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1. Introduction 

Prediction of future events (or reconstructing past events which
have occurred but were unobservable) on the basis of past and
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The ordered random variables without any doubt play
an important role in such prediction problems. Since Kamps
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ue to the fact that such concept includes important well-known 

odels of ordered random variables that have been treated sep- 
rately in the statistical literature. Kamps [14] defined gos first 
y defining uniform gos and then using the quantile transfor- 
ation to obtain the X (1 , n, ˜ m , k ) , · · · , X (n, n, ˜ m , k ) based on

umulative distribution function (cdf) F . The joint probabil- 
ty density function (jpdf) of X (1 , n, ˜ m , k ) , · · · , X (n, n, ˜ m , k ) is
iven by 

f X (1 ,n, ̃ m ,k ) , ... ,X (n,n, ̃ m ,k ) (x 1 , . . . , x n ) 

= k 

⎛ 

⎝ 

n −1 ∏ 

j=1 

γ j 

⎞ 

⎠ 

( 

n −1 ∏ 

i=1 

(1 − F (x i )) 
m i f (x i ) 

) 

( 1 − f (x n ) ) 
k −1 f (x n ) , 

n the cone F −1 (0) ≤ x 1 ≤ · · · ≤ x n ≤ F −1 (1 −) of R 

n .
he model parameters are n ∈ N , n ≥ 2 , k > 0 , ˜ m =

m 1 , . . . , m n −1 ) ∈ R 

n −1 , M r = 

∑ n −1 
j= r m j , such that γr = k +

 − r + M r > 0 for all r ∈ { 1 , . . . , n − 1 } and γn = k . Particular
hoices of the parameters γ1 , · · · , γn lead to different models, 
.g., m -gos ( γn = k, γr = k + (n − r )(m + 1) , r = 1 , · · · , n − 1 ),
os ( γn = 1 , γr = n − r + 1 , r = 1 , . . . , n − 1 , i.e., k = 1 , m i =
 , i = 1 , · · · , n − 1 ), sos ( γn = αn , γr = (n − r + 1) αr , αr > 0 ,
 = 1 , . . . , n − 1 ), pos with censoring scheme (R 1 , . . . , R M 

)

 γn = R M 

+ 1 , γr = n − r + 1 + 

∑ M 

j= r R j , if r ≤ M − 1
nd γr = n − r + 1 + R M 

, if r ≥ M) and upper records
 γr = 1 , 1 ≤ r ≤ n , i.e., k = 1 , m i = −1 , i = 1 , . . . , n − 1 ).
herefore, all the results obtained in the model of gos 
an be applied to the particular models choosing the re- 
pective parameters. For more details in the theory and 

pplications of gos see Kamps [14] , Ahsanullah [15] , 
amps and Cramer [16] , Cramer [17] , Barakat et al. [9] ,
l-Adll [18] , Barakat [19] , Atya [20] and Ahmad et al. 

21] . 
Weibull distribution was originally introduced by the 

wedish Waloddi Weibull (see Weibull [22] ) which currently can 

e considered as one of the most important distributions in 

ife testes and reliability engineering. Moreover, for more than 

0 years Weibull distribution received increasing attention from 

everal researchers in a wide variety of applications. Because 
f its various shapes of the probability density function and its 
onvenient representation of the distribution/ survival func- 
ion, the Weibull distribution has been used very effectively for 
nalyzing lifetime data, particularly when the data are censored, 
hich is very common in most life testing experiments. More- 
ver, Weibull distribution and its extensions are considered as 
he most important models in modern statistics because of its 
bility to fit data from various fields, ranging from life data to
eather data or observations made in economics and business 
dministration, in hydrology, in biology, and in the engineering 
ciences. Also, it has been used in many different areas such 

s material science, reliability engineering, physics, medicine, 
harmacy economics, quality control, biology and other fields 
for more details and applications of Weibull distribution see 
inne [23] ). 

Since 1958, the Weibull distribution has been modified by 
any researchers to allow for non-monotonic hazard func- 

ions. Lai et al. [24] proposed a three-parameter distribu- 
ion known as MWD by multiplying the Weibull cumula- 
ive hazard function, αx 

β , and e λx which was later general- 
zed to exponentiated form by Carrasco et al. [25] . Recent 
orks of the modified Weibull include Sarhan and Zaindin 

26] , Sarhan and Apaloo, Atya [27,20] and Almalki and 

adarajah [28] . 

p

The pdf of the MWD is given by 

f (x ; α, λ, β) = 

{ 

α(β + λx ) x 

β−1 e λx e −αx β e λx 
, x ≥ 0 ;

0 , x < 0 , 
(1.1) 

here α, β, λ are positive real numbers. The distribution func- 
ion (cdf) is 

 (x ; α, λ, β) = 

{ 

0 , x < 0 ;
1 − e −αx β e λx 

, x ≥ 0 . 
(1.2) 

The rest of this paper is organized as follows. In Section 2 ,
he predictive pivotal quantities and their exact distributions are 
btained. Section 3 , includes simulation studies. Some applica- 
ions for real data are presented in Section 4 . 

. Pivotal quantities and their distributions 

n this section, three pivotal quantities are proposed, two of 
hem are used to construct prediction intervals for future ob- 
ervations from MWD based on gos, while the third is used to
econstruct missing observations. The cdf for each of the piv- 
tal quantities is derived and then the limits of the predictive
onfidence interval are obtained. Furthermore, an approximate 
alue of the expected upper limit for each predictive confidence 
nterval is derived. 

