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1. Introduction 

In 2003 the first author [1] introduced the notion of Lorentzian
concircular structure manifolds (briefly, ( LCS ) n -manifolds),
with an example, which generalizes the notion of LP-Sasakian
manifolds introduced by Matsumoto [2] and also by Mihai
and Rosca [3] . Then Shaikh and Baishya [4,5] investigated
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the applications of ( LCS ) n -manifolds to the general theory of
relativity and cosmology. It is to be noted that the most inter-
esting fact is that ( LCS ) n -manifold remains invariant under a
D-homothetic transformation, which does not hold for an LP-
Sasakian manifold [6] . The ( LCS ) n -manifolds have been also
studied by Atceken [7] , Narain and Yadav [8] , Prakasha [9] ,
Shaikh [10] , Shaikh et al. [11,12] , Shaikh and Binh [13] , Shaikh
and Hui [14] , Sreenivasa et al. [15] , Yadav et al. [16] and others.

In modern analysis the geometry of submanifolds has be-
come a subject of growing interest for its significant application
in applied mathematics and theoretical physics. For instance,
the notion of invariant submanifold is used to discuss prop-
erties of non-linear autonomous system [17] . Also the notion
of geodesics plays an important role in the theory of relativity
[18] . For totally geodesic submanifolds, the geodesics of the am-
bient manifolds remain geodesics in the submanifolds. Hence,
totally geodesic submanifolds are also very much important in
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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(

g(φX , φY ) = g(X , Y ) + η(X ) η(Y ) , (2.7) 
hysical sciences. The study of geometry of invariant submani- 
olds was initiated by Bejancu and Papaghuic [19] . In general the
eometry of an invariant submanifold inherits almost all prop- 
rties of the ambient manifold. The invariant submanifolds have 
een studied by many geometers to different extent such as 

20–35] and many others. 
Motivated by the above studies the present paper deals with 

he study of invariant submanifolds of odd dimensional ( LCS ) n -
anifolds. The paper is organized as follows. Section 2 is con- 

erned with rudiments of ( LCS ) n -manifolds. Section 3 deals 
ith the study of some basic properties of invariant subman- 

folds of ( LCS ) n -manifolds. It is shown that an invariant sub-
anifold of a ( LCS ) n -manifold is also a ( LCS ) n -manifold. 

Let N and M be two Riemannian or semi-Riemannian man- 
folds, f : N → M be an immersion, h be the second fundamental
orm and ∇ be the Vander–Waerden–Bortolotti connection of 
 . An immersion is said to be semiparallel if 

 (X , Y ) · h = 

(∇ X ∇ Y − ∇ Y ∇ X − ∇ [ X,Y ] 
)
h = 0 (1.1) 

olds for all vector fields X , Y tangent to N [36] , where R de-
otes the curvature tensor of the connection ∇ . Semiparallel 

mmersions have also been studied in [37,38] . 
In [39] Arslan et. al defined and studied submanifolds satis- 

ying the condition 

 (X , Y ) · ∇ h = 0 (1.2) 

or all vector fields X , Y tangent to N and such submanifolds
re called 2-semiparallel. In [30] Özgür and Murathan studied 

emiparallel and 2-semiparallel invariant submanifolds of LP- 
asakian manifolds. In Section 4 of the paper we study semi- 
arallel and 2-semiparallel invariant submanifolds of ( LCS ) n - 
anifolds. It is proved that an invariant submanifold N of 
 ( LCS ) n -manifold is semiparallel if and only if N is totally
eodesic. 

