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Abstract In this paper we use the Apollonius definition of conics to generate algebraic curves in 
the Minkowski space-time plane M 

2 , which turn out to be different from classical conic sections. We 
extend and classify this sort of “M-conics”. We discuss the cases of the singularity points of these 
M-conics, coming from the transition from timelike world to spacelike world through the lightlike 
one. Finally, we translate the classical concept of Cassini curves with two foci and that of (multifocal) 
Cassini curves to Minkowski planes M 

2 . 
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. Introduction 

 Minkowski space-time plane M 

2 is pseudo-Euclidean plane, 
.e., there are three types of directions, the spacelike, timelike 
nd lightlike directions, and the unit ball in such a plane consists
f two conjugate hyperbolas with lightlike asymptotes [1,2] , see 
ig. 1 . Many authors discuss this space from the relativity point
f view with some mathematical concepts, e.g., Naber [3–5] . 

In the following we use the fundamental Apollonian 

efinitions of quadratic conics in Euclidean plane to 
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efine “M-conics” in the Minkowski space-time plane 
 

2 . 
The elementary geometric Apollonius definition of an ellipse 

n the Euclidean plane reads as follows: 

An ellipse is the set of points P having constant distance sum
from two fixed points F 1 , F 2 , the so-called focal points of the
ellipse. 

Similar and well-known definitions exist for hyperbolas and 

arabolas. While the projective geometric point of view distin- 
uishes these “conic sections” (or shortly “conics”) by their 
deal points, a proper elementary geometric approach has to 

mit this way to classify conics. 
Cassini’s modification [6–8] , in 1680, of the Apollonius def- 

nition replaces the constant sum of distances to two fixed focal
oints by the constant product of these distances. Cassini be- 

ieved that the motion of the planets of the solar system revolves
n one of these curves. There are many applications of Cassini
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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Fig. 1 Unit circle S M 

of the Minkowski plane M 

2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

curves in BioGeometry, e.g. sectors of onions layers, bacterial
colonies and cell shapes. Furthermore, simulation of light
scattering [9] , by small concave particles is necessary to find an
appropriate mathematical description of the particle shape. This
can be done easily by the usage of Cassini curves. For example,
this approach is used to fit the shape of the human red blood
cell [10,11] . For more applications of Cassini curves, see [12–14] .

In this paper we aim at changing the place of action from
the classical Euclidean plane to the so-called Minkowski space-
time plane or, physically spoken, to the two-dimensional space-
time world. As expected the topology of the “M-conics” and
“M-Cassini curves” depends on the position and distance of the
focal points and of the chosen constant distance sum resp. prod-
uct. Special cases occur, if these foci lie on a lightlike line. 

2. Minkowski norm 

The Lorentz transformations are designed to preserve the light-
like lines, which is “M-circle true”, i.e. they are translations to-
gether with pseudo-reflections and pseudo-rotations, which is
the set x 

2 − y 2 = 0 . In fact, it preserves each of the hyperbolas
x 

2 − y 2 = k , for all k , i.e. the common asymptotes of these hy-
perbolas are the lightlike directions. 

Definition 1. The Minkowski space-time plane M 

2 is a real vec-
tor space with usual Minkowski inner product 〈 , 〉 M 

given by

〈 x , y 〉 M 

:= x 1 y 1 − x 2 y 2 , (1)

where x , y ∈ M 

2 , x = ( x 1 , x 2 ) and y = ( y 1 , y 2 ) . 

The norm ‖ · ‖ is defined by the previous inner product as 

‖ x ‖ = 

√ 

| 〈 x , x 〉 M 

| . (2)

Any arbitrary vector x ∈ M 

2 is classified according to the
sign of 〈 x , x 〉 M 

as follows: 

i x is timelike if 〈 x , x 〉 M 

< 0 , 
ii x is spacelike if 〈 x , x 〉 M 

> 0 , 
iii x is lightlike if 〈 x , x 〉 M 

= 0 . 