.1. Prediction intervals of future observations 

uppose that X (1 , n, ˜ m , k ) , . . . , X (n, n, ˜ m , k ) are gos based on
WD with cdf given by (1.2) . Define the following two pivotal

uantities 

 1 := P 1 (r, s, n, ˜ m , k ) = 

Y (s, n, ˜ m , k ) − Y (r, n, ˜ m , k ) 

Y (r, n, ˜ m , k ) 
, (2.1) 

 2 := P 2 (r, s, n, ˜ m , k ) = 

Y (s, n, ˜ m , k ) − Y (r, n, ˜ m , k ) 

T r,n 
, (2.2) 

here 

 (i, n, ˜ m , k ) = α(X (i, n, ˜ m , k )) βe λX (i,n, ̃ m ,k ) , i = 1 , 2 , . . . , n, (2.3) 

T r,n = 

r ∑ 

i=1 

γi (Y (i, n, ˜ m , k ) − Y (i − 1 , n, ˜ m , k )) , with 

Y (0 , n, ˜ m , k ) = 0 . (2.4) 

he main aim of this subsection was to derive the exact distribu-
ions of P 1 and P 2 and to show that their distributions are free of
he original distribution parameters, α, β and λ. The results are for-
ulated in the following two theorems. 

heorem 2.1. Suppose that X (1 , n, ˜ m , k ) , . . . , X (r, n, ˜ m , k ) are the
rst observed gos based on MWD with pdf ( 1.1 ) . Then the exact
df of the pivotal quantity P 1 , F P 1 (p 1 ) , is given by 

 P 1 (p 1 ) = 1 −C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) 
γi 

(γ j + γi p 1 ) −1 , p 1 ≥ 0 , 

(2.5) 

here, 

 s −1 = 

s ∏ 

j=1 

γ j , a i (r ) = 

r ∏ 

j=1 j � = i 

1 
γ j,n − γi,n 

, 1 ≤ i ≤ r ≤ n, 

and a (r ) i (s ) = 

s ∏ 

j= r +1 j � = i 

1 
γ j,n − γi,n 

, r + 1 ≤ i ≤ s ≤ n . 

onsequently, an observed 100(1 − δ)% predictive confidence interval 
PCI) for X (s, n, ˜ m , k ) , s > r is (�, u 1 ) , where � = x r , and u 1 can be com-
uted numerically from the relation 
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as 
u β1 e 
λu 1 = 

(
1 + p 1 ,δ

)
x βr e 

λx r . (2.6)

Moreover, the expected value of the upper limit of a 100(1 − δ)% PCI of
X (s, n, ˜ m , k ) can be approximated by solving the nonlinear equation 

(E [ U 1 ]) 
βe λE [ U 1 ] = 

1 
α

(
1 + p 1 ,δ

) r ∑ 

i=1 

γ −1 
i , (2.7)

where x r is an observed value of X (r, n, ˜ m , k ) and p 1 ,δ satisfies the nonlin-
ear equation F P 1 (p 1 ,δ ) = 1 − δ. 

Proof. The joint pdf of X (r, n, ˜ m , k ) and X (s, n, ˜ m , k ) , f r,s (x r , x s ) ,
was derived in [16] . Namely, 

f r,s (x r , x s ) = C s −1 ,n 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) 

( 

F (x s ) 

F (x r ) 

) γi,n 

× (
F (x r ) 

)γ j,n f (x r ) 

F (x r ) 

f (x s ) 

F (x s ) 
, r < s ≤ n, x r < x s . 

(2.8)

For simplicity, we write X i instead of X (i, n, ˜ m , k ) and Y i instead
of Y (i, n, ˜ m , k ) . Since the transformations, y r = αx βr e λx r and p 1 =
( x s x r 

) 
βe λ(x s −x r ) − 1 , are monotone increasing from (0 , ∞ ) × (0 , ∞ )

into (0 , ∞ ) × (0 , ∞ ) , the joint pdf of P 1 and Y r can be obtained by
a standard method of transformations of random variables. That
is, 

f P 1 ,y r (p 1 , y r ) = | J| f X r ,X s (x r (p 1 , y r ) , x s (p 1 , y r )) 

= C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) y r e −(γ j,n + γi,n p 1 ) y r , 

p 1 > 0 , y r > 0 , 

where 

| J| = 

∣∣∣∣ ∂x r 
∂y r 

∂x s 
∂ p 1 

∣∣∣∣ = 

x r x 
1 −β
s 

α(β + λx r )(β + λx s ) e λx s 
. 

By noting that f P 1 (p 1 ) = 

∫ ∞ 

0 f P 1 ,y r (p 1 , y r ) dy r , we have 

f P 1 (p 1 ) = C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) [ γ j,n + γi,n p 1 ] −2 , p 1 > 0 . 