A transformation of an n -dimensional Riemannian manifold 

 , which transforms every geodesic circle of M into a geodesic
ircle, is called a concircular transformation [40] . The interest- 
ng invariant of a concircular transformation is the concircular 
urvature tensor C , which is defined by Yano [40] 

(X , Y ) Z = R (X , Y ) Z − r 
n (n − 1) 

[
g( Y , Z) X − g( X , Z) Y 

]
, 

(1.3) 

here r is the scalar curvature of the manifold. Section 5 deals
ith the study of invariant submanifolds of ( LCS ) n -manifolds 

atisfying C (X , Y ) · h = 0 and C (X , Y ) · ∇ h = 0 . It is shown
hat if N is an invariant submanifold of a ( LCS ) n -manifold
ith r � = n (n − 1)(α2 − ρ) then the condition C (X , Y ) · ∇ h = 0
olds if and only if N is totally geodesic. Section 6 is devoted to
he study of 3-dimensional invariant submanifolds of a ( LCS ) n -
anifold and it is proved that such a submanifold is totally 

eodesic. 

. ( LCS ) n -manifolds 

n n -dimensional Lorentzian manifold M is a smooth con- 
ected paracompact Hausdorff manifold with a Lorentzian 
etric g , that is, M admits a smooth symmetric tensor field
 of type (0,2) such that for each point p ∈ M , the tensor
 p : T p M × T p M → R is a non-degenerate inner product of sig-
ature (−, + , · · · , +) , where T p M denotes the tangent vector
pace of M at p and R is the real number space. A non-zero
ector v ∈ T p M is said to be timelike (resp., non-spacelike, null,
pacelike) if it satisfies g p ( v , v ) < 0 (resp., ≤ 0, = 0, > 0) [41] . 

efinition 2.1. [40] In a Lorentzian manifold ( M , g ) a vector
eld P defined by 

(X , P) = A (X ) , 

or any X ∈ �( TM ), is said to be a concircular vector field if 

 ̃

 ∇ X A )(Y ) = α{ g(X , Y ) + ω(X ) A (Y ) } 

here α is a non-zero scalar and ω is a closed 1-form and ̃

 ∇ de-
otes the operator of covariant differentiation of M with respect 
o the Lorentzian metric g . 

Let M be an n -dimensional Lorentzian manifold admitting a 
nit timelike concircular vector field ξ , called the characteristic 
ector field of the manifold. Then we have 

(ξ , ξ ) = −1 . (2.1) 

ince ξ is a unit concircular vector field, it follows that there
xists a non-zero 1-form η such that for 

(X , ξ ) = η(X ) , (2.2) 

he equation of the following form holds 

 ̃

 ∇ X η)(Y ) = α{ g(X , Y ) + η(X ) η(Y ) } , α � = 0 (2.3)

or all vector fields X , Y , where ˜ ∇ denotes the operator of co-
ariant differentiation of M with respect to the Lorentzian met- 
ic g and α is a non-zero scalar function satisfies 

 

 X α = (X α) = dα(X ) = ρη(X ) , (2.4)

being a certain scalar function given by ρ = −(ξα) . Let us
ake 

X = 

1 
α

˜ ∇ X ξ, (2.5) 

hen from (2.3) and (2.5) we have 

X = X + η(X ) ξ, (2.6) 

rom which it follows that φ is a symmetric (1,1) tensor and
alled the structure tensor of the manifold. Thus the Lorentzian 

anifold M together with the unit timelike concircular vector 
eld ξ , its associated 1-form η and an (1,1) tensor field φ is
aid to be a Lorentzian concircular structure manifold (briefly, 
 LCS ) n -manifold), [1] . Especially, if we take α = 1 , then we
an obtain the LP-Sasakian structure of Matsumoto [2] . In a
 LCS ) n -manifold ( n > 2), the following relations hold [1,10] : 

η(ξ ) = −1 , φξ = 0 , η(φX ) = 0 , 
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φ2 X = X + η(X ) ξ, (2.8)

S(X , ξ ) = (n − 1)(α2 − ρ) η(X ) , (2.9)

R (X , Y ) ξ = (α2 − ρ)[ η(Y ) X − η(X ) Y ] , (2.10)

R (ξ , Y ) Z = (α2 − ρ)[ g(Y , Z) ξ − η(Z) Y ] , (2.11)

R (ξ , X ) ξ = (α2 − ρ)[ η(X ) ξ + X ] , (2.12)

