
i=1

where ps s satisfies the nonlinear equation Fp,(p35) =1 — 8.

Proof. As in the proof of Theorem 2.1, the joint pdf of P; and
Y, can be obtained and written as

Table 1  95% coverage probability, simulated average upper limits, observed average upper limits and expected intervals width based on

Py, and P,, respectively, for oos model from MW D(0.3, 1.25,0.5).

r s CPp%  CPp%  L=X, X, X, E[Up]  E[Up)] Up, (RMSEp,) Up, (RMSEp,)
9 10 94.975 94.983 1.0704 11619 12539 13861 1.3851 1.3587 1.3582
(0.1711) (0.1705)
11 94.998 94.982 1.0704 12539 13476 1.5591 1.5574 1.5284 1.5273
(0.2491) (0.2478)
12 95.100 95.049 1.0704 1.3476 14433 1.7143 1.7120 1.6808 1.6791
(0.3123) (0.3103)
13 94.954 95.007 1.0704 1.4433 15436 1.8634 1.8605 1.8273 1.8251
(0.3663) (0.3638)
14 94.950 94.952 1.0704 15436 1.6496  2.0120  2.0085 1.9733 1.9708
(0.4146) (0.4116)
15 94.950 94.961 1.0704 1.6496 17638 2.1644 21605  2.1233 2.1204
(0.4590) (0.4555)
16 94.976 94.990 1.0704 17638 1.8921 23258  2.3215 22822 2.2789
(0.5009) (0.4970)
17 94.961 94.955 1.0704 1.8921  2.0422 25035 24987 24574 2.4537
(0.5403) (0.5359)
18 95.056 95.088 1.0704 20422 22357 27108 27055  2.6618 2.6578
(0.5743) (0.5696)
19 95.014 95.021 1.0704 22357 25417 29783 29727  2.9259 2.9216
(0.5976) (0.5928)
2 13 94.991 94.968 1.3476 1.4433 1.5436  1.6673 1.6655 1.6423 1.6411
(0.1707) (0.1694)
14 94.952 94.962 1.3476 1.5436  1.6496  1.8491 1.8458 1.8216 1.8193
(0.2467) (0.2442)
15 94.999 94.970 1.3476 1.6496 1.7638 20199 2.0153 1.9902 1.9868
(0.3092) (0.3055)
16 95.058 95.021 1.3476 1.7638 1.8921 2.1938 21879 21619 2.1575
(0.3647) (0.3599)
17 95.022 94.987 1.3476 1.8921 20422 23810 23740  2.3470 2.3416
(0.4156) (0.4097)
18 95.083 95.054 1.3476 20422 22357 2.5965 25884 2.5602 2.5539
(0.4614) (0.4544)
19 95.122 95.097 1.3476 22357 25417 2.8726 28634  2.8335 2.8263
(0.5024) (0.4950)
15 16 95.201 95.206 1.6496 17638 1.8921  2.0213  2.0173 1.9959 1.9936
(0.1956) (0.1932)
17 95.068 95.110 1.6496 1.8921  2.0422 22506 22433 2.2228 22179
(0.2828) (0.2777)
18 95.069 95.034 1.6496 20422 22357 24915 24811 24614 2.4540
(0.3571) (0.3490)
19 95.069 95.094 1.6496 22357 25417 27875 27741 2.7548 2.7449
(0.4274) (0.4177)




Table 2 95% coverage probability, average lower limit, Y:, expected values of the upper limits, average upper limits, and estimated root-mean-square errors for pos model from

MW D(0.03,0.25, 0.1), with pos scheme Ry = R, = R3;=0,Ry = Rs =R =1R; =2, Rg =3, Ry =4, Rjp = 5, Rj; = 6, R = 7 based on Py, and P, respectively.