Hence (2.5) follows directly by evaluating the integration∫ p 1 
0 f P 1 (u ) du . The limits of a 100(1 − δ)% PCI of X s can be ob-

tained by noting that F P 1 (p 1 ,δ ) = Pr (P 1 ≤ p 1 ,δ ) = 1 − δ. Which can
be rewritten as 

Pr (X 

β
r e 

λX r ≤ X 

β
s e 

λX s ≤ (1 + p 1 ,δ ) X 

β
r e 

λX r ) = 1 − δ. (2.9)

Clearly, a lower limit of the future observation x s is the preceding
observed value x r . On the other hand, the actual lower limit of PCI
defined by (2.9) is a value � satisfied the equation x βr e λx r = � βe λ� .
Since the equation f (x ) = x βe λx is monotone increasing (for all
x > 0 ), then f (x r ) = f (� ) has a unique solution, which is � = x r .
This shows that the actual lower limit of PCI defined by (2.9) is
x r . An approximate upper limit, u 1 can be obtained by solving the
nonlinear Eq. (2.6) . The expected value of the upper limit can be
approximated using (2.9) by the following sequence of inequalities 
(E [ X s ]) 
βe λE [ X s ] ≤ E 

[
X 

β
s e 

λX s 
] ≤ E 

[
(1 + p 1 ,δ ) X 

β
r e 

λX r 
]

= E [(1 + p 1 ,δ ) Y r ] = 

(
1 + p 1 ,δ

) r ∑ 

i=1 

γ −1 
i , 

which completes the proof of the theorem. �

Lemma 2.1. The random variable T r,n defined by ( 2.4 ) follows
	(r, 1) ≡ gamma (r, 1) distribution with shape parameter r and scale
parameter 1. Moreover, the random variables T r,n and the subrange

 r,s = Y (s, n, ˜ m , k ) − Y (r, n, ˜ m , k ) are independent. 

Proof. It can be proved that the random variables Y (i, n, ˜ m , k ) , i =
1 , 2 , . . . , n are gos based on standard exponential distribution
Exp (1) by obtaining their joint pdf. The proof is similar to the
proof of Lemma 2.1 of [11] with suitable modifications. Therefore,
by Theorem 3.5.5 of [14] , T r,n ∼ 	(r, 1) . Furthermore W r,s can be
written as 

 r,s = Y (s, n, ˜ m , k ) − Y (r, n, ˜ m , k ) 

= 

s ∑ 

i= r +1 

(
Y (i, n, ˜ m , k ) − Y (i − 1 , n, ˜ m , k ) 

)

= 

s ∑ 

i= r +1 

Z(i, n, ˜ m , k ) /γi,n . 

where the normalizing spacings Z(i, n, ˜ m , k ) , i = 1 , 2 , . . . , n , are
independent and identically distributed according to Exp(1)
(see [14] Theorem 3.3.5). Therefore, W r,s is independent of
Z(i, n, ˜ m , k ) , i = 1 , 2 , . . . , r . Hence the lemma. �

Theorem 2.2. Under the same conditions of Theorem 2.1 , the cdf of
the pivotal quantity, P 2 , takes the form 

F P 2 (p 2 ) = 1 − C s −1 

C r −1 

s ∑ 

i= r +1 

a (r ) i (s ) 
γi 

(1 + γi p 2 ) −r , p 2 ≥ 0 . (2.10)

Therefore, an observed 100(1 − δ)% PCI for X (s, n, ˜ m , k ) , s > r is
(�, u 2 ) , where � = x r , and u 2 can be obtained numerically from the
relation 

αu β2 e 
λu 2 = t r,n p 2 ,δ + αx βr e 

λx r . 

Furthermore, the expected value of the upper limit for the PCI of
X (s, n, ˜ m , k ) can be approximated from the nonlinear equation 

α(E [ U 2 ]) 
βe λE [ U 2 ] = rp 2 ,δ + 

r ∑ 

i=1 

γ −1 
i , (2.11)

where t r,n is an observed values of T r,n and p 2 ,δ satisfies the nonlinear
equation, F P 2 (p 2 ,δ ) = 1 − δ. 

After obtaining the distribution of W r,s , the proof of
Theorem 2.2 became similar to the proof of Theorem 2.1 with
suitable modifications, so we omitted it. 

2.2. Reconstructing missing observations 

In this subsection a pivotal quantity is introduced to reconstruct
missing observations. The proposed pivotal quantity is defined
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 3 := P 3 (r, s, n, ˜ m , k ) = 

Y (s, n, ˜ m , k ) − Y (r, n, ˜ m , k ) 

Y (s, n, ˜ m , k ) 
, (2.12) 

here Y (i, n, ˜ m , k ) , i = 1 , 2 , . . . , n are defined by (2.3) . 

heorem 2.3. Based on MWD, assume that the first 
os, X (1 , n, ˜ m , k ) , . . . , X (s − 1 , n, ˜ m , k ) are missing and that
 (s, n, ˜ m , k ) , . . . , X (n, n, ˜ m , k ) are observed gos. Then the cdf of

he pivotal quantity, P 3 , is 

 P 3 (p 3 ) = P(P 3 ≤ p 3 ) 

= C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) 
p 3 

γ j [ γ j + (γi − γ j ) p 3 ] 
, 

0 < p 3 ≤ 1 . (2.13) 

Y

Table 1 95% coverage probability, simulated average upper limits, obs
P 1 , and P 2 , respectively, for oos model from MW D (0 . 3 , 1 . 25 , 0 . 5) . 