It is clear to define the "unit circle" as a pair of Euclidean
hyperbolas x 

2 − y 2 = ±1 as follows: 

S M 

:= { x ∈ M 

2 : ‖ x ‖ = 1 } , (3)

and the unit ball is 

B M 

:= { x ∈ M 

2 : ‖ x ‖ ≤ 1 } . (4)

The unit circle S M 

has four sheets. Two of them come from
the equation 〈 x , x 〉 M 

= 1 which refers to the spacelike direc-
tions. The others from 〈 x , x 〉 M 

= −1 , which refers to the time-
like directions. Any lightlike vector is parallel to the asymptotes
y = x and y = −x of the unit circle S M 

, see Fig. 1 . The pair of
asymptotes of S M 

forms the so-called light cone of M 

2 . 

3. Conics in Minkowski space-time planes M 

2 

3.1. M-ellipse in M 

2 

We discuss the conics in Minkowski plane M 

2 by using the usual
definition like in the Euclidean plane. Using the metric defini-
tion of M 

2 , an M-ellipse obtains by distance sum from its foci z
and w to the locus point x on it: 

‖ x − z ‖ + ‖ x − w ‖ = 2 a, a > 0 (5)

where x = ( x, y ) is a position point with given two foci points
z = ( z 1 , z 2 ) and w = ( w 1 , w 2 ) . 

3.2. Classification of M-ellipse in M 

2 

Now, we classify all cases of the M-ellipse ( 5 ). First of all, we
can rewrite ( 5 ) as follows: 

√ ∣∣( x − z 1 ) 2 − ( y − z 2 ) 2 
∣∣ + 

√ ∣∣( x − w 1 ) 
2 − ( y − w 2 ) 

2 
∣∣ = 2 a. (6)

Generally, M-ellipses ( 6 ) have at most eight singular points.
Furthermore, they are symmetric with respect to the center of
their focal segments. Denote the distance between the two foci
z = ( z 1 , z 2 ) and w = ( w 1 , w 2 ) by 2 d . Then we have 

d = 

1 
2 

√ ∣∣( z 1 − w 1 ) 
2 − ( z 2 − w 2 ) 

2 
∣∣. (7)

To analyze the singularity of ( 6 ), we need to find the limit
points of ( 6 ) with the four lines y = x + z 2 − z 1 , y = −x + z 2 +
z 1 , y = x + w 2 − w 1 and y = −x + w 2 + w 1 . 

Case I : 
In the region of | x − z 1 | ≥ | y − z 2 | and | x − w 1 | ≥ | y − w 2 | we

have two symmetric parts with 

√ 

( x − z 1 ) 2 − ( y − z 2 ) 2 +√ 

( x − w 1 ) 
2 − ( y − w 2 ) 

2 = 2 a. We have the following singular
points on the four lines y = x + z 2 − z 1 , y = −x + z 2 + z 1 ,
y = x + w 2 − w 1 and y = −x + w 2 + w 1 . 

1- The limit point P 1 = ( x 1 , y 1 ) at the line y = x + z 2 − z 1 ;
therefore we have 

x 1 = 

4 a 2 + w 

2 
2 − ( z 1 − z 2 − w 1 ) 

2 

2( z 1 − z 2 − w 1 + w 2 ) 
+ z 1 − z 2 , (8)
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∣∣∣∣
y 1 = 

4 a 2 + w 

2 
2 − ( z 1 − z 2 − w 1 ) 

2 

2( z 1 − z 2 − w 1 + w 2 ) 
. (9) 

2- The limit point P 2 = ( x 2 , y 2 ) at the line y = −x + z 2 + z 1 ;
therefore we have 

x 2 = 

4 a 2 + w 

2 
2 − ( z 2 + z 1 − w 1 ) 

2 

2 ( z 2 + z 1 − w 2 − w 1 ) 
+ z 2 + z 1 , (10) 

y 2 = 

4 a 2 + w 

2 
2 − ( z 2 + z 1 − w 1 ) 

2 

2 ( w 2 + w 1 − z 2 − z 1 ) 
. (11) 

3- The limit point P 3 = ( x 3 , y 3 ) at the line y = x + w 2 − w 1 ;
similarly, in ( 8 ) and ( 9 ) we have 

x 3 = 

4 a 2 + z 2 2 − ( w 1 − w 2 − z 1 ) 2 

2( w 1 − w 2 − z 1 + z 2 ) 
+ w 1 − w 2 , (12) 

y 3 = 

4 a 2 + z 2 2 − ( w 1 − w 2 − z 1 ) 2 

2( w 1 − w 2 − z 1 + z 2 ) 
. (13) 

