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Abstract This paper deals with a finite capacity queue with workload dependent service. The ar- 
rival of a customer follows Markovian arrival process ( MAP ). MAP is very effective arrival process 
to model massage-flow in the modern telecommunication networks, as these messages are very bursty 
and correlated in nature. The service time, which depends on the queue length at service initiation 
epoch, is considered to be generally distributed. Queue length distribution at various epoch and key 
performance measures have been obtained. Finally, some numerical results have been discussed to 
illustrate the numerical compatibility of the analytic analysis of the queueing model under consider- 
ation. 
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1. Introduction 

In many practical queueing situations, a long queue of cus-
tomers waiting for service is quite common which in turn
causes poor system performance (which is measured in terms of
loss/rejection/blocking probability). To avoid this inconvenient
situation, the decision maker often decide to control arrival
rates or service rates to reduce blocking probabilities or con-
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gestion. Various queueing models have been studied for over-
load control to prevent congestion in telecommunication net-
works, in particular, ATM (asynchronous transfer mode) net-
works (Jain [1] ). Overload control by controlling the service rate
is discussed earlier by Choi and Choi [2] , Choi et al. [3] , Sri-
ram and Lucantoni [4] , Banerjee and Gupta [5] , Banerjee et al.
[6] , etc. In particular, Choi and Choi [2] analyzed a finite buffer
queue, where customers arrive according to the Markov mod-
ulated Poisson process ( MMPP ), with queue-length-dependent
service. They considered that if the queue length at the service
initiation epoch is less than or equal to a threshold limit (say, L ),
the service time follows G 1 distribution, and if the queue length
at the service initiation-epoch exceeds the threshold limit, the
service time distribution of the customers is G 2 . They obtained
queue length distribution at departure- and arbitrary-epoch.
They also obtained performance measures, viz. loss probability,
mean waiting time, etc. 
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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In this paper, we consider a finite capacity queueing model 
here arrival follows MAP . MMPP , with matrix representation 

 Q , �), is a special case of MAP , with matrix representation
 C , D ). That is, if one consider Q = C + D and � = D , then
he arrival process MAP will reduces to MMPP . Also in this
aper the service time distribution of a customer is considered 

o be G n , i.e., service time of a customer depends on the num-
er of customers ( n ) present in the system at service initiation
poch of a customer and also generally distributed. Hence, for 
 n = G 1 ( 1 ≤ n ≤ L ), G n = G 2 ( n > L ), D = � and Q = C + D

he model presented in this paper will be reduced to the model
iscussed by Choi and Choi [2] . Therefore, the model considered 

n this paper is more general and complex than the one consid-
red by Choi and Choi [2] . One may note here that the results
btained in this paper cannot be deduced from [2] , whereas the
esults obtained in [2] can be deduced from the present study as
 special case. 

The analysis of this paper is carried out as follows: first 
eparture-epoch probabilities have been obtained by using the 
mbedded Markov chain technique. Then using the supple- 
entary variable technique and considering the supplementary 

ariable as remaining service time of a customer, relations be- 
ween arbitrary- and departure-epoch probabilities have been 

btained. Distribution of the number of customers in the queue 
t arrival-epoch has been also obtained. Performance measures 
uch as average number of customers in the queue, probability 
f blocking and average waiting time of a customer in the queue
ave been obtained. Then computational procedure when ser- 
ice time distribution is phase type (PH-distribution) has been 

iscussed. It should be noted here that many distribution (viz. 
xponential, hyperexponential, hypoexponential, Erlang, Cox- 
an, etc.) in continuous time set up can be approximated by 
H-distribution. Finally, comparative studies of queue-length- 
ependent service with the one when service time of the cus- 
omers are independent of the queue length have been carried 

ut by using self explanatory graphs as the effect of buffer-size 
n performance measures. These comparative studies establish 

he fact that our model is more effective than the one when ser-
ice time is independent of the queue length. For the sake of no-
ational convenience we denote this model by MAP /G n / 1 /N for 
uture reference. It may be remarked here that in a special case
hen G n = G , i.e., service time of the customers is independent
f the queue size, the model reduces to simple MAP /G/ 1 /N
ueue (Gupta and Laxmi [7] ). Gupta and Laxmi [7] analyzed 

AP /G/ 1 with finite/infinite buffer and obtained relations 
mong the queue size distributions at departure-, arbitrary- 
nd arrival-epoch using the supplementary variable technique. 
owever, they did not provide the computational procedure 

nd numerical illustrations. One can easily obtain numerical il- 
ustrations of MAP /G/ 1 /N queue from the present study. 