( ̃  ∇ X φ)(Y ) = α{ g(X , Y ) ξ + 2 η(X ) η(Y ) ξ + η(Y ) X } , (2.13)

(X ρ) = dρ(X ) = βη(X ) , (2.14)

R (X , Y ) Z = φR (X , Y ) Z + (α2 − ρ) 

× { g(Y , Z) η(X ) − g(X , Z) η(Y ) } ξ (2.15)

for all X , Y , Z ∈ �( TM ) and β = −(ξρ) is a scalar function,
where R is the curvature tensor and S is the Ricci tensor of the
manifold. The ξ -sectional curvature K(ξ , X ) = g(R (ξ , X ) ξ, X )

for a unit vector field X orthogonal to ξ play an important role
in the study of an almost contact metric manifold. 

By virtue of (2.11) we have from (1.3) that 

(ξ , Y ) Z = 

[
α2 − ρ − r 

n (n − 1) 

]
[ g(Y , Z) ξ − η(Z) Y ] , (2.16)

(ξ , Y ) ξ = 

[
α2 − ρ − r 

n (n − 1) 

]
[ η(Y ) ξ + Y ] . (2.17)

3. Some basic properties of invariant submanifolds of 
( LCS ) n -manifolds 

Let N be a submanifold of a ( LCS ) n -manifold M with induced
metric g . Also let ∇ and ∇ 

⊥ be the induced connection on the
tangent bundle TN and the normal bundle T 

⊥ N of N respec-
tively. Then the Gauss and Weingarten formulae are given by

˜ ∇ X Y = ∇ X Y + h (X , Y ) (3.1)

and 

˜ ∇ X V = −A V X + ∇ 

⊥ 
X V (3.2)

for all X , Y ∈ �( TN ) and V ∈ �( T 

⊥ N ), where h and A V are sec-
ond fundamental form and the shape operator (corresponding
to the normal vector field V ) respectively for the immersion of N
into M . The second fundamental form h and the shape operator
A V are related by [42] 

g(h (X , Y ) , V ) = g(A V X , Y ) (3.3)

for any X , Y ∈ �( TN ) and V ∈ �( T 

⊥ N ). We note that h ( X , Y ) is
bilinear and since ∇ f X Y = f ∇ X Y for any smooth function f on
a manifold, we have 

h ( f X , Y ) = f h (X , Y ) . (3.4)

Definition 3.1. [19] A submanifold N of a ( LCS ) n -manifold M
is said to be invariant if the structure vector field ξ is tangent
to N at every point of N and φX is tangent to N for any vector
field X tangent to N at every point of N , that is φ( TN ) ⊂ TN at
every point of N . The submanifold N of the ( LCS ) n -manifold M
is called totally geodesic if h (X , Y ) = 0 for any X , Y ∈ �( TN ). 

For the second fundamental form h , the covariant derivative
of h is defined by 

( ∇ X h )(Y , Z) = ∇ 

⊥ 
X (h (Y , Z)) − h (∇ X Y , Z) − h (Y , ∇ X Z) (3.5)

for any vector fields X , Y , Z tangent to N . Then ∇ h is a normal
bundle valued tensor of type (0,3) and is called the third funda-
mental form of N , ∇ is called the Vander–Waerden–Bortolotti
connection of M , i.e. ∇ is the connection in TN ⊕T 

⊥ N built with
∇ and ∇ 

⊥ . If ∇ h = 0 , then N is said to have parallel second fun-
damental form [42] . Throughout the paper each object K pro-
duced by the connection ∇ (respectively ˜ ∇ ) will be denoted by
K (respectively ˜ K ). From the Gauss and Weingarten formulae
we obtain 

˜ R (X , Y ) Z = R (X , Y ) Z + A h (X,Z) Y − A h (Y,Z) X , (3.6)

where ˜ R (X , Y ) Z denotes the tangential part of the curvature
tensor of the submanifold. 