4- The limit point P 4 = ( x 4 , y 4 ) at the line 

1. y = −x + w 2 + w 1 , like in ( 10 ) and ( 11 ) we have 

x 4 = 

4 a 2 + z 2 2 − ( w 1 + w 2 − z 1 ) 2 

2 ( w 1 + w 2 − z 1 − z 2 ) 
+ w 2 + w 1 , (14) 

y 4 = 

4 a 2 + z 2 2 − ( w 1 + w 2 − z 1 ) 2 

2( z 1 + z 2 − w 1 − w 2 ) 
. (15) 

Case II : 
In the region of | x − z 1 | ≤ | y − z 2 | and | x − w 1 | ≤ | y − w 2 |

e have two symmetric parts with 

√ 

( y − z 2 ) 2 − ( x − z 1 ) 2 + 

 

( y − w 2 ) 
2 − ( x − w 1 ) 

2 = 2 a . We have the following singular 
oints intersected with the same four lines as in case I. 

1- The limit point P 5 = ( x 5 , y 5 ) at the line y = x + z 2 − z 1 ;
therefore we have 

x 5 = 

−4 a 2 + w 

2 
2 − ( z 1 − z 2 − w 1 ) 

2 

2( z 1 − z 2 − w 1 + w 2 ) 
+ z 1 − z 2 , (16) 

y 5 = 

−4 a 2 + w 

2 
2 − ( z 1 − z 2 − w 1 ) 

2 

2( z 1 − z 2 − w 1 + w 2 ) 
. (17) 

2- The limit point P 6 = ( x 6 , y 6 ) at the line y = −x + z 2 + z 1 ;
therefore we have 

x 6 = 

−4 a 2 + w 

2 
2 − ( z 2 + z 1 − w 1 ) 

2 

2 ( z 2 + z 1 − w 2 − w 1 ) 
+ z 2 + z 1 , (18) 

y 6 = 

−4 a 2 + w 

2 
2 − ( z 2 + z 1 − w 1 ) 

2 

2 ( w 2 + w 1 − z 2 − z 1 ) 
. (19) 

3- The limit point P 7 = ( x 7 , y 7 ) at the line y = x + w 2 − w 1 ; in
the same way, as in ( 16 ) and ( 17 ), we have 

x 7 = 

−4 a 2 + z 2 2 − ( w 1 − w 2 − z 1 ) 2 

2( w 1 − w 2 − z 1 + z 2 ) 
+ w 1 − w 2 , (20) 

y 7 = 

−4 a 2 + z 2 2 − ( w 1 − w 2 − z 1 ) 2 

2 ( w 1 − w 2 − z 1 + z 2 ) 
. (21) 
4- The limit point P 8 = ( x 8 , y 8 ) at the line y = −x + w 1 + w 2 ;
in the same way, as in ( 18 ) and ( 19 ), we have 

x 8 = 

−4 a 2 + z 2 2 − ( w 1 + w 2 − z 1 ) 2 

2 ( w 1 + w 2 − z 1 − z 2 ) 
+ w 2 + w 1 , (22) 

y 8 = 

−4 a 2 + z 2 2 − ( w 1 + w 2 − z 1 ) 2 

2( z 1 + z 2 − w 1 − w 2 ) 
. (23) 

In the same manner, we have other two cases: | x − z 1 | ≥
 y − z 2 | and | x − w 1 | ≤ | y − w 2 | , the other case is in the region
f | x − z 1 | ≤ | y − z 2 | and | x − w 1 | ≥ | y − w 2 | . These cases have

our branches with the same critical points as we previously de-
ived. 

However, we have eight critical points, and this number of 
oints may be less depending on the factor and the position of
he two foci z and w . Then we have the following classification: 

i. If a = d , we have only six singular points on the M-ellipse.
Two of them are the foci. In Fig. 2 a, we see two foci lying
in timelike directions; therefore, the others should lie in the 
spacelike directions and the converse is true. From Eqs. (16) –
( 19 ) we get P 5 = P 6 = z . Furthermore, from ( 20 )–( 23 ) we get
P 7 = P 8 = w . In other words, the two foci lie on the M-ellipse
as singular points. 

ii. If a > d and the foci are not on the same lightlike line, then
the two foci are interior points of the M-ellipse. Further-
more, we have eight singular points on the M-ellipse. Four 
of them lie in the timelike directions, and the others lie in the
spacelike directions. See Fig. 2 b. 

ii. If a < d with the absence of two foci lying together on the
same lightlike line, the two foci should be exterior points of
the M-ellipse. Furthermore, we have eight singular points on 

the M-ellipse with two separated parts. Each of them con- 
tains four singular points. The existence of points in timelike 
or spacelike directions depends on the locus of the foci. See
Fig. 2 c. 

v. If the foci are on the same lightlike line, we have six singular
points: two of them are ideal points (they lie in the projective
line), i.e. points at infinity. Also, the two foci are inside the
M-ellipse. See Fig. 2 d. 