ATM networks support diverse traffics with different service 
haracteristics such as voice, data and video. In B-ISDN/ATM 

etwork, IP packets or cells of voice, video, data are sent over
 common transmission channel on statistical multiplexing ba- 
is. These traffics are statistically multiplexed and transmitted 

n superhigh speed. Also, it is seen that the traffic in modern
ommunication networks is highly irregular (e.g., bursty and 

orrelated). A good representation of such traffic is a Marko- 
ian arrival process ( MAP ). Hence, the model discussed in this
aper can be used to control congestion in the telecommunica- 
ion networks by controlling the transmission rate (service rate) 
epending on the number of the packet waiting in the queue 
queue length). In recent years there has been a growing inter-
st to analyze queues with input process as MAP which is a
ich class of point processes containing many familiar arrival 
rocesses, such as, Poisson process, interrupted Poisson process 
 IPP ), PH-renewal process, Markov modulated Poisson process 
 MMPP ), etc. Lucantoni et al. [8] . Later, queueing models with

AP have been studied extensively, in past, see e.g., [9–15] and
any others. For recent development in MAP , see, [16–21] and

he references therein. 
A real life application of the proposed model may be ob-

erved in modern telecommunication networks, viz. advanced 

ireless and mobile internet networks. Demand for high speed 

ireless internet access, voice and multimedia applications re- 
ults in the popularity of technologies like 3G and 4G. IEEE
02.16 is a telecommunication standard technology designed to 

upport a wide variety of wireless and wired broadband access 
f multimedia applications with expectation to provide Qual- 

ty of Service (QoS). The basic IEEE 802.16 system consists
f one Base Station (BS) and one (or more) Subscriber Station
SS). BS acts as a transmitter to transfer all type of data (voice,
ideo, data, etc.). Transmissions take place through two inde- 
endent channels, downlink channel (from BS to SS) and up- 

ink channel (from SS to BS). In case of internet traffic, down-
ink gets higher preference over the uplink. This internet traffic 
ow system may be modeled as a multimedia data transmis-
ion system over a wireless channel, where packets are queued at
he transmitter (BS). Since the incoming traffic in IEEE 802.16 
s irregular and bursty in nature, causing correlation in inter- 
rrival time, arrival process can be modeled using MAP . Due
o rapid increase in the popularity of 2G and 3G system, it has
ecome necessary to develop new schemes for congestion con- 
rol to reduce queue length, waiting time and probability of re-
ection (blocking). In this direction if one consider that the BS
ransmits data, depending on the queue size, to a SS, the system
an be modeled and analyzed as queue length dependent service 
ueue with MAP , which has been done (analytically) in this pa-
er. This scheme of transmission of packets (e.g., from BS to
S) enhances the overall efficiency of the system as well as im-
roves the QoS. Fig. 1 illustrates the data transmission system 

iscussed above. The rest of this paper is organized as follows.
n Section 2 , description of the model and its analysis at various
poch is given. The computational procedure when service time 
ollows phase type distribution are spelled out in Section 5 . Sys-
em performance measures and numerical results are given in 

ections 4 and 5 , respectively. The paper ends with some con-
luding remark in Section 6 . 

. Model description and solution 

onsider a single server queue where customers arrive accord- 
ng to the Markovian arrival process ( MAP ) with matrix repre-
entation ( C , D ) of dimension m . The generator Q 

∗, governing
he continuous time Markov chain governing the arrival pro- 
ess, is then given by Q 

∗ = C + D . Let δ denotes the stationary
robability vector of the Markov processes with generator Q 

∗. 
hat is, δ is the unique (positive) probability vectors satisfying 
Q 

∗ = 0 , δe = 1 . The fundamental arrival rate of the stationary
AP is given by λ∗ = δDe . Here e and 0 are the m × 1 vectors

f ones and zeros, respectively. For more detail on this topic,
ee, Lucantoni et al. [8] . 
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Fig. 1 Framework in IEEE 802.16 network. 
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Server serves single customer at a time. The queue has fi-
nite buffer (capacity) of size N > 1 , so at any time maximum
N + 1 customers can be present in the system. The service time
of a customer is assumed to be generally distributed and de-
pended on the number of customers present in the queue at
service initiation epoch of that customer including that cus-
tomer. Specifically, let T n (1 ≤ n ≤ N) be the service time of
a customer, where n (1 ≤ n ≤ N) is the number of customer in
the queue at service initiation epoch of the customer (includ-
ing him/her), with the distribution function H n (·) , probabil-
ity density function h n (·) , Laplace-Stieltjes transform H 

