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1. Introduction 

Let X 1 , X 2 , . . . , X n be a random sample of size n having proba-
bility density function (pdf) f (x ) and cumulative distribution
function (cdf) F (x ) , with a finite mean μ and variance σ 2 . Let
X 11 i , X 12 i , . . . , X 1 ni ; X 21 i , X 22 i , . . . , X 2 ni ; . . . ; X n 1 i , X n 2 i , . . . , X nni 

be n independent simple random samples each of size n in the
i th cycle (i = 1 , 2 , . . . , m ) . 

Let F SRS (x ) denote the empirical distribution function of
a simple random sample X 1 , X 2 , . . . , X nm 

from F (x ) . Bahadur
[2] showed that F SRS (x ) has the following properties: 
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1. F SRS (x ) is an unbiased estimator of F (x ) for a given x . 
2. Var [ F SRS (x )] = 

1 
mn F (x )[1 − F (x )] . 

3. F SRS (x ) is a consistent estimator of F (x ) . 

The RSS was first suggested by McIntyre [3] as a method
for estimating the mean of pasture and forage yields. The RSS
is a useful method when the sampling units can be easily
ranked than quantified. McIntyre proposed the ranked set sam-
ple mean as an estimator of the population mean and showed
that the RSS mean estimator is unbiased and is more efficient
than the SRS counterpart. 

The RSS can be described as follows: randomly select n sets
each of size n from the target population. Then, visually rank
the units within each sample with respect to the variable of
interest. From the first set of n units the smallest ranked unit
is selected. From the second set of n units the second small-
est ranked unit is selected. The process is continued until the
largest ranked unit is measured from the n th set. To increase the
oduction and hosting by Elsevier B.V. This is an open access article 
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Table 1 The relative precision of F QRSS (x ) with respect to F SRS (x ) and bias values of F QRSS (x ) for 4 ≤ n ≤ 11 . 

F (x ) n = 4 n = 6 n = 8 n = 10 n = 5 n = 7 n = 9 n = 11 

0.01 RP 0 .5270 7 .9487 5 .3923 9 .1690 11 .0248 7 .0763 4 .5962 8 .2674 
Bias 0 .0090 −0 .0093 −0 .0088 −0 .0099 −0 .0096 −0 .0092 −0 .0084 −0 .0099 

0.10 RP 0 .6852 1 .4566 1 .1587 1 .2156 1 .7024 1 .4095 1 .1780 1 .1780 
Bias 0 .0718 −0 .0429 −0 .0066 −0 .0650 −0 .0655 −0 .0356 0 .0006 −0 .0592 

0.20 RP 0 .9939 1 .3260 1 .0919 1 .2896 1 .3138 1 .4388 1 .1553 1 .3873 
Bias 0 .0973 −0 .0254 0 .0482 −0 .0396 −0 .0802 −0 .0142 0 .0527 −0 .0257 

0.30 RP 1 .6994 1 .6332 1 .5037 1 .7397 1 .2961 1 .9075 1 .7570 1 .9325 
Bias 0 .0849 −0 .0044 0 .0727 0 .0098 −0 .0673 0 .0062 0 .0679 0 .0201 

0.40 RP 2 .9902 2 .2115 3 .3200 2 .9599 1 .3908 2 .5254 3 .3480 3 .1859 
Bias 0 .0475 0 .0041 0 .0505 0 .0224 −0 .0367 0 .0103 0 .0447 0 .0265 

0.50 RP 4 .3694 2 .5640 7 .3573 4 .8399 1 .4534 2 .8914 5 .5273 4 .8417 
Bias 0 .0005 0 .0008 0 .0000 −0 .0005 0 .0003 0 .0005 0 .0004 −0 .0003 

0.60 RP 3 .0824 2 .2121 3 .2736 2 .9261 1 .3843 2 .5467 3 .3917 3 .2440 
Bias −0 .0481 −0 .0040 −0 .0508 −0 .0216 0 .0354 −0 .0105 −0 .0443 −0 .0256 

0.70 RP 1 .7065 1 .6410 1 .5109 1 .7521 1 .2757 1 .8497 1 .7220 1 .9539 
Bias −0 .0848 0 .0051 −0 .0733 −0 .0088 0 .0662 −0 .0067 −0 .0686 −0 .0194 