.3. M-hyperbola in M 

2 

imilarly, like an M-ellipse, we can define an M-hyperbola in 

 

2 by using its foci z = ( z 1 , z 2 ) and w = ( w 1 , w 2 ) . Using the
lementary definition we get 

 ‖ x − z ‖ − ‖ x − w ‖ | = 2 a, a > 0 . (24) 

In the Euclidean case the geometric properties of a hyper- 
ola do not depend on the parameter a . However, in Minkowski
pace-time plane M 

2 the topological properties of an M- 
yperbola ( 24 ) depend on the parameter a and the position of
ts foci. 

The classification of an M-hyperbola ( 24 ) looks like that of
n M-ellipse ( 5 ). In the same way, we rewrite ( 24 ) as follows: 

√ ∣∣( x − z 1 ) 2 − ( y − z 2 ) 2 
∣∣ −

√ ∣∣( x − w 1 ) 
2 − ( y − w 2 ) 

2 
∣∣∣∣∣∣ = 2 a. 

(25) 
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Fig. 2 (a) M-ellipse in M 

2 with a = d = 1 , where the two foci (0,1), (0,–1) lie on the M-ellipse. (b) M-ellipse in M 

2 with a = 2 and the 
two foci (0,1), (0,–1) inside the M-ellipse. (c) M-ellipse in M 

2 with a = 2 and the two foci (1,6), (–1,0) outside the M-ellipse (Two separated 
Astroids). (d) M-ellipse in M 

2 with a = 2 and the two foci (1,1), (0,2) with foci line parallel to the Light-like line. 
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Therefore, we have the following: 

i. If a = d , we have six singular points with two singular foci.
See Fig. 3 a. 

ii. If a > d , we have eight singular points distributed evenly
over the spacelike and timelike directions. See Fig. 3 b. 

ii. If a < d , also we have eight singular points evenly dis-
tributed over the spacelike and timelike directions. Further-
more, we get two combined sheets in both spacelike and
timelike directions. See Fig. 3 c. 
iv. If the straight line connecting the two focal points is
the lightlike line, then M-hyperbolas consist of only four
branches with four singular points. See Fig. 3 d, while all for-
mer cases consist of eight branches. 

3.4. M-parabola in M 

2 

The elementary geometric Apollonius definition of a parabola
in the Euclidean plane reads as follows: 
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Fig. 3 (a) M-hyperbola in M 

2 with foci (2,0), (–2,0), a = 2. (b) M-hyperbola in M 

2 with foci (2,0), (–2,0), a = 3. (c) M-hyperbola in M 

2 

with foci (2,0), (–2,0), a = 1. (d) M-hyperbola in M 

2 with a = 3 and foci (–2,2), (3,–3) and the line connecting the foci is the Light-like line. 
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A parabola is the locus of points P having constant segment 
distance from a fixed point F , the so-called "focus" of the
parabola, and a straight line, called the "directrix" L . 

efinition 2. In Minkowski space-time plane M 

2 a segment or 
traight line is said to be of the first (second) kind if it is parallel
o a line through the origin located in the sectors containing 
he spacelike (timelike) equilateral hyperbola, i.e. the slope of 
he line m satisfies | m | < 1 ( | m | > 1 ). The first (second) kind is
alled spacelike (timelike) lines . 
Therefore the straight line equation of the first (second) kind 

assing through a point ( x o , y o ) can be represented, respectively, 
s follows: 

y − y o 
x − x o 

= m, | m | < 1 (26) 

y − y o 
x − x o 

= m, | m | > 1 . (27) 

The previous two equations reflect the topological character- 
zations of the M 

2 plane. 
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Fig. 4 M-parabola in M 

2 with focal point (–2,–1) and line y = 3 x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 3. The M-orthogonal of the line of the first (second)
kind in M 

2 is of the second (first) kind. Furthermore, the prod-
uct of their slopes, is equal to one. 