∗
n (s ) =∫ ∞ 

0 e −su h n (u ) du ( R es ≥ 0 ) and mean service time of a customer
is h n = −H 

∗(1) 
n (0) , where H 

∗(1) 
n (0) is the derivative of H 

∗
n (s )

evaluated at s = 0 . 
The steady-state analysis of the model under considera-

tion will be carried out using the embedded Markov chain ap-
proach and the supplementary variable technique since the ser-
vice times are assumed to be generally distributed. First, we will
look at the semi-Markov process embedded at the points of de-
parture of a customer. Toward this end, let us define the square
matrices A n,k (x ) and B 0 ,k (x ) of order m for x ≥ 0 whose (i, j) th
elements (A n,k (x )) i j and (B 0 ,k (x )) i j , respectively, are defined as
follows 

(A n,k (x )) i j ] = Pr { Given a departure at time 0, which left n (1 ≤ n

the queue and the arrival process in phase i, the ne

no later than time x with the arrival process in p ha

service k (k ≥ 0) customers arrive } , 
(B 0 ,k (x )) i j = Pr { Given a departure at time 0, which left 0 custom

the arrival process in phase i ,the next departure oc

x with the arrival process in phase j, and during th

customers arrive } . 

Suppose that ˜ N (t) and J(t) denote, respectively, the number of
customers arriving in (0 , t] and the phase of the MAP at time
t . The matrices, { ̃  P (n, t) , n ≥ 0 , t ≥ 0 } , whose (i, j) th entry de-
fined as 

˜ p i, j (n, t) = Pr { ̃  N (t) = n, J(t) = j| ̃  N (0) = 0 , J(0) = i} . (1)

These matrices satisfy the following system of difference-
differential equations 
) customer in 

parture occurs 

nd during that 

 the queue and 

 no later than time 

rvice k (k ≥ 0) 

d 
dt 

∼
P 

(0 , t) = 

∼
P 

(0 , t) C, 

d 
dt 

∼
P 

(n, t) = 

∼
P 

(n, t) C+ 

∼
P 

(n − 1 , t) D, n ≥ 1 , 

with 

∼
P 

(0 , 0) = I . 

These matrices, associated with the counting process
{ ̃  N (t) , J(t) ; t ≥ 0 } , have been extensively studied in the lit-
erature and an efficient procedure for computing them is given
in Neuts and Li [22] . 

It is easy to verify that 

A n,k (x ) = 

∫ x 

0 

∼
P 

(k, t ) dH n (t ) , 1 ≤ n ≤ N, 0 ≤ k ≤ N − n, 

A n,k (x ) = 

∞ ∑ 

l= k 
A n,l (x ) , 1 ≤ n ≤ N, k = N − n + 1 , 

B 0 ,k (x ) = 

∫ x 

0 

∼
P 

(0 , x − u ) DA 1 ,k (u ) du , 0 ≤ k ≤ N − 1 , 

B 0 ,N (x ) = 

∞ ∑ 

l= N 
B 0 ,l (x ) , 

For use in sequel, we define 

A n,k = A n,k (∞ ) , 1 ≤ n ≤ N, 0 ≤ k ≤ N − n, 

A n,k = A n,k (∞ ) , 1 ≤ n ≤ N, k = N − n + 1 , 

B 0 ,k = B 0 ,k (∞ ) = 

∼
D 

A 1 ,k , 0 ≤ k ≤ N − 1 , 

B 0 ,N = B 0 ,N (∞ ) = 

∼
D 

A 1 ,N , (2)

where 
∼
D 

= (−C ) −1 D (Lucantoni et al. [8] ). 
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.1. Distribution of the queue length at departure-epoch 

n this section the joint distribution of the number of customers 
n the queue and phase of the arrival process at departure-epoch 

as been obtained using the embedded Markov chain technique. 
oward this end, let N 

+ 
n and J + n denote, respectively, the number 

f customers in the queue and the phase of the arrival process
mmediately after the n -th departure of a customer. Then the 
iscrete-time process { (N 

+ 
n , J 

+ 
n ) ; n ≥ 0 } constitute a two dimen-

ional Markov chain with state space { (i, j) ; 0 ≤ i ≤ N, 1 ≤ j ≤
 } . Now observing the system immediately after a departure, 

he transition probability matrix ( TPM ) P of the above Markov
rocess is obtained as follows 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