r s CP P 1 % CP P 2 % L = X 

∗
r X 

∗
s X 

∗
s +1 

9 10 94 .975 94 .983 1 .0704 1 .1619 1 .2539

11 94 .998 94 .982 1 .0704 1 .2539 1 .3476

12 95 .100 95 .049 1 .0704 1 .3476 1 .4433

13 94 .954 95 .007 1 .0704 1 .4433 1 .5436

14 94 .950 94 .952 1 .0704 1 .5436 1 .6496

15 94 .950 94 .961 1 .0704 1 .6496 1 .7638

16 94 .976 94 .990 1 .0704 1 .7638 1 .8921

17 94 .961 94 .955 1 .0704 1 .8921 2 .0422

18 95 .056 95 .088 1 .0704 2 .0422 2 .2357

19 95 .014 95 .021 1 .0704 2 .2357 2 .5417

12 13 94 .991 94 .968 1 .3476 1 .4433 1 .5436

14 94 .952 94 .962 1 .3476 1 .5436 1 .6496

15 94 .999 94 .970 1 .3476 1 .6496 1 .7638

16 95 .058 95 .021 1 .3476 1 .7638 1 .8921

17 95 .022 94 .987 1 .3476 1 .8921 2 .0422

18 95 .083 95 .054 1 .3476 2 .0422 2 .2357

19 95 .122 95 .097 1 .3476 2 .2357 2 .5417

15 16 95 .201 95 .206 1 .6496 1 .7638 1 .8921

17 95 .068 95 .110 1 .6496 1 .8921 2 .0422

18 95 .069 95 .034 1 .6496 2 .0422 2 .2357

19 95 .069 95 .094 1 .6496 2 .2357 2 .5417
oreover, a 100(1 − δ)% observed reconstructive confidence in- 
erval (RCI) for X (r, n, ˜ m , k ) , r < s is (� 3 , u ) , where u = x s ,
nd � 3 can be calculated numerically from the relation � β3 e 

λ� 3 =
1 − p 3 ,δ ) x 

β
s e λx s , where x s is an observed value of X (s, n, ˜ m , k ) .

n addition,a 100(1 − δ)% the expected lower limit for the RCI
f X (r, n, ˜ m , k ) based on P 3 , can be approximated by solving the
onlinear equation, 

E [ L 3 ]) 
βe λE [ L 3 ] = 

1 
α

(
1 − p 3 ,δ

) s ∑ 

i=1 

γ −1 
i , (2.14) 

here p 3 ,δ satisfies the nonlinear equation F P 3 (p 3 ,δ ) = 1 − δ. 

roof. As in the proof of Theorem 2.1 , the joint pdf of P 3 and
 s can be obtained and written as 
erved average upper limits and expected intervals width based on 

E [ U P 1 ] E [ U P 2 ] U P 1 ( RMSE P 1 ) U P 2 ( RMSE P 2 ) 

 1 .3861 1 .3851 1.3587 1.3582 
(0.1711) (0.1705) 

 1 .5591 1 .5574 1.5284 1.5273 
(0.2491) (0.2478) 

 1 .7143 1 .7120 1.6808 1.6791 
(0.3123) (0.3103) 

 1 .8634 1 .8605 1.8273 1.8251 
(0.3663) (0.3638) 

 2 .0120 2 .0085 1.9733 1.9708 
(0.4146) (0.4116) 

 2 .1644 2 .1605 2.1233 2.1204 
(0.4590) (0.4555) 

 2 .3258 2 .3215 2.2822 2.2789 
(0.5009) (0.4970) 

 2 .5035 2 .4987 2.4574 2.4537 
(0.5403) (0.5359) 

 2 .7108 2 .7055 2.6618 2.6578 
(0.5743) (0.5696) 

 2 .9783 2 .9727 2.9259 2.9216 
(0.5976) (0.5928) 

 1 .6673 1 .6655 1.6423 1.6411 
(0.1707) (0.1694) 

 1 .8491 1 .8458 1.8216 1.8193 
(0.2467) (0.2442) 

 2 .0199 2 .0153 1.9902 1.9868 
(0.3092) (0.3055) 

 2 .1938 2 .1879 2.1619 2.1575 
(0.3647) (0.3599) 

 2 .3810 2 .3740 2.3470 2.3416 
(0.4156) (0.4097) 

 2 .5965 2 .5884 2.5602 2.5539 
(0.4614) (0.4544) 

 2 .8726 2 .8634 2.8335 2.8263 
(0.5024) (0.4950) 

 2 .0213 2 .0173 1.9959 1.9936 
(0.1956) (0.1932) 

 2 .2506 2 .2433 2.2228 2.2179 
(0.2828) (0.2777) 

 2 .4915 2 .4811 2.4614 2.4540 
(0.3571) (0.3490) 

 2 .7875 2 .7741 2.7548 2.7449 
(0.4274) (0.4177) 
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Table 2 95% coverage probability, average lower limit, X 

∗
s , expected values of the upper limits, average upper limits, and estimated root-mean-square errors for pos model from 

MW D (0 . 03 , 0 . 25 , 0 . 1) , with pos scheme R 1 = R 2 = R 3 = 0 , R 4 = R 5 = R 6 = 1 R 7 = 2 , R 8 = 3 , R 9 = 4 , R 10 = 5 , R 11 = 6 , R 12 = 7 based on P 1 , and P 2 , respectively. 