Theorem 4. The distance from a point P( x 1 , y 1 ) to a straight
line L with equation y = m x + q , m 	 = ±1 is equal to 

| y 1 −m x 1 −q | √ 

| m 

2 −1 | 
which is independent on the kind of the line L . This distance
corresponds to a maximum as is well known from special rela-
tivity, see [1,3] . 

Definition 5. Similarly as in elementary geometry, we can define
the M-parabola in M 

2 using a fixed focal point z = ( z 1 , z 2 ) and
a straight line L : y = m x + q as follows: 

∣∣( x − z 1 ) 2 − ( y − z 2 ) 2 
∣∣ = 

| y − m x − q | 2 ∣∣m 

2 − 1 
∣∣ . (28)

Of course ( 28 ) fails if the straight line is lightlike, because all
M-orthogonal lines to such a line are again lightlike of the same
direction. An M-parabola is well defined in M 

2 , if the directrix
is of first or second kind only, see Fig. 4 . Also, ( 28 ) fails if we
choose the line L to be the y -axis because the slope is undefined
and m → ∞ . In spite of the right hand side of ( 28 ), we can easily
get the squared distance of the position point ( x, y ) to be x 

2 .
Then ( 28 ) becomes | ( x − z 1 ) 2 − ( y − z 2 ) 2 | = x 

2 , see [15] . 

4. M-Cassini curves in M 

2 

As mentioned in Section 1 , we define M-Cassini curves in
Minkowski space-time plane M 

2 as the set of points having con-
stant distance product from two fixed focal points z = ( z 1 , z 2 )
and w = ( w 1 , w 2 ) . Let b 2 be the value of this constant distance
product, then the equation of the M-Cassini curves can be writ-
ten as follows: ∣∣( x − z 1 ) 2 − ( y − z 2 ) 2 

∣∣ · ∣∣( x − w 1 ) 
2 − ( y − w 2 ) 

2 
∣∣ = b 4 . (29)

Geometrically, the shapes of the curves depend on the posi-
tion of the foci and the constant b, see, e.g., Fig. 5 a. 
Also, if we convert ( 29 ) by changing the parameter using the
hyperbolic functions ( x, y ) → ( r, α) where x = ±r cosh α, y =
±r sinh α and r 2 = x 

2 − y 2 , we have: 

i r 2 > 0 in spacelike directions, 
ii r 2 < 0 in timelike directions, 

iii r 2 = 0 in lightlike directions. 

Then ( 29 ) becomes: ∣∣(r 2 + z 2 1 − z 2 2 

)(
r 2 + w 

2 
1 − w 

2 
2 

)
+4 r 2 ( z 1 cosh α − z 2 sinh α)( w 1 cosh α − w 2 sinh α) 

−2 r 
[
( z 1 cosh α − z 2 sinh α) 

(
r 2 + w 

2 
1 − w 

2 
2 

)
+( w 1 cosh α − w 2 sinh α) 

(
r 2 + z 2 1 − z 2 2 

)]∣∣ = b 4 . (30)

Special case I: 
We may start with a “normal form” of an M-Cassini curve

c namely the case, where the two foci lie symmetric on the x -
axis. Then we have z 1 = − w 1 = c and z 2 = w 2 = 0 , see Fig. 5 a.
All the cases, where the line connecting the two foci is timelike,
can be transformed into this case by a Minkowski congruence
transformation, see Fig. 5 a. Then ( 30 ) becomes 

| ( r 2 + c 2 ) 
2 − 4 r 2 c 2 cosh 

2 
α| = b 4 , (31)

and for the nor mal for m c we may take c = 1 . Then ( 31 ) reduces
to 

| r 4 − 2 r 2 cosh 2 α + 1 | = b 4 . (32)

There are still two subcases to distinguish: 

i For r 4 + c 4 > 2 r 2 c 2 cosh 2 α we get r =
±c 

√ 

cosh 2 α ±
√ 

sinh 

2 2 α + ( b c ) 
4 
. 