0.80 RP 1 .0080 1 .3748 1 .1220 1 .2898 1 .2997 1 .4229 1 .1603 1 .3658 
Bias −0 .0960 0 .0277 −0 .0483 0 .0391 0 .0812 0 .0136 −0 .0536 0 .0256 

0.90 RP 0 .6628 1 .4455 1 .1659 1 .2054 1 .6756 1 .4006 1 .1633 1 .1870 
Bias −0 .0736 0 .0428 0 .0063 0 .0650 0 .0659 0 .0352 0 .0004 0 .0592 

0.99 RP 0 .5126 7 .3353 4 .9833 9 .4109 11 .8336 7 .3257 4 .4370 8 .6399 
Bias −0 .0098 0 .0092 0 .0086 0 .0099 0 .0096 0 .0093 0 .0084 0 .0099 
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ample size, the whole process can be repeated m times to obtain
 set of size nm units. 

Let X j(1: n ) i , X j(2: n ) i , . . . , X j(n : n ) i be the order statistics 
f the j th sample X j1 i , X j2 i , . . . , X jni ( j = 1 , 2 , . . . , n ) in
he i th cycle (i = 1 , 2 , . . . , m ) . Then, the measured units
 1(1: n ) i , X 2(2: n ) i , . . . , X n (n : n ) i are denoted to the RSS. David and
agaraja [4] showed that the cdf and the pdf of the j th order

tatistic X ( j: n ) are given by 

 ( j: n ) (x ) = 

n ∑ 

i= j 

( 

n 

i 

) 

[ F (x ) ] i [ 1 − F (x ) ] n −i , −∞ < x < ∞ , 

nd 

f ( j: n ) (x ) = 

n ! 
( j − 1)!(n − j)! 

[ F (x ) ] j−1 [ 1 − F (x ) ] n − j f ( x ) . 

he mean and the variance of X ( j: n ) are given by μ( j: n ) = 

 ∞ 

−∞ 

x f ( j: n ) (x ) dx and σ 2 
( j: n ) = 

∫ ∞ 

−∞ 

(x − μ( j: n ) ) 
2 f ( j: n ) (x ) dx , re- 

pectively. Takahasi and Wakimoto [5] independently intro- 
uced the same method of RSS with mathematical theory and 

howed that 

f (x ) = 

1 
n 

n ∑ 

j=1 

f ( j: n ) (x ) , μ = 

1 
n 

n ∑ 

j=1 

μ( j: n ) , and 

σ 2 = 

1 
n 

n ∑ 

j=1 

σ 2 
( j: n ) + 

1 
n 

n ∑ 

j=1 

(
μ( j: n ) − μ

)2 
. 

For a fixed x , Stokes and Sager [6] suggested an estimator for
 (x ) using RSS as 

 RSS (x ) = 

1 
mn 

m ∑ 

i=1 

n ∑ 

j=1 

I 
(
X j ( j : n ) i ≤ x 

)
, 

here I(·) is an indicator function. They proved the following: 

1. F RSS (x ) is an unbiased estimator for F (x ) . 
2. Var [ F RSS (x )] = 

1 
mn 2 
∑ n 

j=1 F ( j: n ) (x )[1 − F ( j: n ) (x )] . 
3. F RSS (x ) −E [ F RSS (x )] √ 

Var [ F RSS (x )] 
converges in distribution to the standard 

normal as m → ∞ when x and n are fixed. 

For more about estimation of the distribution function in 

anked set sampling methods see Stokes and Sager [6] , Samawi
nd Al-Sagheer [7] , Kim and Kim [8] , Al-Saleh and Samuh [9] ,
nd Ghosh and Tiwari [10] . 

The rest of this paper is organized as follows. In Section 2 ,
e introduced the suggested estimation of the distribution func- 

ion using QRSS method. The performance of the new estima- 
or against its SRS and RSS counterparts is given in Section 3 .
ection 4 , is devoted for some inferences about F (x ) . In Section
 , some concluding remarks are provided. 