r s CP P 1 % CP P 2 % L = X 

∗
r X 

∗
s E [ U P 1 ] E [ U P 2 ] U P 1 ( RMSE P 1 ) U P 2 ( RMSE P 2 ) 

6 7 95 .001 95 .001 9 .9738 11 .4717 15 .2452 15 .2423 14.6051 14.6036 
(2.7028) (2.7016) 

8 95 .058 95 .059 9 .9738 12 .8885 17 .7208 17 .7164 17.0484 17.0456 
(3.7377) (3.7351) 

9 95 .056 95 .080 9 .9738 14 .2955 19 .8542 19 .8486 19.1609 19.1572 
(4.4538) (4.4502) 

10 95 .117 95 .112 9 .9738 15 .7804 21 .9537 21 .9471 21.2442 21.2397 
(4.9690) (4.9645) 

11 95 .009 95 .010 9 .9738 17 .5232 24 .3194 24 .3121 23.5956 23.5903 
(5.2668) (5.2617) 

7 8 95 .070 95 .085 11 .4717 12 .8885 16 .3523 16 .3482 15.7856 15.7838 
(2.4692) (2.4676) 

9 95 .079 95 .087 11 .4717 14 .2955 18 .7858 18 .7791 18.1961 18.1925 
(3.4232) (3.4198) 

10 95 .106 95 .149 11 .4717 15 .7804 21 .0384 21 .0298 20.4326 20.4276 
(4.0934) (4.0886) 

11 95 .022 95 .020 11 .4717 17 .5232 23 .5162 23 .5060 22.8966 22.8902 
(4.5499) (4.5437) 

8 9 95 .094 95 .103 12 .8885 14 .2955 17 .6233 17 .6166 17.1090 17.1065 
(2.3759) (2.3729) 

10 95 .007 95 .031 12 .8885 15 .7804 20 .1758 20 .1648 19.6438 19.6383 
(3.2861) (3.2806) 

11 94 .980 94 .961 12 .8885 17 .5232 22 .8179 22 .8033 22.2720 22.2638 
(3.9416) (3.9337) 

9 10 95 .081 95 .090 14 .2955 15 .7804 19 .1598 19 .1474 18.6850 18.6802 
(2.4210) (2.4156) 

11 95 .028 94 .978 14 .2955 17 .5232 22 .1252 22 .1042 21.6353 21.6244 
(3.3749) (3.3641) 

10 11 94 .878 94 .894 15 .7804 17 .5232 21 .2388 21 .2118 20.7889 20.7775 
(2.7696) (2.7578) 
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f P 3 ,y s (p 3 , y s ) = C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) y s e −[ γ j,n +(γi,n −γ j,n ) p 3 ] y s , 

0 < p 3 ≤ 1 , y s > 0 , (2.15) 

hus the pdf of P 3 takes the form 

f P 3 (p 3 ) = C s −1 

s ∑ 

i= r +1 

r ∑ 

j=1 

a (r ) i (s ) a j (r ) 
[
γ j,n + (γi,n − γ j,n ) p 3 

]−2 
, 

0 < p 3 ≤ 1 . 

herefore, we get (2.13) . The rest of the proof is similar to the
roof of Theorem 2.1 . �

. Simulation 

n this section, simulation studies are carried out to demonstrate 
he efficiency of the theoretical results presented in the previous 
ection. For this purpose, the following three special cases from 

os model are considered. 

1. oos with γi = n − i + 1 for n = 20 , r = 9 , 12 , 15 and s = r +
1 , r + 2 , . . . , n − 1 . 
Table 3 95% coverage probability, average lower limit, X 

∗
s , expected v

mean-square errors for pos model from MW D (0 . 03 , 0 . 25 , 0 . 1) , with p
R 8 = R 9 = 1 , R 10 = R 11 = R 12 = 0 . based on P 1 , and P 2 , respectively. 

r s CP P 1 % CP P 2 % L = X 

∗
r X 

∗
s 

6 7 95 .032 95 .001 14 .8565 17 .7579 

8 95 .092 95 .062 14 .8565 20 .5214 

9 95 .059 95 .086 14 .8565 23 .3754 

10 95 .106 95 .124 14 .8565 26 .7235 

11 95 .016 94 .972 14 .8565 30 .2375 

7 8 95 .102 95 .085 17 .7579 20 .5214 

9 95 .097 95 .116 17 .7579 23 .3754 

10 95 .146 95 .152 17 .7579 26 .7235 

11 95 .023 94 .996 17 .7579 30 .2375 

8 9 95 .099 95 .103 20 .5214 23 .3754 

10 94 .989 95 .031 20 .5214 26 .7235 

11 94 .994 94 .926 20 .5214 30 .2375 

9 10 95 .013 95 .090 23 .3754 26 .7235 

11 94 .981 94 .975 23 .3754 30 .2375 

10 11 94 .919 94 .894 26 .7235 30 .2375 
2. pos with γn,n = k = R n + 1 , γr,n = N − r + 1 − ∑ r −1 
j=1 R j =

n − r + 1 + 

∑ n 
j= r R j , and N = n + 

∑ n 
j=1 R j , is the total

items put on a life test, R j ∈ N 0 . for n = 12 , r = 6 , 7 , 8 , 9 , 10
and s = r + 1 , r + 2 , . . . , n − 1 , for two different censoring
schemes. 