From (1.1) , we get 

( R (X , Y ) · h )(Z, U ) = R 

⊥ (X , Y ) h (Z, U ) − h (R (X , Y ) Z, U ) 

− h (Z, R (X ,Y ) U ) (3.7)

for all vector fields X , Y , Z and U , where 

R 

⊥ (X , Y ) = [ ∇ 

⊥ 
X , ∇ 

⊥ 
Y ] − ∇ 

⊥ 
[ X,Y ] 

and R denotes the curvature tensor of ∇ . In the similar manner
we can write 

( R (X , Y ) · ∇ h )(Z, U, W ) 

= R 

⊥ (X , Y )( ∇ h )(Z, U, W ) − ( ∇ h )(R (X , Y ) Z, U, W ) 

−( ∇ h )(Z, R (X , Y ) U, W ) − ( ∇ h )(Z, U, R (X , Y ) W ) (3.8)

for all vector fields X , Y , Z , U and W tangent to N and
( ∇ h )(Z, U, W ) = ( ∇ Z h )(U, W ) [39] . Again for the concircular
curvature tensor C we have [30] 

( C (X , Y ) · h )(Z, U ) = R 

⊥ (X , Y ) h (Z, U ) − h (C(X , Y ) Z, U ) 

− h (Z,C(X ,Y ) U ) (3.9)

and 

( C (X , Y ) · ∇ h )(Z, U, W ) 

= R 

⊥ (X , Y )( ∇ h )(Z, U, W ) − ( ∇ h )(C(X , Y ) Z, U, W ) 

−( ∇ h )(Z, C(X , Y ) U, W ) − ( ∇ h )(Z, U, C(X , Y ) W ) . 

(3.10)

In an invariant submanifold of a ( LCS ) n -manifold, we have 

h (X , ξ ) = 0 . (3.11)

Now we have 

Proposition 3.1. Let N be an invariant submanifold of a ( LCS ) n -
manifold M. Then the following relations hold: 

∇ X ξ = αφX , (3.12)
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 (X , Y ) ξ = (α2 − ρ)[ η(Y ) X − η(X ) Y ] , (3.13)

(X , ξ ) = (n − 1)(α2 − ρ) η(X ) , i.e., Qξ = (n − 1)(α2 − ρ) ξ, 

(3.14) 

∇ X φ)(Y ) = α{ g(X , Y ) ξ + 2 η(X ) η(Y ) ξ + η(Y ) X } , (3.15)

 (X , φY ) = φh (X , Y ) . (3.16)

roof. Since N is an invariant submanifold of a ( LCS ) n -
anifold M , we have 

 

 X ξ = αφX . (3.17) 

sing Gauss formula (3.1) and (3.17) , we get 

φX = ∇ X ξ + h (X , ξ ) . (3.18) 

y virtue of (3.11) it follows from (3.18) that the relation (3.12)
olds. Again since M is a ( LCS ) n -manifold, we get from (2.13)
hat 

 ̃

 ∇ X φ)(Y ) = α{ g(X , Y ) ξ + 2 η(X ) η(Y ) ξ + η(Y ) X } . (3.19)

rom (3.1) , we have 

 ̃

 ∇ X φ)(Y ) = (∇ X φ)(Y ) + h (X , φY ) − φh (X , Y ) . (3.20)

omparing the tangential and normal parts of (3.19) and (3.20) , 
e get the relation (3.15) and (3.16) . Again from (3.6) , we have

˜ 

 (X , Y ) ξ = R (X , Y ) ξ + A h (X,ξ ) Y − A h (Y,ξ ) X . (3.21)

sing (2.10) and (3.11) in (3.21) , we get the relation (3.13) and
onsequently follows (3.14) . 

Thus we can state the following: �

heorem 3.1. An invariant submanifold N of a ( LCS ) n -manifold 
 is a ( LCS ) n -manifold. 