. Estimation of F (x ) using QRSS 

he quartile ranked set sampling procedure as suggested by 
uttlak [1] can be summarized as follows. Randomly select n 

amples each of size n units from the target population and rank
he units within each sample with respect to the variable of in-
erest. If the sample size n is even, select and measure from the
rst n/ 2 samples the Q 1 (n + 1) th smallest ranked unit of each
ample, i.e., the first quartile, and from the second n/ 2 samples
he Q 3 (n + 1) th smallest ranked unit of each sample, i.e., the
hird quartile. Note that, we always take the nearest integer of
 1 (n + 1) th and Q 3 (n + 1) th where Q 1 = 25% , and Q 3 = 75% .

f the sample size n is odd, select and measure from the first
n − 1) / 2 samples the Q 1 (n + 1) th smallest ranked unit of each
ample and from the other (n − 1) / 2 samples the Q 3 (n + 1) th
mallest ranked unit of each sample, and from one sample the
edian for that sample. The cycle can be repeated m times if

eeded to get a sample of size nm units. 
If the sample size n is even, in the i th cycle (i = 1 , 2 , . . . , m ) ,

et X j(Q 1 (n +1): n ) i be the (Q 1 (n + 1)) th smallest ranked unit of the
 th sample ( j = 1 , 2 , . . . , n 

2 ) , and X j(Q 3 (n +1): n ) i be the
Q 3 (n + 1)) th smallest ranked unit of the j th sample
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( j = 

n +2 
2 , n +4 

2 , . . . , n ) . Note that, the measured units
X 1(Q 1 (n +1): n ) i , X 2(Q 1 (n +1): n ) i , . . . , X 

n 
2 (Q 1 (n +1): n ) i are independent

and identically distributed (iid) random variables, and
also X n +2 

2 (Q 3 (n +1): n ) i , X n +4 
2 (Q 3 (n +1): n ) i , . . . , X n (Q 3 (n +1): n ) i are iid.

However, all units X 1(Q 1 (n +1): n ) i , X 2(Q 1 (n +1): n ) i , . . . , X 

n 
2 (Q 1 (n +1): n ) i ,

X n +2 
2 (Q 3 (n +1): n ) i , X n +4 

2 (Q 3 (n +1): n ) i , . . . , X n (Q 3 (n +1): n ) i are mutually
independent but not identically distributed. These measured
units are denoted by QRSSE. 

For odd sample size, let X j(Q 1 (n +1): n ) i be the Q 1 (n + 1) th
smallest ranked unit of the j th sample ( j = 1 , 2 , . . . , n −1 

2 ) ,
X j( n +1 

2 : n ) i be the median of the j th sample of the rank j = 

n +1 
2 ,

and X j(Q 3 (n +1): n ) i be the Q 3 (n + 1) th smallest ranked unit of the
j th sample ( j = 

n +3 
2 , n +5 

2 , . . . , n ) . Note that, the only measured
units X 1(Q 1 (m +1): m ) i , X 2(Q 1 (n +1): n ) i , . . . , X n −1 

2 (Q 1 (n +1): n ) i are iid,
and also X n +3 

2 (Q 3 (n +1): n ) i , X n +5 
2 (Q 3 (n +1): n ) i , . . . , X n (q 3 (n +1): n ) i are iid.

However, all units X 1(Q 1 (m +1): m ) i , X 2(Q 1 (n +1): n ) i , . . . , X n −1 
2 (Q 1 (n +1): n ) i ,

X n +1 
2 ( n +1 

2 : n ) i , X n +3 
2 (Q 3 (n +1): n ) i , X n +5 

2 (Q 3 (n +1): n ) i , . . . , X n (q 3 (n +1): n ) i are
mutually independent but not identically distributed. These
measured units are denoted by QRSSO. 

Following Stokes and Sager [6] , let V 

′ = (V 1 , V 2 , . . . , V n )

be a multinomial random vector with nm trials and P =
( 1 n , 

1 
n , . . . , 

1 
n ) be a probability vector, and assume that the

nm random variables were found by first observing V and
then selecting Vj units randomly from a population with pdf
f ( j: n ) (x ) ( j = 1 , 2 , . . . , n ) . Let Y 1 , Y 2 , . . . , Y nm 

denote to the ob-
tained mn units. 

Also, following Stokes and Sager [6] we have the following
theorem based on QRSS method. 