The estimated root-mean-square errors for the upper PCI 
lower RCI), are obtained from the relations 

MSE P i = 

√ √ √ √ 

1 
M − 1 

M ∑ 

j=1 

(U P i ( j) − X 

∗
s +1 ( j)) 2 , i = 1 , 2 , (3.1) 

MSE P 3 = 

√ √ √ √ 

1 
M − 1 

M ∑ 

j=1 

(L P 3 ( j) − X 

∗
r −1 ( j)) 2 , (3.2) 

here U P i ( j) , i = 1 , 2 denote the upper limits for the PCI of the
j th sample, L P 3 ( j) is the lower limit for RCI of the j th sample
nd X 

∗
i ( j) denote the i th gos for the j th sample, i = r − 1 or

 + 1 . To apply the methods presented in Theorems 2.1, 2.2 and
.3 , simulation studies are performed. For this purpose, an al-
orithm is constructed to generate gos samples based on MWD .
oreover, the algorithm is used for obtaining the percent of the
alues of the upper limits, average upper limits, and estimated root- 
os scheme R 1 = 7 , R 2 = 6 , R 3 = 5 , R 4 = 4 , R 5 = 3 , R 6 = 2 , R 7 = 

E [ U P 1 ] E [ U P 2 ] U P 1 ( RMSE P 1 ) U P 2 ( RMSE P 2 ) 

23 .9931 23 .7931 23.1611 23.0574 
(4.3934) (4.2893) 

28 .1155 27 .8295 27.2611 27.0845 
(5.6634) (5.4792) 

31 .8363 31 .4955 30.9673 30.7416 
(6.3255) (6.0865) 

36 .0222 35 .6446 35.1407 34.8816 
(7.0813) (6.7998) 

40 .0649 39 .6621 39.1741 38.8916 
(7.2169) (6.9184) 

26 .4135 26 .1673 25.6352 25.5126 
(4.1063) (3.9821) 

30 .7345 30 .3710 29.9391 29.7186 
(5.2931) (5.0673) 

35 .2393 34 .7981 34.4309 34.1422 
(6.3230) (6.0167) 

39 .4368 38 .9448 38.6194 38.2840 
(6.6567) (6.3104) 

29 .2834 28 .9940 28.5421 28.4000 
(4.0941) (3.9477) 

34 .4059 33 .9678 33.6498 33.3841 
(5.5297) (5.2535) 

38 .8376 38 .3082 38.0722 37.7247 
(6.1215) (5.7730) 

33 .2494 32 .8706 32.5214 32.3295 
(4.5042) (4.3035) 

38 .1774 37 .6258 37.4388 37.0984 
(5.5472) (5.2139) 

36 .9747 36 .4350 36.2020 35.9266 
(4.6385) (4.3775) 
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coverage probability, the lower and upper limits as well as the
expected values of the upper(lower) limits, and the root-mean-
square errors defined by (3.1) and (3.2) , respectively. 

Algorithm. 

Step 1 Choose the values of the MWD parameters α, β, and
λ. 

Step 2 Determine the values of r, s , and n . 
Step 3 Select the gos sub model (here oos and pos). 
Step 4 Solve the nonlinear equations F P i (p i,δ ) = 1 − δ, to ob-

tain the values of p i,δ for i = 1 , 2 or 3 at δ = 0 . 05 , where
F P i (p i ) , i = 1 , 2 , 3 are given by (2.5), (2.10) , and (2.13) ,
respectively. 

Step 5 Solve the nonlinear Eqs. (2.7), (2.11) and (2.14) to ap-
proximate E [ U P 1 ] , E [ U P 2 ] or E [ L P 3 ] . 

Step 6 Generate n gos, i.e. X (1 , n, ˜ m , k ) , . . . , X (n, n, ˜ m , k ) ,
based on MWD with parameters α, β, and λ. (by de-
veloping the algorithm in [9,18] to MWD ). 
Table 4 95% coverage probability, expected values of the lower limit
errors and coefficient of variation C.V . for oos model from MW D (0 . 00

r s CP P 3 % E [ L P 3 ] L P 3 X 

∗
r −1

10 9 94 .97 8 .4292 8 .3306 8 .779
8 94 .62 7 .5209 7 .4331 8 .177
7 94 .59 6 .7051 6 .6270 7 .555
6 94 .87 5 .9135 5 .8448 6 .879
5 94 .75 5 .1081 5 .0489 6 .152
4 94 .73 4 .2636 4 .2142 5 .338
3 94 .86 3 .3372 3 .2987 4 .344
2 95 .17 2 .2693 2 .2431 2 .974

8 7 95 .14 7 .2029 7 .0854 7 .555
6 95 .26 6 .2190 6 .1178 6 .879
5 95 .06 5 .3103 5 .2240 6 .152
4 95 .01 4 .3949 4 .3236 5 .338
3 95 .00 3 .4182 3 .3629 4 .344
2 95 .22 2 .3109 2 .2735 2 .974

6 5 94 .79 5 .7980 5 .6753 6 .152
4 94 .90 4 .6675 4 .5690 5 .338
3 94 .99 3 .5724 3 .4972 4 .344
2 94 .92 2 .3861 2 .3360 2 .974

4 3 95 .18 4 .0175 3 .8925 4 .344
2 95 .06 2 .5693 2 .4896 2 .974

Table 5 Fitting the data of Example 4.1 to MWD based on two differe

Method Estimates of parameters (complete sample) L 

MLE’s ˆ α = 0 . 0352166 , ˆ β = 0 . 0185766 , ̂  λ = 0 . 0735069 −38 .
LSE’s ˆ α = 0 . 0000173 , ˆ β = 2 . 93646 , ̂  λ = 5 . 86338 × 10 −13 −35 .