. Semiparallel and 2-semiparallel invariant submanifolds of 
 LCS ) n -manifolds 

his section deals with semiparallel and 2-semiparallel invariant 
ubmanifolds of ( LCS ) n -manifolds. 

heorem 4.1. Let N be an invariant submanifold of a ( LCS ) n -
anifold M with α2 − ρ � = 0 . Then N is semiparallel if and only

f N is totally geodesic. 

roof. Since N is semiparallel, we have R · h = 0 and hence
rom (3.7) we get 

 

⊥ (X , Y ) h (Z, U ) − h (R (X , Y ) Z, U ) − h (Z, R (X , Y ) U ) = 0 . 

(4.1) 

utting X = U = ξ in (4.1) we obtain 

 

⊥ (ξ , Y ) h (Z, ξ ) − h (R (ξ , Y ) Z, ξ ) − h (Z, R (ξ , Y ) ξ ) = 0 . 

(4.2) 
y virtue of (3.11), (4.2) yields 

 (Z, R (ξ , Y ) ξ ) = 0 . (4.3)

sing (2.10) and (3.11) in (4.3) , we get 

 (Z, Y ) = 0 , 

hich implies that N is totally geodesic. 
The converse is trivial and consequently we get the desired 

heorem. �

heorem 4.2. Let N be an invariant submanifold of a ( LCS ) n -
anifold M. Then the second fundamental form of the submani- 

old N is parallel if and only if N is totally geodesic. 

roof. Since N has parallel second fundamental form, it follows 
rom (3.5) that 

 ∇ X h )(Y , Z) = ∇ 

⊥ 
X (h (Y , Z)) − h (∇ X Y , Z) − h (Y , ∇ X Z) . 

(4.4) 

utting Z = ξ in (4.4) and using (3.11) , we have 

 (Y , ∇ X ξ ) = 0 . (4.5) 

n view of (3.12) we have from (4.5) that 

 (Y , φX ) = 0 . (4.6) 

eplacing X by φX in (4.6) and using (2.8) and (3.11) we get
 (Y , X ) = 0 , which implies that N is totally geodesic. 

The converse statement is obvious. This proves the 
heorem. �

heorem 4.3. Let N be an invariant submanifold of a ( LCS ) n -
anifold M with non-vanishing ξ -sectional curvature. Then N is 

-semiparallel if and only if N is totally geodesic. 

roof. Let N be an invariant submanifold of a ( LCS ) n -manifold
 such that α2 − ρ � = 0 , which is 2-semiparallel. Then from

3.8) we get 

 

⊥ (X , Y )( ∇ h )(Z, U, W ) − ( ∇ h )(R (X , Y ) Z, U, W ) 

−( ∇ h )(Z, R (X , Y ) U, W ) − ( ∇ h )(Z, U, R (X , Y ) W ) = 0 . 

(4.7) 

lugging X = U = ξ in (4.7) , we obtain 

 

⊥ (ξ , Y )( ∇ h )(Z, ξ, W ) − ( ∇ h )(R (ξ , Y ) Z, ξ, W ) (4.8) 

−( ∇ h )(Z, R (ξ , Y ) ξ, W ) − ( ∇ h )(Z, ξ, R (ξ , Y ) W ) = 0 . 

y virtue of (2.5), (2.11), (2.12), (3.5) and (3.11) , we have the
ollowing: 

 ∇ h )(Z, ξ, W ) = ( ∇ Z h )(ξ , W ) 

= ∇ 

⊥ 
Z (h (ξ , W )) − h (∇ Z ξ, W ) − h (ξ , ∇ Z W ) 

= −αh (φZ, W ) , (4.9) 

 ∇ h )(R (ξ , Y ) Z, ξ, W ) 

= ( ∇ R (ξ ,Y ) Z h )(ξ , W ) 

= ∇ 

⊥ 
R (ξ ,Y ) Z (h (ξ , W )) − h (∇ R (ξ ,Y ) Z ξ, W ) − h (ξ , ∇ R (ξ ,Y ) Z W ) 
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= −h (αφR (ξ , Y ) Z, W ) 

= α(α2 − ρ) η(Z) h (φY , W ) , (4.10)

( ∇ h )(Z, R (ξ , Y ) ξ, W ) 

= ( ∇ Z h )(R (ξ , Y ) ξ, W ) 