B 0 , 0 B 0 , 1 B 0 , 2 B 0 , 3 . . . B 0 ,N−1 B 0 ,N 

A 1 , 0 A 1 , 1 A 1 , 2 A 1 , 3 . . . A 1 ,N−1 A 1 ,N 

0 A 2 , 0 A 2 , 1 A 2 , 2 . . . A 2 ,N−2 A 2 ,N−1 

0 0 A 3 , 0 A 3 , 1 . . . A 3 ,N−3 A 3 ,N−2 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
0 0 0 0 . . . A N, 0 A N, 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(3) 

et π+ 
i (n ) , 0 ≤ n ≤ N,be the joint probability that there are

 customers in the queue and the state of the arrival pro-
ess is i (1 ≤ i ≤ m ) immediately after the departure of a cus-
omer. Further, define ̃  π+ (n ) = (π+ 

1 (n ) , π
+ 
2 (n ) , . . . , π

+ 
m 

(n )) , 0 ≤
 ≤ N. The unknown quantities ˜ π+ (n ) can be obtained by 
olving the system of equations ˜ π+ P = ̃

 π+ with 

˜ π+ e = 1 , 
here ˜ π+ = ( ̃  π+ (0) , ̃  π+ (1) , · · · , ̃  π+ (N)) is a vector of dimen-

ion (N + 1) m . 

.2. Distribution of the queue length at an arbitrary-epoch 

n this section the joint distribution of the number of customers 
n the queue and phase of the arrival process at arbitrary-epoch 

as been obtained. Toward this end we define the state of the
ystem at time t as 

• N q (t) be the number of customers in the queue waiting for
service, 

• J(t) be the state of the underlying Markov chain of the 
MAP , and 

• U (t) be the remaining service time of a customer in service
(if any). 

• ξ (t) be the state of the server, that is, 

ξ (t) = 

{
1 , if server is busy, 
0 , if server is idle. 

et us define for 1 ≤ i ≤ m , 

p i (t) = Pr { N q (t) = 0 , J(t) = i, ξ (t) = 0 } , 
i (n, u ; t) du = Pr { N q (t) = n, 

(t) = i, u < U (t) ≤ u + du , ξ (t) = 1 } , 0 ≤ n ≤ N, u ≥ 0 . 

efine the steady-state probabilities as 

p i = lim 

t→∞ 

p i (t) , 1 ≤ i ≤ m, 

i (n, u ) = lim 

t→∞ 

πi (n, u ; t) , 1 ≤ i ≤ m, 0 ≤ n ≤ N . 
et us define the vectors p and π(n, u ) , 0 ≤ n ≤ N, u ≥ 0 , of
rder m whose j th components are given by p j and π j (n, u ) ,
espectively. Then relating the state of the system at time t
nd t + dt and using the supplementary variable technique, in 

teady-state, we have the following (matrix) differential equa- 
ions. 

 = pC + π(0 , 0) , (4) 

d 
du 

π(0 , u ) = π(0 , u ) C + h 1 (u ) π(1 , 0) + h 1 (u ) pD , (5) 

d 
du 

π(n, u ) = π(n, u ) C + h n +1 (u ) π(n + 1 , 0) 

+ π(n − 1 , u ) D , 1 ≤ n ≤ N − 1 , (6) 

d 
du 

π(N, u ) = π(N, u )(C + D ) + π(N − 1 , u ) D . (7) 

efine the Laplace transform of π(n, u ) as 

∗(n, s ) = 

∫ ∞ 

0 
e −su π(n, u ) du , 0 ≤ n ≤ N, R es ≥ 0 , 

nd observe that 

(n ) ≡ π∗(n, 0) = 

∫ ∞ 

0 
π(n, u ) du , 0 ≤ n ≤ N . (8) 

ow Multiplying (5)–(7) by e −su and integrating with respect to 

 over 0 to ∞ , we have 

s π∗(0 , s ) + π(0 , 0) = π∗(0 , s ) C + H 

∗
1 (s ) π(1 , 0) + H 

∗
1 (s ) pD , 

(9) 

s π∗(n, s ) + π(n, 0) = π∗(n, s ) C + H 

∗
n +1 (s ) π(n + 1 , 0) 

+ π∗(n − 1 , s ) D , 1 ≤ n ≤ N − 1 , (10) 

s π∗(N, s ) + π(N, 0) = π∗(N, s )(C + D ) + π∗(N − 1 , s ) D . 

(11) 

ost multiplying 4 and (9)–(11) by the vector e , adding them and
sing (C + D ) e = 0 , we obtain 

N 
 

n =0 

π∗(n, s ) e = 

1 − H 

∗
1 (s ) 

s 
π(0 , 0) e + 

N ∑ 

n =1 

1 − H 

∗
n (s ) 

s 
π(n, 0) e . 