Theorem 1. Based on the same conditions of Theorem 1 in Stokes
and Sager [ 6 ] we have the following: 

(1) For even sample size, { Y 1 , Y 2 , . . . , Y nm 

| V =
( nm 

2 , 0 , 0 , . . . , 0 , 
nm 

2 ) } has the same probability struc-
ture as { X j(Q 1 (n +1): n ) i , X l (Q 3 (n +1): n ) i ; j = 1 , 2 , . . . , n 

2 ; l =
n +2 

2 , n +4 
2 , . . . , n ; i = 1 , 2 , . . . , m } , a QRSSE from the same

population. 
(2) For odd sample size, { Y 1 , Y 2 , . . . , Y nm 

| V = v 1 =
(n −1) m 

2 , 0 , 0 , . . . , 0 ; v 
( n +1 

2 ) 
= m ; 0 , 0 , . . . , 0 , v n = 

(n −1) m 

2 } , 

has the same probability structure as 

{
X j(Q 1 (n +1): n ) i , X t ( t: n ) i X l (Q 3 (n +1): n ) i ; j = 1 , 2 , . . . , 

n − 1 
2 

; t 
n + 1 

2 
: 

l = 

n + 3 
2 

, 
n + 5 

2 
, . . . , n ; i = 1 , 2 , . . . , m 

}
, 

a QRSSO from the same population. 

Proof. The proof is directly and similar to the proof of Theorem
1 in Stokes and Sager [6] . �

The suggested QRSSE estimator of F (x ) is given by 

F QRS S E (x ) = 

1 
nm 

m ∑ 

i=1 

n 
2 ∑ 

j=1 

I 
(
X j(Q 1 (n +1): n ) i ≤ x 

) 1 
nm 

m ∑ 

i=1 

n ∑ 

j= n +2 
2 

I 
(

X j(Q 3 (n +1): n ) i ≤ x 
)
,

(1)
with variance 

ar 
[
F QRS S E (x ) 

] = 

1 
2 nm 

{
F Q 1 (x ) 

[
1 − F Q 1 (x ) 

]+ F Q 3 ( x ) 
[
1 − F Q 3 (x ) 

]}
. (2)

And the suggested QRSSO estimator of F (x ) is given by 

F QRS S O (x ) = 

1 
nm 

m ∑ 

i=1 

n −1 
2 ∑ 

j=1 

I 
(
X j(Q 1 (n +1): n ) i ≤ x 

)+ 

1 
nm 

I 
(

X n +1 
2 ( 

n +1 
2 : n ) i ≤ x 

)

+ 

1 
nm 

m ∑ 

i=1 

n ∑ 

j= n +3 
2 

I 
(
X j(Q 3 (n +1): n ) i ≤ x 

)
, (3)

with variance 

ar 
[
F QRS S O (x ) 

] = 

1 
n 2 m 

{ n − 1 
2 

[
F Q 1 (x ) 

(
1 − F Q 1 (x ) 

)
+ F Q 3 (x ) 

(
1 − F Q 3 (x ) 

)]
+ F Q 2 (x ) 

(
1 − F Q 2 (x ) 

)} 
, (4)

where 

F Q 1 (x ) = B 

(
F (x ) ; n − 1 

4 
, 

3 n − 3 
4 

)
, 

F Q 2 (x ) = B 

(
F (x ) ; n + 1 

2 
, 

n + 1 
2 

)
, 

F Q 3 (x ) = B 

(
F (x ) ; 3 n − 3 

4 
, 

n − 1 
4 

)
, 

and B(w ; a, b) is the incomplete beta function defined as B(w ; a, b) =∫ w 
0 u a −1 (1 − u ) b−1 du . 

Assume that n is odd, and 

n +1 
2 is odd, and let Q 1 =

X 

( n +3 
4 ) 

, Q 2 = X 

( n +1 
2 ) 

, and Q 3 = X 

( 3 n +1 
4 ) 

, then 

f Q 1 (x ) = 

1 

B 

( n −1 
4 , 3 n −3 

4 

) [ F (x ) ] 
n −1 

4 [ 1 − F (x ) ] 
3 n −3 

4 f ( x ) , (5)

f Q 2 (x ) = 

1 

B 

( n +1 
2 , n +1 

2 

) [ F (x ) ( 1 − F (x ) ) ] 
n −1 

2 f ( x ) , (6)

and 

f Q 3 (x ) = 

1 

B 

(
3 n −3 

4 , n −1 
4 

) [ F (x ) ] 
3 n −3 

4 [ 1 − F (x ) ] 
n −1 

4 f ( x ) , (7)

where B(δ, ϑ) is the Beta function defined as 

B(δ, ϑ) = 

�(δ)�(ϑ) 

�(δ + ϑ) 
= 

(δ − 1)!(ϑ − 1)! 
(δ + ϑ − 1)! 