= ∇ 

⊥ 
Z (h (R (ξ , Y ) ξ, W )) − h (∇ Z R (ξ , Y ) ξ, W ) 

−h (R (ξ , Y ) ξ, ∇ Z W ) 

= (α2 − ρ) ∇ 

⊥ 
Z h (Y , W ) − (α2 − ρ) h (∇ Z { η(Y ) ξ + Y } , W ) 

−(α2 − ρ) h (Y , ∇ Z W ) (4.11)

and 

( ∇ h )(Z, ξ, R (ξ , Y ) W ) 

= ( ∇ Z h )(ξ , R (ξ , Y ) W ) 

= ∇ 

⊥ 
Z (h (ξ , R (ξ , Y ) W )) − h (∇ Z ξ, R (ξ , Y ) W ) 

−h (ξ , ∇ Z R (ξ , Y ) W ) 

= −h (αφZ, R (ξ , Y ) W ) 

= α(α2 − ρ) η(W ) h (φZ, Y ) . (4.12)

Using (2.5), (4.9) –(4.12) in (4.8) , we obtain 

−αR 

⊥ (ξ , Y ) h (φZ, W ) − (α2 − ρ) η(Z) h (φY , W ) 

−(α2 − ρ) ∇ 

⊥ 
Z h (Y , W ) + (α2 − ρ) h (∇ Z { η(Y ) ξ + Y } , W ) 

+(α2 − ρ) h (Y , ∇ Z W ) − α(α2 − ρ) η(W ) h (φZ, Y ) = 0 . 

(4.13)

Putting W = ξ in (4.13) and using (3.11) and (3.12) , we get 

α(α2 − ρ) h (φZ, Y ) = 0 . (4.14)

The ξ -sectional curvature of a ( LCS ) n -manifold for a unit vector
field X orthogonal to ξ is given by K(ξ , X ) = g(R (ξ , X ) ξ, X ) .
Hence from (2.12) , we get 

K(ξ , X ) = (α2 − ρ) . (4.15)

Since the manifold under consideration is of non-vanishing
ξ -sectional curvature, we have from (4.15) that α2 − ρ � = 0 .
Again since α � = 0, (4.14) yields 

h (φZ, Y ) = 0 . (4.16)

Replacing Z by φZ in (4.16) and using (2.8) and (3.11) , we get
h (Z, Y ) = 0 , which implies that N is totally geodesic. 

The converse part is trivial. So the theorem is proved. �

5. Invariant submanifolds of ( LCS ) n -manifolds satisfying 
 (X, Y ) · h = 0 and C (X, Y ) · ∇ h = 0 

This section deals with invariant submanifolds of ( LCS ) n -
manifolds satisfying C (X , Y ) · h = 0 and C (X , Y ) · ∇ h = 0 . 

Theorem 5.1. Let N be an invariant submanifold of a ( LCS ) n -
manifold M such that r � = n (n − 1)(α2 − ρ) . Then C (X , Y ) · h =
0 holds on N if and only if N is totally geodesic. 

Proof. Let N be an invariant submanifold of a ( LCS ) n -manifold
M satisfying C (X , Y ) · h = 0 such that r � = n (n − 1)(α2 − ρ) .
Then we have from (3.9) that 

R 

⊥ (X , Y ) h (Z, U ) − h (C(X , Y ) Z, U ) − h (Z, C(X , Y ) U ) = 0 . 

(5.1)
Setting X = U = ξ in (5.1) and using (2.16) and (3.11) , we
get 

h (Z, C(ξ , Y ) ξ ) = 0 . (5.2)

By virtue of (2.17) it follows from (5.2) that 

[ 
α2 − ρ − r 

n (n − 1) 

] 
h (Z, η(Y ) ξ + Y ) = 0 . (5.3)

Again in view of (3.11), (5.3) yields 

[ 
α2 − ρ − r 

n (n − 1) 

] 
h (Z, Y ) = 0 , 

which gives 

h (Z, Y ) = 0 , since r � = n (n − 1)(α2 − ρ) (5.4)

and hence the submanifold N is totally geodesic. The converse
is trivial and hence the theorem. �

Theorem 5.2. Let N be an invariant submanifold of a ( LCS ) n -
manifold M such that r � = n (n − 1)(α2 − ρ) . Then C (X , Y ) ·
∇ h = 0 holds on N if and only if N is totally geodesic. 