(12) 

aking limit s → 0 in (12) yields 

N 
 

n =0 

π(n ) e = h 1 π(0 , 0) e + 

N ∑ 

n =1 

h n π(n, 0) e , 

 − pe = h 1 π(0 , 0) e + 

N ∑ 

n =1 

h n π(n, 0) e . (13) 

sing (8) and the normalizing condition pe + 

∑ N 
n =0 π(n ) e = 1 ,

he above relation has been obtained. Before giving relations be- 
ween { p, π(n ) } and { ̃  π+ (n ) } , let us first derive the following re-
ults which will be used later. 

It may be noted here that, as ̃  π+ (n ) and π(n, 0) are propor-
ional to each other, hence 

 

+ (n ) = dπ(n, 0) , 0 ≤ n ≤ N, (14) 

here d is a proportionality constant. The following lemma 
ives an expression for d . 
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Table 1 Distribution of the number of customers in the queue at various epoch for MAP / PH n / 1 / 30 queue with m = 2 and λ∗ = 3 . 999 . 

n ˜ π+ (n ) π(n ) π−(n ) 

j = 1 j = 2 
∑ m 

j=1 π
+ 
j (n ) j = 1 j = 2 

∑ m 

j=1 π j (n ) j = 1 j = 2 
∑ m 

j=1 π
−
j (n ) 

0 0.00037314 0.00026974 0.00064289 0.00079188 0.00057830 0.00137019 0.00076519 0.00061281 0.00137799 
1 0.00079707 0.00058320 0.00138027 0.00142766 0.00104746 0.00247512 0.00138014 0.00110663 0.00248676 
2 0.00143637 0.00105451 0.00249088 0.00240720 0.00176993 0.00417713 0.00232754 0.00186732 0.00419487 
3 0.00242088 0.00178093 0.00420181 0.00385525 0.00283984 0.00669509 0.00372833 0.00299257 0.00672089 
4 0.00387566 0.00285635 0.00673201 0.00588697 0.00434411 0.01023108 0.00569411 0.00457253 0.01026664 
5 0.00591594 0.00436769 0.01028362 0.00858789 0.00634813 0.01493603 0.00830792 0.00667450 0.01498242 
6 0.00862702 0.00638019 0.01500721 0.01198790 0.00887638 0.02086428 0.01159896 0.00932259 0.02092155 
7 0.01203822 0.00891794 0.02095616 0.01603655 0.01189382 0.02793038 0.01551871 0.01247846 0.02799717 
8 0.01609827 0.01194521 0.02804349 0.02058734 0.01529369 0.03588104 0.01992564 0.01602881 0.03595445 
9 0.02065955 0.01535438 0.03601393 0.02539710 0.01889653 0.04429363 0.02458453 0.01978475 0.04436928 
10 0.02547769 0.01896499 0.04444268 0.03014407 0.02246314 0.05260721 0.02918396 0.02349571 0.05267967 
11 0.03022988 0.02253693 0.05276682 0.03446372 0.02572090 0.06018462 0.03337087 0.02687720 0.06024806 
12 0.03455082 0.02579691 0.06034773 0.03799659 0.02839941 0.06639599 0.03679694 0.02964807 0.06644501 
13 0.03808076 0.02847417 0.06655493 0.04043921 0.03026869 0.07070791 0.03916790 0.03157037 0.07073826 
14 0.04051646 0.03033883 0.07085529 0.04158777 0.03117231 0.07276008 0.04028584 0.03248350 0.07276934 
15 0.04165480 0.03123492 0.07288972 0.04136569 0.03104861 0.07241430 0.04007606 0.03232608 0.07240213 
16 0.04142030 0.03110161 0.07252191 0.03983022 0.02993640 0.06976662 0.03859349 0.03114126 0.06973475 
17 0.03987143 0.02997868 0.06985011 0.03715776 0.02796460 0.06512235 0.03600861 0.02906560 0.06507422 
18 0.03718584 0.02799602 0.06518187 0.03361242 0.02532901 0.05894143 0.03257700 0.02630459 0.05888159 
19 0.03362866 0.02535034 0.05897899 0.02950502 0.02226185 0.05176688 0.02859963 0.02310071 0.05170033 
20 0.02951140 0.02227446 0.05178586 0.02515098 0.01900007 0.04415104 0.02438211 0.01970051 0.04408263 
21 0.02514985 0.01900570 0.04415555 0.02083430 0.01575805 0.03659235 0.02019977 0.01632642 0.03652619 
22 0.02082805 0.01575857 0.03658661 0.01678252 0.01270845 0.02949097 0.01627326 0.01315693 0.02943019 
23 0.01677329 0.01270559 0.02947888 0.01315425 0.00997246 0.02312671 0.01275652 0.01031680 0.02307332 
24 0.01314378 0.00996771 0.02311149 0.01003851 0.00761898 0.01765749 0.00973607 0.00787637 0.01761244 
25 0.01002807 0.00761350 0.01764157 0.00746307 0.00567065 0.01313372 0.00723902 0.00585803 0.01309705 
26 0.00745343 0.00566529 0.01311871 0.00540809 0.00411397 0.00952206 0.00524632 0.00424678 0.00949311 
27 0.00539943 0.00410938 0.00950881 0.00382153 0.00291107 0.00673260 0.00370772 0.00300242 0.00671014 
28 0.00381328 0.00290795 0.00672124 0.00263351 0.00201088 0.00464439 0.00255568 0.00207083 0.00462651 
29 0.00262352 0.00201064 0.00463416 0.00176748 0.00135874 0.00312622 0.00171639 0.00139327 0.00310966 
30 0.00174967 0.00136513 0.00311480 0.00093507 0.00073169 0.00166677 0.00090965 0.00074192 0.00165157 