. (8)

Some properties of the QRSSE and QRSSO estimators of
the distribution function are provided in the following proposi-
tions. 

Proposition 1. 

(1) E [ F QRS S E (x )] = 

1 
2 [ F Q 1 (x ) + F Q 3 (x )] . 

(2) E [ F QRS S O 

(x )] = 

n −1 
2 n { F Q 1 (x )[1 − F Q 1 (x )] + F Q 3 (x )[1 −

F Q 3 (x )] } + 

1 
n F Q 2 (x ) , where F Q 1 (x ) , F Q 2 (x ) , F Q 3 (x ) , are

defined above. 

Proposition 2. F QRS S O 

(x ) and F QRS S E (x ) are biased estimators
of F (x ) , with bias given by 
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ias 
[
F QRS S E (x ) 

] = 

1 
2 

[
F Q 1 (x ) + F Q 3 (x ) 

]− F QRS S E (x ) , 

nd 

ias 
[
F QRS S O 

(x ) 
] = 

n − 1 
2 n 

{
F Q 1 

(x ) 
[
1 − F Q 1 

(x ) 
]

+ F Q 3 
(x ) 
[
1 − F Q 3 

(x ) 
]}+ 

1 
n 

F Q 2 
(x ) − F QRS S O 

(x ) . 

It is easy to prove Propositions 1 and 2 based on some alge-
ra. From this proposition we can see that the suggested estima- 
ors are biased, but based on the calculations given in Section 3 ,
he bias is close to zero. 

roposition 3. For fixed n and m → ∞ , we have the following: 

1. 
F QRS S E (x ) −E [ F QRS S E (x )] √ 

Var [ F QRS S E (x )] 
converges in distribution to N(0 , 1) . 

2. 
F QRS S O (x ) −E [ F QRS S O (x )] √ 

Var [ F QRS S O (x )] 
converges in distribution to N(0 , 1) . 

roof. Following Samawi and Al-Sagheer [7] and Kim and Kim 

8] , the proof of the first part can be done by assuming 

 i = 

1 
n 

n 
2 ∑ 

j=1 

I 
(
X j(Q 1 (n +1): n ) i ≤ x 

)+ 

1 
n 

n ∑ 

j= n +2 
2 

I 
(
X j(Q 3 (n +1): n ) i ≤ x 

)
, 

i = 1 , 2 , . . . , m . 

s Z i ’s are independent and identically with finite mean and 

ariance random variables, then based on the central limit the- 
rem we can conclude 

√ 

m [ Z i −E (Z i )] √ 

Var (Z i ) 
converges in distribution to 

he standard normal distribution. 
The second part can be proved similarly by assuming 

 i = 

1 
n 

n −1 
2 ∑ 

j=1 

I 
(
X j(Q 1 (n +1): n ) i ≤ x 

)+ 

1 
n 

I 
(

X n +1 
2 

(
n +1 

2 : n 
)

i 
≤ x 

)

+ 

1 
n 

n ∑ 

j= n +3 
2 

I 
(
X j(Q 3 (n +1): n ) i ≤ x 

)
. �

. Numerical comparisons 

umerical comparisons are considered in this section to inves- 
igate the performance of the suggested QRSS estimator of the 
Table 2 The relative precision of F RSS (x ) with respect to F SRS (x ) for 