Estimates of parameters (Type II right censoring) 
MLE’s ˆ α = 0 . 0084041 , ˆ β = 0 . 0447932 , ̂  λ = 0 . 11646 −23 .
MLSE’s ˆ α = 0 . 000241344 , ˆ β = 1 . 76035 , ̂  λ = 0 . 0439156 −23 .

L denote the log-likelihood function computed at the estimated parameters.
Step 7 Define three counters, c i , i = 1 , 2 , 3 to determine if the
observed value of the s th gos for PCI (or r th for RCI)
lies within the interval or not. 

Step 8 Calculate the lower and the upper limits of the PCI (or
RCI) based on the pivotal quantities P 1 , P 2 , (or P 3 ), us-
ing Theorems 2.1,2.2,2.3 , respectively. 

Step 9 Repeat steps 6, 7, and 8, M = 100 , 000 times. 
tep 10 Compute the percent of coverage probability, 100 × c i 

M 

,
for each i = 1 , 2 , 3 and the average of the upper (lower)
limits based on P 1 , P 2 , (or P 3 ). 

tep 11 Compute the root-mean-square errors by relations
(3.1) and (3.2) . 

Remark. Clearly, the quantal function of the MWD has no ex-
plicit form. Therefore each gos, X 

∗, can be generated by solv-
ing the nonlinear equation F (X 

∗) = 1 − ∏ r 
i=1 W i , with respect

to X 

∗, where W i is a random number generated from beta
s, average lower limits, X 

∗
r −1 , X 

∗
r , X 

∗
s estimated root-mean-square 

25 , 2 . 25 , 0 . 01) . 

 

X 

∗
r U = X 

∗
s RMSE P 1 C.V . 

8 9 .3679 9 .9372 0 .8641 0 .1037 
9 8 .7798 9 .9372 1 .1529 0 .1551 
2 8 .1779 9 .9372 1 .3569 0 .2047 
7 7 .5552 9 .9372 1 .4947 0 .2557 
8 6 .8797 9 .9372 1 .5992 0 .3168 
1 6 .1528 9 .9372 1 .6658 0 .3953 
2 5 .3381 9 .9372 1 .6620 0 .5038 
4 4 .3442 9 .9372 1 .5306 0 .6824 

2 8 .1779 8 .7798 0 .9044 0 .1276 
7 7 .5552 8 .7798 1 .1983 0 .1959 
8 6 .8797 8 .7798 1 .4018 0 .2683 
1 6 .1528 8 .7798 1 .5393 0 .3560 
2 5 .3381 8 .7798 1 .5877 0 .4721 
4 4 .3442 8 .7798 1 .4989 0 .6593 

8 6 .8797 7 .5552 0 .9866 0 .1738 
1 6 .1528 7 .5552 1 .2947 0 .2834 
2 5 .3381 7 .5552 1 .4550 0 .4161 
4 4 .3442 7 .5552 1 .4490 0 .6203 

2 5 .3381 6 .1528 1 .1211 0 .2880 
4 4 .3442 6 .1528 1 .3337 0 .5357 

nt methods for complete and censoring samples with comparison. 

AIC BIC AIC c K–S p-value 

517 83 .035 85 .868 84 .447 0 .1480 0 .746 
915 77 .831 80 .664 79 .242 0 .0921 0 .992 

675 53 .351 56 .184 54 .763 0 .18829 0 .456 
449 52 .898 55 .674 55 .731 0 .11409 0 .942 
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Table 6 Upper limits and their expected values for 99% PCI of X 

∗
s , s = 15 , 16 , 17 , 18 , 19 . 

r s L = X 

∗
r X 

∗
s X 

∗
s +1 E [ U P 1 ] E [ U P 2 ] U P 1 U P 2 

14 15 43 47 51 51 .4281 51 .3157 50 .7331 50 .6960 
16 43 51 55 55 .0885 54 .9179 54 .3724 54 .3013 
17 43 55 55 58 .7576 58 .5392 58 .0220 57 .9224 
18 43 55 68 63 .1233 62 .8637 62 .3664 62 .2437 
19 43 68 – 69 .9820 69 .6897 69 .1950 69 .0607 

Table 7 Fitting the data of Example 4.2 to MWD based on two different methods for complete and censoring samples with comparison. 