*

r s CPp,% CPp,% L=X, X E[Up,] E[Up,] Up, (RMSEp,) Up, (RMSEp,)
6 7 95.001 95.001 9.9738 11.4717 15.2452 15.2423 14.6051 14.6036
(2.7028) (2.7016)
8 95.058 95.059 9.9738 12.8885 17.7208 17.7164 17.0484 17.0456
(3.7377) (3.7351)
9 95.056 95.080 9.9738 14.2955 19.8542 19.8486 19.1609 19.1572
(4.4538) (4.4502)
10 95.117 95.112 9.9738 15.7804 21.9537 21.9471 21.2442 21.2397
(4.9690) (4.9645)
11 95.009 95.010 9.9738 17.5232 24.3194 24.3121 23.5956 23.5903
(5.2668) (5.2617)
7 8 95.070 95.085 11.4717 12.8885 16.3523 16.3482 15.7856 15.7838
(2.4692) (2.4676)
9 95.079 95.087 11.4717 14.2955 18.7858 18.7791 18.1961 18.1925
(3.4232) (3.4198)
10 95.106 95.149 11.4717 15.7804 21.0384 21.0298 20.4326 20.4276
(4.0934) (4.0886)
11 95.022 95.020 11.4717 17.5232 23.5162 23.5060 22.8966 22.8902
(4.5499) (4.5437)
8 9 95.094 95.103 12.8885 14.2955 17.6233 17.6166 17.1090 17.1065
(2.3759) (2.3729)
10 95.007 95.031 12.8885 15.7804 20.1758 20.1648 19.6438 19.6383
(3.2861) (3.2806)
11 94.980 94.961 12.8885 17.5232 22.8179 22.8033 22.2720 22.2638
(3.9416) (3.9337)
9 10 95.081 95.090 14.2955 15.7804 19.1598 19.1474 18.6850 18.6802
(2.4210) (2.4156)
11 95.028 94.978 14.2955 17.5232 22.1252 22.1042 21.6353 21.6244
(3.3749) (3.3641)
10 11 94.878 94.894 15.7804 17.5232 21.2388 21.2118 20.7889 20.7775
(2.7696) (2.7578)

€1 SONSIIEIS JOPIO POZI[BISUIT UO PIseq dWNAJI [[NGISAY POYIPOW J[qLAIISGOUN FUISSIW PUB SININJ JO UOTIONIISUOIII PUB UOTIIPAI]
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5 r
fP}-}'A (p3,y5) = Coy Z Zal@ (S)aj(’»)yxe_[yj,n+(Vi.n_Vf.n)f’3]y.s7
i=r+1 j=1

0<pi<l1, y >0, (2.15)

Thus the pdf of P; takes the form

‘ K r . 5
fP}(p}) = C\‘*l Z Za’( )(S)a/(r)[yj,n + (yi,n - yj,n)pS] 5
i=r+1 j=1
0<ps <l

Therefore, we get (2.13). The rest of the proof is similar to the
proof of Theorem 2.1. [J

3. Simulation

In this section, simulation studies are carried out to demonstrate
the efficiency of the theoretical results presented in the previous
Section. For this purpose, the following three special cases from
gos model are considered.

1. ooswithy,=n—i+1forn=20,r=9,12,15and s = r +
L,r+2,...,n—1.

r

2. pos with y,,=k=R,+1,y,=N—-r+1 —Zj;lle:
n—r+1+3"_R;, and N=n+3"_| R;, is the total
items put on a life test, R; € Ny. forn =12,r=6,7,8,9, 10
and s=r+1,r+2,...,n—1, for two different censoring
schemes.

The estimated root-mean-square errors for the upper PCI
(lower RCI), are obtained from the relations

I+ . ORI
RMSEp = | ~— > (Un() = X3, (DY i=1.2. (G.1)
j=1

1

M
RMSEp, = | 5= D (L, () = X7 (D), (3.2
J=1

M —

where Up, (), i = 1, 2 denote the upper limits for the PCI of the
Jjth sample, Lp, (/) is the lower limit for RCI of the jth sample
and X;*(j) denote the ith gos for the jth sample, i=r—1 or
s + 1. To apply the methods presented in Theorems 2.1, 2.2 and
2.3, simulation studies are performed. For this purpose, an al-
gorithm is constructed to generate gos samples based on M WD.
Moreover, the algorithm is used for obtaining the percent of the

Table 3  95% coverage probability, average lower limit, Y;, expected values of the upper limits, average upper limits, and estimated root-
mean-square errors for pos model from MW D(0.03,0.25, 0.1), with pos scheme Ry =7, R, =6, R3 =5, R4 =4,Rs =3, R¢ =2, R; =

Rg = Ry =1, Rjg = R;; = R, = 0. based on P;, and P, respectively.