Total 0.57133254 0.42866746 1.00000000 0.57105754 0.42830811 0.99936566 0.55321386 0.44614431 0.99935818 

p = [0 . 000371030 . 00026331] , pe = . 00063434 , p − = [ . 00035757 . 00028426] , p −e = . 00064182 
L q = 14 . 71404236 , W q = 3 . 67851059 , P loss = . 00165157 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α2 (n ) = π(n ) e , 0 ≤ n ≤ N . (20) 
Lemma 1. The value of d, as appeared in ( 14 ) , is given by 

d −1 = 

N ∑ 

n =0 

π(n, 0) e = 

1 − pe 
g 

, (15)

where g = h 1 ̃  π+ (0) e + 

∑ N 
n =1 h n ̃  π+ (n ) e . 

Proof. Summing both side of (14) over the range of n , the
desired result d −1 = 

∑ N 
n =0 π(n, 0) e is obtained. Then dividing

(13) by 
∑ N 

n =0 π(n, 0) e and using (14) , the desired result (15) is
obtained after little algebraic operation. �

Theorem 1. The state probabilities { p, π(n ) } and { ̃  π+ (n ) } are re-
lated by 

p = E 

∗−1 ˜ π+ (0) (−C ) −1 (16)

π(n ) = E 

∗−1 
[˜ π+ (0) { (−C ) −1 D } n +1 

(−C ) −1 

+ 

n +1 ∑ 

k =1 

{ ̃  π+ (k ) − ˜ π+ (k − 1) } { (−C ) −1 D } n +1 −k 
(−C ) −1 

]
, 

× 0 ≤ n ≤ N − 1 , (17)
π(N) = δ − p −
N−1 ∑ 

n =0 

π(n ) , (18)

where E 

∗ = g + ̃

 π+ (0) (−C ) −1 e and g is given in Lemma 1 . 

Proof. Dividing (4) by 
∑ N 

n =0 π(n, 0) e and using (14) and
Lemma 1 , after little manipulations the desired result (16) is
obtained. Now setting s = 0 in (9) and (10) , using (14) and a
recursive procedure, the desired result (17) is obtained with the
help of Lemma 1 . 

The last Eq. (18) follows immediately using normalizing con-
dition p + 

∑ N 
n =0 π(n ) = δ. �

Once the probability vectors p and π(n ) ( 0 ≤ n ≤ N) are ob-
tained, the other distributions of interest such as distribution
of the number of customers in the queue at an arbitrary-epoch
when server is idle, α1 (0) , and busy, α2 (n ) ( 0 ≤ n ≤ N), can be
easily obtained and are given by 

α1 (0) = pe + π(0) e , (19)
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.3. Distribution of the queue length at an arrival-epoch 

et p − and π−(n ) ( 0 ≤ n ≤ N) be the vectors of dimension m
hose j -th components are given by p −j and π−

j (n ) , respectively.
p −j gives the steady-state probability that an arrival finds 0 cus- 
omer in the queue, server idle, and the state of the arrival pro-
ess is j . π−

j (n ) gives the steady-state probability that an arrival
nds n ( 0 ≤ n ≤ N) customer in the queue, server busy, and the
tate of the arrival process is j . Then the vectors p − and π−(n )
re given by 

p − = 

pD 

λ∗ , (21) 

−(n ) = 

π(n ) D 

λ∗ , 0 ≤ n ≤ N . (22) 

s p and π(n ) are known from (16)–(18) , one can easily obtain
rrival-epoch probabilities using (21) and (22) . 