Method Estimates of parameters (complete sample) L AIC BIC AIC c K–S p-value 

MLE’s ˆ α = 0 . 0988712 , ˆ β = 0 . 0709469 , ̂  λ = 0 . 711829 7 .712 −9 .424 −6 .436 −8 .090 0 .268 0 .093 
LSE’s ˆ α = 0 . 152408 , ˆ β = 2 . 18851 , ̂  λ = 3 . 76463 × 10 −17 14 .229 −22 .459 −19 .471 −21 .125 0 .145 0 .741 

Estimates of parameters (type II right censoring) 
MLE’s ˆ α = 0 . 0084041 , ˆ β = 0 . 0447932 , ̂  λ = 0 . 11646 −23 .675 53 .351 56 .184 54 .763 0 .18829 0 .456 
MLSE’s ˆ α = 0 . 146178 , ˆ β = 2 . 25134 , ̂  λ = 3 . 75932 × 10 −11 15 .304 −24 .608 −21 .621 −23 .275 0 .1397 0 .780 

Table 8 Upper limits and their expected values for 99% PCI of X 

∗
s , s = 16 , 17 , 18 , 19 , 20 . 

r s L = X 

∗
r X 

∗
s X 

∗
s +1 E [ U P 1 ] E [ U P 2 ] U P 1 U P 2 

15 16 2 .6260 2 .7780 2 .9510 3 .4746 3 .4611 3 .4397 3 .4211 
17 2 .6260 2 .9510 3 .4130 3 .9243 3 .9017 3 .8849 3 .8549 
18 2 .6260 3 .4130 4 .1180 4 .4219 4 .3899 4 .3774 4 .3358 
19 2 .6260 4 .1180 5 .1360 5 .0813 5 .0387 5 .0302 4 .9751 
20 2 .6260 5 .1360 – 6 .2846 6 .2273 6 .2214 6 .1468 
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istribution with parameters 1 , γi . The computations are car- 
ied out by Mathematica 9 and the results are presented in 

ables 1–4 . 

. Illustrative examples 

n this section, two real data sets are analyzed to explain the
ractical importance of the presented methods. 

xample 4.1 (Sulfur Dioxide (1-Hour Averages)) . The first data 
et presented here were obtained through the courtesy of the 
outh Coast Air Pollution Control District (SCAPCD) of the 
tate of California which was analyzed by Roberts [29] . The 
nnual maxima of sulfur dioxide 1 − hr average concentrations 
pphm) are, 

7 41 68 32 27 43 20 27 25 18 33 40 51 

5 40 55 37 28 34 . 

Long Beach, CA from 1956 to 1974, Data Courtesy South 

oast Air Pollution Control District) 
Firstly, it is shown that (see Table 5 ), the MWD fit the data

ell. The distribution parameters are estimated by maximum 

ikelihood (ML) and the least square (LS) methods. Based on 

olmogorov–Smirnov (K–S) test statistics (Kolmogorov [30] ), 
he Akaike information criterion ( AIC ), Bayesian information 

riteria ( BIC ), corrected Akaike information criterion ( AIC C ) 
see Akaike [31] , Schwarz [32] and Bozdogan [33] , Hurvich [34] ),
he LS gives better fitting than ML for the complete data. More-
ver, an application to the modified least square method ( MLS )
or censoring data which has been introduced by El-Adll and 

ly [35] , reveals that it is also better than ML for censoring data
f our example. The modified least square estimates(MLSE’s) 
f parameters can be obtained by minimizing the 
unction, 

S 

∗
( α, λ, β| x ) = 

r ∑ 

i=1 

(
F ( x i: n ; α, λ, β) − i 

n + 1 

)2 

+ (n − r ) 
(

F ( x r : n ;α, λ, β) − r 
n + 1 

)2 

, 

ith respect to the parameters α, λ and β. 

In Table 6 , we obtain 99% PCI for X 

∗
s , s = 15 , 16 , 17 , 18 , 19 ,

ased on the first 14 observations. Since the last fiv e obser-
ations are assumed to be unknown, estimates of parameters 
ased on type II right censored sample with n = 19 and r = 14
y MLSM . 

xample 4.2 (Biometric Data) . The second data set is an appli-
ation of our results in biometric. The data were analyzed by
awless [4,35,36] . The data represent the duration of remission 

f 20 leukemia patients who were treated by one drug. The or-
ered durations of remission (in years) are: 



Prediction and reconstruction of future and missing unobservable modified Weibull lifetime based on generalized order statistics 317 

33 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 . 013 1 . 034 1 . 109 1 . 169 1 . 266 1 . 509 1 . 5

1 . 965 2 . 061 2 . 344 2 . 546 2 . 626 2 . 778 2 . 9

As in Example 4.1 , Table 7 summarizes the preliminary
computations which indicate that MWD is a appropriate
model for these data. The prediction results are shown in
Table 8 . 

5. Concluding remarks 

In this article, two predictive pivotal quantities have been con-
sidered for constructing PCI for future unobservable gos based
on MWD . Furthermore, a reconstructive pivotal quantity have
been proposed to construct RCI for missing gos based on
MWD . Moreover, an approximate value of the expected up-
per (lower) limit of the PCI (RCI) is obtained. The simula-
tion reveals that the coverage probabilities are close to the ex-
act value of 1 − δ (here δ = 0 . 05 ) as well as the expected and
simulated upper(lower) limits of PCI (RCI). Based on the esti-
mated root-mean-square error, the upper (lower) limit of PCI
(RCI) became close to the exact upper (lower) limit whenever
s − r decreases for fixed n . In almost cases, the pivotal quan-
tity, P 2 gives a shortest interval width than P 1 (see Tables 1–4 ).
The illustrative examples have revealed that a good fitting of the
data to the MWD increases the accuracy of prediction results
(see Tables 5–8 ). 
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