F (x ) n = 4 n = 6 n = 8 n = 10 

0 .01 0 .9886 1 .0388 1 .1355 1 .1018 
0 .10 1 .3071 1 .4832 1 .6539 1 .7929 
0 .20 1 .5471 1 .8193 2 .0421 2 .2984 
0 .30 1 .6880 2 .0402 2 .3306 2 .6122 
0 .40 1 .7891 2 .2099 2 .4696 2 .7623 
0 .50 1 .8487 2 .2449 2 .5601 2 .8271 
0 .60 1 .7841 2 .2061 2 .4787 2 .7775 
0 .70 1 .6816 2 .0456 2 .3528 2 .6052 
0 .80 1 .5507 1 .8057 2 .0610 2 .3004 
0 .90 1 .2972 1 .4716 1 .6241 1 .8179 
0 .99 1 .1206 1 .0458 1 .0523 1 .0764 
istribution function with respect to SRS and RSS estimators 
ased on the same number of measured units. We considered 

ifferent sample sizes 4 ≤ n ≤ 11 . The relative precisions (RP)
f F RSS (x ) and F QRSS (x ) with respect to F SRS (x ) are defined as: 

P [ F RSS (x ) , F SRS (x ) ] = 

Var [ F SRS (x ) ] 
Var [ F RSS (x ) ] 

, and 

P 

[
F QRSS (x ) , F SRS (x ) 

] = 

Var [ F SRS (x ) ] 

MSE 

[
F QRSS (x ) 

] , (9) 

here MSE is the mean squared error of an estimator. 
The results are presented in Tables 1 and 2 using QRSS and

SS, respectively. The results in bold fonts in both tables are
he best RP values of the distribution function estimators QRSS 

nd RSS with respect to SRS for different values of F (x ) . Based
n QRSS from Table 1 , the largest RP values are observed as
 (x ) goes to zero or 1. For example, with n = 5 and F (x ) =
 . 1 , 0.99, the RP values are 11.0248 and 11.8336, respectively.
therwise, the RP values increase when F (x ) is close to 0.5. In

ll cases the bias is negligible and close to zero. 
From Table 2 we observe that F RSS (x ) is more efficient than

 SRS (x ) . However, F QRSS (x ) is better than F RSS (x ) for most
f cases considered in this study. As an example, when n = 9
nd F (x ) = 0 . 4 , the relative precisions of RSS and QRSSO are
.6347 and 3.3480, respectively. 

The optimal values of the sample size using QRSSE and 

RSSO methods for estimating F (x ) are summarized in Table
 . 

From Table 3 it can be noted that QRSSO is more efficient
han QRSSE for estimating F (x ) . Also, the sample size n = 5
as most occurrence among other sample sizes considered in 

his study. 

. Inferences about the distribution function 

n this section, a pointwise estimate of F (x ) is consid-
red and some inferences about the population distribution 

re presented using QRSS. As m gets large, then based on
roposition 3 , an approximate 100(1 − α)% confidence interval 

or E [ F �(x )] , � = QRS S E , QRS S O , RSS , SRS , is given by 

 �(x ) − Z α/ 2 

√ ̂ Var [ F �(x ) ] < E [ F �(x ) ] < F �(x ) 

+ Z α/ 2 

√ ̂ Var [ F �(x ) ] , (10) 

here Z α/ 2 is the upper 100(α/ 2)% quantile of the N(0 , 1) , and 
4 ≤ n ≤ 11 . 

n = 5 n = 7 n = 9 n = 11 

1 .0851 1 .0644 1 .0712 1 .0749 
1 .3798 1 .5550 1 .7035 1 .9029 
1 .6973 1 .9610 2 .2084 2 .3711 
1 .8933 2 .2060 2 .4760 2 .7136 
1 .9969 2 .2982 2 .6347 2 .8966 
2 .0644 2 .3500 2 .6801 2 .9600 
1 .9545 2 .3337 2 .6349 2 .9724 
1 .9025 2 .1952 2 .4917 2 .7661 
1 .6731 1 .9757 2 .1988 2 .4008 
1 .3743 1 .5503 1 .7450 1 .8920 
1 .0146 1 .0781 1 .1562 1 .1301 
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Table 3 The best values of the sample size using QRSS for estimating F (x ) . 