. Computational procedure 

n this section, the necessary steps required for the computa- 
ion of the elements, the matrices A n,k ( B 0 ,k ), of TPM P by con-
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idering phase type (PH-distribution) service time distribution, 
re discussed briefly. Computational procedure of A n,k involves 
nly matrix arithmetic when service time is PH-distribution. It 
hould be noted here that any distribution can be approximated 

y PH-distribution (viz. exponential, hyperexponential, hypo- 
xponential, Erlang, Coxian, etc.). PH-distribution can be fully 
epresented by (β, S ) , where β and S are of dimension ν, (i.e., β
s an initial probability vector and S is a square matrix govern-
ng the transitions to various transition states). For more detail 
n PH-distribution and their properties authors refer the reader 
o Nuets [23] . The following theorem gives a procedure for the
omputation of the matrices A n,k . 

heorem 2. Let H n (·) (1 ≤ n ≤ N) follows a PH-distribution
ith irreducible representation (βn , S n ) , where βn and S n are of
imension ν, then the matrices A n,k (B 0 ,k ) appearing in ( 2 ) are
iven by 

 n,k = (I m 

� βn ) M n,k (I m 

� S 

0 
n ) , 1 ≤ n ≤ N, 0 ≤ k ≤ N − n, 

(23) 

 n,k = (I m 

� βn )[ −M n,k −1 (D � I ν )((C � S n ) 

+ (D � I ν )) −1 ](I m 

� S 

0 
n ) , 1 

≤ n ≤ N, k = N − n + 1 , (24) 

 0 ,k = 

∼
D 

A 1 ,k , 0 ≤ k ≤ N − 1 , (25) 

 0 ,N = 

∼
D 

A 1 ,N , (26) 

here 

 

0 
n = −S n e , 

 n,k = M n,k −1 (D � I ν ) M n, 0 1 ≤ n ≤ N, 1 ≤ k ≤ N − n 

 n, 0 = −(C � S n ) 
−1 , 1 ≤ n ≤ N − 1 . 

Note :- Here I r denotes an identity matrix of dimension r.
hen there is no need to emphasize the dimension of these vectors

e will suppress the suffix. Thus, I will denote an identity matrix
f appropriate dimension. Symbol � and � denotes the Kronecker 
roduct and Kronecker sum of two matrices, respectively. If A is
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a matrix of order m × n and if B is a matrix of order p × q , then
A � B will denote a matrix of order mp × nq whose (i, j) th block
matrix is given by a i j B. The Kronecker sum of two square matri-
ces, say, G of order g and H of order h, is given by G � I + I � H ,
a square matrix of dimension gh. For more details on Kronecker

product, we refer the reader to Marcus and Minc [ 24 ] . 
∼
D 

is given
in ( 2 ) . 

Proof. First note that the matrices { ̃  P (n, t) , n ≥ 0 , t ≥ 0 } associ-
ated with the counting process for MAP satisfy (see, e.g., Neuts
and Li [22] ) 

˜ P 

′ (n, t) = 

˜ P (n, t) C + 

˜ P (n − 1 , t) D , n ≥ 0 , (27)

with 

˜ P (−1 , t) = 0 and 

˜ P (0 , 0) = I . 
Using the properties of Kronecker product and noticing that

˜ P (k, t) → 0 as t → ∞ , we see that 

A n,k = 

∫ ∞ 

0 

∼
P 

(k, t) dH n (t) = ( I m 

� βn ) M n,k 
(
I m 

� S 

0 
n 

)
, 1 

≤ n ≤ N, 0 ≤ k ≤ N − n, (28)

where 

M n,k = 

∫ ∞ 

0 

˜ P (k, t) � e S n t dt 

= 

⎧ ⎨ 

⎩ 

−(
I m 

� S 

−1 
n 

) − ∫ ∞ 

0 

∼
P 

′ (0 , t) � e S n t S 

−1 
n dt , 1 ≤ n ≤ N, k = 0 , 

− ∫ ∞ 

0 

∼
P 

′ (k, t) � e S n t S 

−1 
n dt , 1 ≤ n ≤ N, 1 ≤ k ≤ N − n . 