Proof. Let N be an invariant submanifold of a ( LCS ) n -manifold
M such that r � = n (n − 1)(α2 − ρ) . If N satisfies the condition
 (X , Y ) · ∇ h = 0 , then from (3.10) , we get 

R 

⊥ (X , Y )( ∇ h )(Z, U, W ) − ( ∇ h )(C(X , Y ) Z, U, W ) 

−( ∇ h )(Z, C(X , Y ) U, W ) − ( ∇ h )(Z, U, C(X , Y ) W ) = 0 . 

(5.5)
Putting X = U = ξ in (5.5) , we obtain 

R 

⊥ (ξ , Y )( ∇ h )(Z, ξ, W ) − ( ∇ h )(C(ξ , Y ) Z, ξ, W ) 

−( ∇ h )(Z, C(ξ , Y ) ξ, W ) − ( ∇ h )(Z, ξ, C(ξ , Y ) W ) = 0 . (5.6)

By virtue of (2.16), (2.17), (3.5) and (3.11) , we get 

( ∇ h )(C(ξ , Y ) Z, ξ, W ) 

= ( ∇ C(ξ ,Y ) Z h )(ξ , W ) 

= ∇ 

⊥ 
C(ξ ,Y ) Z (h (ξ , W )) − h (∇ C(ξ ,Y ) Z ξ, W ) − h (ξ , ∇ C(ξ ,Y ) Z W ) 

= −h (α φC(ξ , Y ) Z, W ) 

= α
[ 
α2 − ρ − r 

n (n − 1) 

] 
η(Z) h (φY , W ) , (5.7)

( ∇ h )(Z, C(ξ , Y ) ξ, W ) 

= ( ∇ Z h )(C(ξ , Y ) ξ, W ) 

= ∇ 

⊥ 
Z (h (C(ξ , Y ) ξ, W )) − h (∇ Z C(ξ , Y ) ξ, W ) 

−h (C(ξ , Y ) ξ, ∇ Z W ) 

= 

[
α2 − ρ − r 

n (n − 1) 

]
×[∇ 

⊥ 
Z h (Y , W ) − h (∇ Z { η(Y ) ξ + Y } , W ) − h (Y , ∇ Z W ) 

]
(5.8)

and 

( ∇ h )(Z, ξ, C(ξ , Y ) W ) 

= ( ∇ Z h )(ξ , C(ξ , Y ) W ) 

= ∇ 

⊥ 
Z (h (ξ , C(ξ , Y ) W )) − h (∇ Z ξ, C(ξ , Y ) W ) 

−h (ξ , ∇ Z C(ξ , Y ) W ) 
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= −h (α φZ, C(ξ , Y ) W ) 

= α

[
α2 − ρ − r 

n (n − 1) 

]
η(W ) h (φZ, Y ) . (5.9) 

n view of (2.5), (4.9) and (5.7) –(5.9) we have from (5.6) that 

αR 

⊥ (ξ , Y ) h (φZ, W ) −
[
α2 − ρ − r 

n (n − 1) 

]
× [

αη(Z) h (φY , W ) + ∇ 

⊥ 
Z h (Y , W ) − h (∇ Z { η(Y ) ξ + Y } , W ) 

− h (Y , ∇ Z W ) + η(W ) h (φZ, Y ) 
] = 0 . (5.10) 

utting W = ξ in (5.10) and using (3.11) and (3.12) , we get 

[
α2 − ρ − r 

n (n − 1) 