*

r s CPp,% CPp,% L=X X E[Up,] E[Up,] Up, (RMSEp,) Up, (RMSEp,)
6 7 95.032 95.001 14.8565 17.7579 23.9931 23.7931 23.1611 23.0574
(4.3934) (4.2893)
8 95.092 95.062 14.8565 20.5214 28.1155 27.8295 27.2611 27.0845
(5.6634) (5.4792)
9 95.059 95.086 14.8565 23.3754 31.8363 31.4955 30.9673 30.7416
(6.3255) (6.0865)
10 95.106 95.124 14.8565 26.7235 36.0222 35.6446 35.1407 34.8816
(7.0813) (6.7998)
11 95.016 94.972 14.8565 30.2375 40.0649 39.6621 39.1741 38.8916
(7.2169) (6.9184)
7 8 95.102 95.085 17.7579 20.5214 26.4135 26.1673 25.6352 25.5126
(4.1063) (3.9821)
9 95.097 95.116 17.7579 23.3754 30.7345 30.3710 29.9391 29.7186
(5.2931) (5.0673)
10 95.146 95.152 17.7579 26.7235 35.2393 34.7981 34.4309 34.1422
(6.3230) (6.0167)
11 95.023 94.996 17.7579 30.2375 39.4368 38.9448 38.6194 38.2840
(6.6567) (6.3104)
8 9 95.099 95.103 20.5214 23.3754 29.2834 28.9940 28.5421 28.4000
(4.0941) (3.9477)
10 94.989 95.031 20.5214 26.7235 34.4059 33.9678 33.6498 33.3841
(5.5297) (5.2535)
11 94.994 94.926 20.5214 30.2375 38.8376 38.3082 38.0722 37.7247
(6.1215) (5.7730)
9 10 95.013 95.090 23.3754 26.7235 33.2494 32.8706 32.5214 32.3295
(4.5042) (4.3035)
11 94.981 94.975 23.3754 30.2375 38.1774 37.6258 37.4388 37.0984
(5.5472) (5.2139)
10 11 94.919 94.894 26.7235 30.2375 36.9747 36.4350 36.2020 35.9266
(4.6385) (4.3775)
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coverage probability, the lower and upper limits as well as the
expected values of the upper(lower) limits, and the root-mean-
square errors defined by (3.1) and (3.2), respectively.

Algorithm.

Step 1
Step 2

Step 3
Step 4

Step 5

Step 6

Table 4 95% coverage probability, expected values of the lower limits, average lower limits, X,

Choose the values of the MWD parameters «, 8, and
A.

Determine the values of r, s, and n.

Select the gos sub model (here oos and pos).

Solve the nonlinear equations Fp,(p;s) = 1 — 8, to ob-
tain the values of p; s fori = 1,2 or 3 at § = 0.05, where
Fp(pi),i=1,2,3 are given by (2.5), (2.10), and (2.13),
respectively.

Solve the nonlinear Egs. (2.7), (2.11) and (2.14) to ap-
proximate E[Up,], E[Up,] or E[Lp,].

Generate n gos, i.e. X(1,n,m, k),..., X(n, n,m,k),
based on MWD with parameters «, 8, and A. (by de-
veloping the algorithm in [9,18] to MWD).

Step 7

Step 8

Step 9
Step 10

Step 11

Define three counters, ¢;, i = 1, 2, 3 to determine if the
observed value of the sth gos for PCI (or rth for RCI)
lies within the interval or not.

Calculate the lower and the upper limits of the PCI (or
RCI) based on the pivotal quantities Py, P, (or P3), us-
ing Theorems 2.1,2.2.2.3, respectively.

Repeat steps 6, 7, and 8, M = 100, 000 times.
Compute the percent of coverage probability, 100 x 1%,
foreach i = 1, 2, 3 and the average of the upper (lower)
limits based on P, P, (or P;).

Compute the root-mean-square errors by relations
(3.1)and (3.2).

Remark. Clearly, the quantal function of the MWD has no ex-
plicit form. Therefore each gos, X*, can be generated by solv-
ing the nonlinear equation F(X*) = 1 — [[/_, W}, with respect
to X*, where W; is a random number generated from beta

¢

—k —x .
.1, X,, X estimated root-mean-square

errors and coefficient of variation C.V . for oos model from M W D(0.0025, 2.25, 0.01).