(29

Using (27) in (29) and after some manipulations involving Kro-
necker products and sums, we get 

M n, 0 = −(C � S n ) 
−1 , 1 ≤ n ≤ N, 

M n,k = M n,k −1 (D � I ν ) M n, 0 , 1 ≤ n ≤ N, 1 ≤ k ≤ N − n . (30)

On noticing that 

A n,k = 

∞ ∑ 

l= k 
A n,l = (I m 

� βn ) ̃  M n (I m 

� S 

0 
n ) , 1 

≤ n ≤ N, k = N − n + 1 , (31)

where 

˜ M n = 

∞ ∑ 

j= k 

∫ ∞ 

0 

˜ P ( j, t) � e S n t dt 

= −M n,k −1 (D � I ν ) [(C � S n ) + (D � I ν )] −1 , (32)

stated expression for A n,k in (24) holds good. Using similar ap-
proach the expressions for B 0 ,k , 0 ≤ k ≤ N − 1 , and B 0 ,N , follow
immediately. �

4. Performance measures 

The average number of customers in the ( L q ), average waiting
time of a customer in the queue ( W q ) and loss probability of a
customer ( P loss ) is given by L q = 

∑ N 
n =0 nα2 (n ) , W q = 

L q 
λ∗ , P loss =

π−(N) e = 

π(N) De 
λ∗ . 

5. Numerical results 

In this section, the numerical compatibility of the analytical
results, as obtained in the previous sections, of the queueing
model under consideration is illustrated. Toward this end, in
Table 1 , all the distributions of MAP / PH / 1 / 30 queue, with
queue-length-dependent service, has been displayed for the fol-
lowing input parameters: 

The MAP representation is taken as C = ( −6 . 5 1 . 0 
3 . 5 −5 . 5 

) and

D = ( 3 . 5 2 . 0 
0 . 5 1 . 5 

) . For service time, PH -distribution is taken as βn =
( 1 . 0 0 . 0 ) S n = ( −μn μn 

0 −μn 
) for 1 ≤ n ≤ N, where μn = μn −1 +

0 . 2 for 1 ≤ n ≤ N and μ0 = 5 . 0 . 
To bring out some qualitative aspects of the model under

consideration, a comparative study of queue-length-dependent
service with queue-length-independent service policy has been
carried out for the queueing model under consideration. The
performance measures of a queueing system usually reflect
both the qualitative and quantitative aspects of the concerned
model. It provides the system analyst a powerful tool in mak-
ing decisions and judging the efficacy of the concerned system.
The effect of N (buffer size) on the major system performance
measures, L q , W q and P loss , respectively, has been illustrated in
Figs. 2–4 for MAP / PH n / 1 /N ( N varies from 5 to 100) queue
with the following input parameters: The MAP representa-

tion is taken as C = ( −4 . 657 1 . 761 
1 . 128 −3 . 941 

) and D = ( 
1 . 657 1 . 239 

0 . 872 1 . 941 
) . For

service time, PH distribution is taken as βn = ( 0 . 4 0 . 6 ) S n =
( −μn 0 

0 −μn 
) . for 1 ≤ n ≤ N. 

Let us now consider the following two cases: 

Case 1: Queue-length-independent service ( μn = μ0 for 1 ≤
n ≤ N and μ0 = 0 . 5 ) 

Case 2: Queue-length-dependent service ( μn = nμ0 for 1 ≤
n ≤ N and μ0 = 0 . 5 ) 

It is clear from Figs. 2 and 3 that as N increases L q and W q in-
creases with N for both the cases, but for Case 1 this increase in
the value of L q ( W q ) is very high in comparison with case 2. So
from here we can conclude that queue-length-dependent service
considerably decreases the queue length ( L q ) and waiting time
of customers in the queue ( W q ), which is always core objective of
system analyst. Now observing the Fig. 4 one can conclude the
queueing model under consideration also decreases loss proba-
bility which is also another important feature of the queueing
model. Since it is clear from Fig. 4 that as N increases P loss de-
creases for both the cases but this decrease is very high for case
2, i.e., for queue-length-dependent service. 

6. Concluding remarks 

In this paper, a finite capacity queue with Markovian arrival
process has been studied with queue length dependent service.
The service time of a customer is considered to be generally
distributed and dependent on queue length at service initiation
epoch. An efficient computational procedure for computing the
steady state probabilities at various epoch has been developed
by considering phase type service time distribution. The proce-
dure developed in this paper can be used to analyze more com-
plex queuing models involving batch Markovian arrival process
( BMAP ). One can also extend the present work to analyze dis-
crete time BMAP with queue length dependent service. 
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