1. Hence, 

x = ±c 

√ √ √ √ 

cosh 2 α ±
√ 

sinh 

2 2 α + 

(
b 
c 

)4 

cosh α, (33)

y = ±c 

√ √ √ √ 

cosh 2 α ±
√ 

sinh 

2 2 α + 

(
b 
c 

)4 

sinh α. (34)

ii For r 4 + c 4 < 2 r 2 c 2 cosh 2 α we have r =
±c 

√ 

cosh 2 α ±
√ 

sinh 

2 2 α − ( b c ) 
4 

1. Hence, 

x = ±c 

√ √ √ √ 

cosh 2 α ±
√ 

sinh 

2 2 α −
(

b 
c 

)4 

cosh α, (35)

y = ±c 

√ √ √ √ 

cosh 2 α ±
√ 

sinh 

2 2 α −
(

b 
c 

)4 

sinh α. (36)

In Fig. 6 , we show M-Cassini curves for different values of b
and d which are given by ( 7 ). 



276 E.N. Shonoda 

Fig. 5 (a) M-Cassini curves in M 

2 with foci (1,0), (–1,0). (b) M-Cassini curves in M 

2 with foci (0,–1), (0,1). (c) M-Cassini curves in M 

2 

with foci (1,1), (–1,–1). (d) M-Cassini curves in M 

2 with foci (1,–8), (–1,2). 

 

M  

m  

A  

t
g

r

Fig. 6 M-Cassini curves for a given d and varying values of bwith 
foci (1,–8), (–1,–2). 
Special case II: 
Also in this case we may start with a “normal form” of an

-Cassini curve c , namely the case, where the two foci lie sym-
etric on the y -axis, then we have z 1 = w 1 = 0, z 2 = –w 2 = c .
gain, all the cases, where the line connecting the two foci is

imelike, can be transformed into this case by a Minkowski con- 
ruence transformation, see Fig. 5 b. Then we have 

 = ±c 

√ √ √ √ 

cosh 2 α ±
√ 

sinh 

2 2 α + 

(
b 
c 

)4 
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Fig. 7 (a) Multifocal M-Cassini curves in M 

2 with three foci. (b) Multifocal M-Cassini curves in M 

2 with four foci. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where Eqs. (33) and ( 34 ) should be valid, but do not give real
values for all parameters α. The interval of α with real x and y
values is restricted by sinh 

2 2 α > ( b c ) 
4 . 

This means 1 
2 cosh 

−1 
( 

√ 

b 4 + c 4 
c 2 ) < α or − 1 

2 cosh 

−1 
( 

√ 

b 4 + c 4 
c 2 ) >

α, see Fig. 5 b. 
Special case III: 
If the two foci lie on a lightlike line or a parallel one, then

we can again, without loss of generality, choose the focal points
to be symmetric to the origin. We assume z 1 = z 2 = 1 and w 1 =
w 2 = 1 . Then ( 30 ) becomes 

∣∣r 2 ∣∣∣∣r 2 − 4 r e −α + 4 e −2 α
∣∣ = b 4 , (36)

and the corresponding M-Cassini curve is shown in Fig. 5 c. For
a more general case see Fig. 5 d. 

5. Multifocal M-Cassini curves in M 

2 

As a generalization already due to Tschirnhaus [16] one can
consider curves with constant distance sum or product to more
than two focal points. Of course, in the Lorentz–Minkowski
plane one gets already for three focal points many topologically
different cases. We omit such a discussion and show in Fig. 7 a
and b images of such multifocal M-Cassini curves with three
and four focal points. 

6. Conclusion 

Conics in the Minkowski space-time plane have some criti-
cal points coming from the transition between future and past
timelike directions into spacelike directions through asymptotes
lines of the equilateral hyperbolas unit circle (lightlike lines).
Furthermore, their topological form depends on its foci and
some factors in the case of M-ellipse and M-hyperbola, also the
position of the directrix in the case of M-hyperbola. It is sur-
prising to find that in some cases the foci lie on the conics as
singular points. In Euclidean plane, the conic is a section of the
usual quadratic cone. However in Minkowski plane, the shape
of analogues of such cones is still unknown. 

Almost all M-Cassini curves in Minkowski Space-Time
plane are defined using hyperbolic functions. We believe that
in pseudo-Minkowski plane it can be clearly introduced by us-
ing the functions of a hypercomplex variable since its confor-
mal mappings have the same geometrical properties as the con-
formal mappings corresponding to the functions of a complex
variable. See [1] . 
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