*

*

r s CPp,% E[Lp,] Lp, X X, U=X, RMSEp, CV.
10 9 94.97 8.4292 8.3306 8.7798 9.3679 9.9372 0.8641 0.1037
8 94.62 7.5209 7.4331 8.1779 8.7798 9.9372 1.1529 0.1551
7 94.59 6.7051 6.6270 7.5552 8.1779 9.9372 1.3569 0.2047
6 94.87 5.9135 5.8448 6.8797 7.5552 9.9372 1.4947 0.2557
5 94.75 5.1081 5.0489 6.1528 6.8797 9.9372 1.5992 0.3168
4 94.73 4.2636 4.2142 53381 6.1528 9.9372 1.6658 0.3953
3 94.86 3.3372 3.2987 4.3442 5.3381 9.9372 1.6620 0.5038
2 95.17 2.2693 2.2431 2.9744 4.3442 9.9372 1.5306 0.6824
8 7 95.14 7.2029 7.0854 7.5552 8.1779 8.7798 0.9044 0.1276
6 95.26 6.2190 6.1178 6.8797 7.5552 8.7798 1.1983 0.1959
5 95.06 5.3103 5.2240 6.1528 6.8797 8.7798 1.4018 0.2683
4 95.01 4.3949 4.3236 53381 6.1528 8.7798 1.5393 0.3560
3 95.00 3.4182 3.3629 4.3442 5.3381 8.7798 1.5877 0.4721
2 95.22 23109 2.2735 2.9744 4.3442 8.7798 1.4989 0.6593
6 5 94.79 5.7980 5.6753 6.1528 6.8797 7.5552 0.9866 0.1738
4 94.90 4.6675 4.5690 53381 6.1528 7.5552 1.2947 0.2834
3 94.99 3.5724 3.4972 4.3442 5.3381 7.5552 1.4550 0.4161
2 94.92 2.3861 2.3360 2.9744 4.3442 7.5552 1.4490 0.6203
4 3 95.18 4.0175 3.8925 4.3442 53381 6.1528 L1211 0.2880
2 95.06 2.5693 2.4896 2.9744 4.3442 6.1528 1.3337 0.5357

Table 5 Fitting the data of Example 4.1 to MWD based on two different methods for complete and censoring samples with comparison.

Method Estimates of parameters (complete sample) L AIC BIC AIC, K-S p-value

MLE’s & = 0.0352166, B = 0.0185766, A = 0.0735069 —38.517 83.035 85.868 84.447 0.1480 0.746

LSE’s & = 0.0000173, B = 2.93646, A = 5.86338 x 10~ 13 —35.915 77.831 80.664 79.242 0.0921 0.992
Estimates of parameters (Type II right censoring)

MLE’s & = 0.0084041, B = 0.0447932, & = 0.11646 —23.675 53.351 56.184 54.763 0.18829 0.456

MLSE’s & = 0.000241344, B = 1.76035, & = 0.0439156 —23.449 52.898 55.674 55.731 0.11409 0.942

L denote the log-likelihood function computed at the estimated parameters.
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Table 6 Upper limits and their expected values for 99% PCI of X*, s = 15, 16, 17, 18, 19.

r s L=Xr* Xv* X:{—l E[Upl] E[UPZ] Upl Up2

14 15 43 47 51 51.4281 51.3157 50.7331 50.6960
16 43 51 55 55.0885 54.9179 54.3724 54.3013
17 43 55 55 58.7576 58.5392 58.0220 57.9224
18 43 55 68 63.1233 62.8637 62.3664 62.2437
19 43 68 - 69.9820 69.6897 69.1950 69.0607

Table 7 Fitting the data of Example 4.2 to MWD based on two different methods for complete and censoring samples with comparison.