F (x ) 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99 

n 5 5 7 11 9 8 9 11 7 5 5 

V  ) 
] 
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V

 

V
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̂ ar 
[
F QRS S E (x ) 

] = 

1 
(m − 1) n 2 

⎧ ⎨ ⎩ 

n 
2 ∑ 

j=1 

ˆ F j(Q 1 (n +1): n ) (x ) 
[ 
1 − ˆ F j(Q 1 (n +1): n ) (x

+ 

n ∑ 

j= n +2 
2 

ˆ F j(Q 3 (n +1): n ) (x ) 
[ 
1 − ˆ F j(Q 3 (n +1): n ) (x ) 

] ⎫ ⎪ ⎬ ⎪ ⎭ 

(1

̂ ar 
[
F QRS S O (x ) 

] = 

1 
(m − 1) n 2 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n −1 
2 ∑ 

j=1 

ˆ F j(Q 1 (n +1): n ) (x ) 
[ 
1 − ˆ F j(Q 1 (n +1): n ) (x ) 

] 
+ 

ˆ F Q 2 (x ) 
[ 
1 − ˆ F Q 2 (x ) 

] 

+ 

∑ n 
j= n +3 

2 

ˆ F j(Q 3 (n +1): n ) (x ) 
[ 
1 − ˆ F j(Q 3 (n +1): n ) (x ) 

] 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

, (12)

ar [ F RSS (x ) ] = 

1 
mn 2 

n ∑ 

j=1 

F ( j: n ) (x ) 
[
1 − F ( j: n ) (x ) 

]
, 

and 

̂ ar [ F SRS (x ) ] = 

1 
nm − 1 

[ 
ˆ F (x ) 

(
1 − ˆ F (x ) 

)] 
, 

where based on QRSS, RSS, and SRS, respectively, we have 

ˆ F i(t: n ) (x ) = 

1 
m 

m ∑ 

i=1 

I 
(
X j(t: n ) i ≤ x 

)
, t = Q 1 (n + 1) , Q 3 (n + 1) , 

n + 1 
2 

; j = 1 , 2 , . . . , n, (13)

ˆ F i( j: n ) (x ) = 

1 
m 

m ∑ 

i=1 

I 
(
X j ( j : n ) i ≤ x 

)
, j = 1 , 2 , . . . , n, (14)

and 

ˆ F SRS (x ) = 

1 
nm 

nm ∑ 

i=1 

I ( Y i ≤ x ) . (15)

Based on the 100(1 − α)% confidence interval of E [ F �(x )] , � =
QRS S E , QRS S O , RSS , SRS , a 100(1 − α)% confidence interval for
F (x ) can be found as 

P 

( 
Z α/ 2 ≤ F �(x ) − E [ F �(x ) ] √ ̂ Var [ F �(x ) ] 

≤ Z 1 −α/ 2 

) 
= 1 − α. (16)

Solving (16) for E [ F �(x )] , � = QRS S E , QRS S O , RSS , SRS to get 

P 
(

F �(x ) − Z 1 −α/ 2 

√ ̂ Var [ F �(x ) ] ≤ E [ F �(x ) ] ≤ F �(x ) 

+ Z α/ 2 

√ ̂ Var [ F �(x ) ] 
)

= 1 − α, 

and the limits will be 

Lower Bound ( LB ) = F �(x ) − Z 1 −α/ 2 

√ ̂ Var [ F �(x ) ] , 

and 

 pper Bound ( U B ) = F �(x ) + Z α/ 2 

√ ̂ Var [ F �(x ) ] . 
Finally, an approximate 100(1 − α)% confidence for F (x ) can be obtained
by solving the equations 2 LB = h (F ) and 2 U B = h (F ) , numerically, or by
any suitable method, where based on QRSSE we have 

h (F ) = F Q 1 (x ) + F Q 3 (x ) , 

and using QRSSO it will be 

h (F ) = 

1 
n 

(
( n − 1 ) 

{
F Q 1 (x ) 

[
1 − F Q 1 (x ) 

]
+ F Q 3 (x ) 

[
1 − F Q 3 (x ) 

]}+ 2 F Q 2 (x ) 
)
. 

It is of interest to note here that any possible solution for last two equations
should be singular since h (F ) is increasing function in F (x ) . 

5. Conclusion 

In this study, QRSS procedure is considered to estimate the dis-
tribution function of a random variable. The QRSS is compared
with RSS and SRS in estimating the distribution function. It is
found that QRSS is more efficient than SRS and also it is more
efficient than RSS in most cases considered in this study. The
RP values are preferred as F (x ) goes to zero or 1 and increase
when F (x ) is close to 0.5. The bias of the QRSS estimator of
the distribution function is negligible. 
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