Method Estimates of parameters (complete sample) L AIC BIC AIC, K-S p-value

MLE’s & = 0.0988712, B = 0.0709469, A = 0.711829 7.712 —9.424 —6.436 —8.090 0.268 0.093

LSE’s & = 0.152408, B = 2.18851, & = 3.76463 x 1077 14.229 —22.459 —19.471 —21.125 0.145 0.741
Estimates of parameters (type II right censoring)

MLE’s @ = 0.0084041, B = 0.0447932, % = 0.11646 —23.675 53.351 56.184 54.763 0.18829 0.456

MLSE’s & =0.146178, B = 2.25134, & = 3.75932 x 10~ 15.304 —24.608 —21.621 —23.275 0.1397 0.780

Table 8 Upper limits and their expected values for 99% PCI of X*, s = 16, 17, 18, 19, 20.

r S = )(,* XS* AX;H E[UPI] E[Upz] Upl UPZ

15 16 2.6260 2.7780 2.9510 3.4746 3.4611 3.4397 3.4211
17 2.6260 2.9510 3.4130 3.9243 3.9017 3.8849 3.8549
18 2.6260 3.4130 4.1180 4.4219 4.3899 4.3774 4.3358
19 2.6260 4.1180 5.1360 5.0813 5.0387 5.0302 4.9751
20 2.6260 5.1360 - 6.2846 6.2273 6.2214 6.1468

distribution with parameters 1, y;. The computations are car-
ried out by Mathematica 9 and the results are presented in
Tables 1-4.

4. Illustrative examples

In this section, two real data sets are analyzed to explain the
practical importance of the presented methods.

Example 4.1 (Sulfur Dioxide (1-Hour Averages)). The first data
set presented here were obtained through the courtesy of the
South Coast Air Pollution Control District (SCAPCD) of the
State of California which was analyzed by Roberts [29]. The
annual maxima of sulfur dioxide 1 — /r average concentrations
(pphm) are,

47 41 68 32 27 43 20 27 25
55 40 55 37 28 34.

18 33 40 51

(Long Beach, CA from 1956 to 1974, Data Courtesy South
Coast Air Pollution Control District)

Firstly, it is shown that (see Table 5), the MWD fit the data
well. The distribution parameters are estimated by maximum
likelihood (ML) and the least square (LS) methods. Based on
Kolmogorov—Smirnov (K-S) test statistics (Kolmogorov [30]),
the Akaike information criterion (4/C), Bayesian information
criteria (BIC), corrected Akaike information criterion (41Cc)

(see Akaike [31], Schwarz [32] and Bozdogan [33], Hurvich [34]),
the LS gives better fitting than ML for the complete data. More-
over, an application to the modified least square method (MLS)
for censoring data which has been introduced by El-Adll and
Aly [35], reveals that it is also better than ML for censoring data
of our example. The modified least square estimates(MLSE’s)
of parameters can be obtained by minimizing the
function,

. SN2
LS*((J(, )\., ﬁlX) = Z <F(xi:n; o, )‘" 18) - I’l-:— 1)

i=1

2
+(n—r)(F(xr:n§0"}"ﬂ)_ n-: 1) ’

with respect to the parameters «, A and .

In Table 6, we obtain 99% PCI for X, s = 15, 16, 17, 18, 19,
based on the first 14 observations. Since the last five obser-
vations are assumed to be unknown, estimates of parameters
based on type II right censored sample with » = 19 and r = 14
by MLSM.

Example 4.2 (Biometric Data). The second data set is an appli-
cation of our results in biometric. The data were analyzed by
Lawless [4,35,36]. The data represent the duration of remission
of 20 leukemia patients who were treated by one drug. The or-
dered durations of remission (in years) are:
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1.013
1.965

1.034
2.061

1.109
2.344

1.169
2.546

1.266
2.626

1.509
2.778

As in Example 4.1, Table 7 summarizes the preliminary
computations which indicate that MWD is a appropriate
model for these data. The prediction results are shown in
Table 8.

5. Concluding remarks

In this article, two predictive pivotal quantities have been con-
sidered for constructing PCI for future unobservable gos based
on MWD. Furthermore, a reconstructive pivotal quantity have
been proposed to construct RCI for missing gos based on
MWD. Moreover, an approximate value of the expected up-
per (lower) limit of the PCI (RCI) is obtained. The simula-
tion reveals that the coverage probabilities are close to the ex-
act value of 1 — § (here § = 0.05) as well as the expected and
simulated upper(lower) limits of PCI (RCI). Based on the esti-
mated root-mean-square error, the upper (lower) limit of PCI
(RCI) became close to the exact upper (lower) limit whenever
s — r decreases for fixed n. In almost cases, the pivotal quan-
tity, P, gives a shortest interval width than P; (see Tables 1-4).
The illustrative examples have revealed that a good fitting of the
data to the MWD increases the accuracy of prediction results
(see Tables 5-8).
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