]
h (Y , φZ) = 0 , 

hich implies that 

 (Y , φZ) = 0 , since α � = 0 and r � = n (n − 1)(α2 − ρ) . (5.11)

eplacing Z by φZ in (5.11) and using (2.8) and (3.11) , we get
 (Y , Z) = 0 , which implies that N is totally geodesic. The con-
erse statement is obvious and hence the proof of the theorem 

s complete. �

By virtue of Theorems 4.1 – 4.3, 5.1 and 5.2 , we can state the
ollowing: 

heorem 5.3. Let N be an invariant submanifold of a ( LCS ) n -
anifold M. Then the following statements are equivalent: 

(i) N is semiparallel; 
(ii) N has parallel second fundamental form; 

(iii) N is 2-semiparallel; 
(iv) N satisfies the condition C (X , Y ) · h = 0 with r � = n (n −

1)(α2 − ρ) ; 
(v) N satisfies the condition C (X , Y ) · ∇ h = 0 with r � = n (n −

1)(α2 − ρ) ; 
(vi) N is totally geodesic. 

. 3-dimensional invariant submanifolds of ( LCS ) n -manifolds 

roposition 6.1. Let N be an invariant submanifold of a ( LCS ) n -
anifold M. Then there exist two differentiable orthogonal distri- 

utions D and D 

⊥ on N such that 

 N = D ⊕ D 

⊥ ⊕ { ξ} 

nd 

(D ) ⊂ D 

⊥ , φ(D 

⊥ ) ⊂ D. 

roof. For an invariant submanifold N , ξ is tangent to N .
ence we can write T N = D 

1 ⊕ { ξ} . Since g(X 1 , φX 1 ) = 0 and
(ξ , φX 1 ) = 0 for X 1 ∈ D 

1 . So φX 1 is orthogonal to X 1 and ξ .
onsequently, we can write D 

1 = D ⊕ D 

⊥ , where X 1 ∈ D ⊂ D 

1 

nd φX 1 ∈ D 

⊥ ⊂ D 

1 . For φX 1 ∈ D 

⊥ , we have φ(φX 1 ) = φ2 X 1 

 X 1 + η(X 1 ) ξ = X 1 ∈ D . Let φX 1 = X 2 ∈ D 

⊥ . Hence for X 1 

 D , φX 1 ∈ D 

⊥ and for X 2 ∈ D 

⊥ , φX 2 ∈ D . This proves the
roposition. �

roposition 6.2. For an invariant submanifold N of a ( LCS ) n -
anifold M , we have 

 (X , ξ ) = 0 , (6.1) 
 (X , φY ) = φh (X , Y ) = h (φX , Y ) (6.2)

or two differentiable vector fields X , Y ∈ �( TN ) . 

roof. From (3.4) and (3.11) it can be easily checked that the
elations (6.1) and (6.2) hold. 

Now we prove the following: �

heorem 6.1. Every 3-dimensional invariant submanifold of a 
 LCS ) n -manifold is totally geodesic. 

roof. Let N be a 3-dimensional invariant submanifold of a 
 LCS ) n -manifold M . Then for X 1 , Y 1 ∈ D , we have 

 (X 1 , φY 1 ) = φh (X 1 , Y 1 ) . (6.3)

y virtue of (2.8) it follows from (6.3) that 

h (X 1 , φY 1 ) = φ2 h (X 1 , Y 1 ) = h (X 1 , Y 1 ) + η(h (X 1 , Y 1 )) ξ . (6.4)

ince h ( X 1 , Y 1 ) is a vector field normal to N . So h ( X 1 , Y 1 ) and
are orthogonal. Consequently we get by virtue of (2.2) that 
(h (X 1 , Y 1 )) = 0 . Thus in view of (6.2) and (6.4) we have 

 (φX 1 , φY 1 ) = h (X 1 , Y 1 ) . (6.5)

et us take φX 1 = X 2 ∈ D 

⊥ and φY 1 = Y 2 ∈ D 

⊥ . Then from
6.5) , we get 

 (X 2 , Y 2 ) = h (X 1 , Y 1 ) . (6.6)

s h ( X , Y ) is bilinear, for X 1 , Y 1 ∈ D and X 2 , Y 2 ∈ D 

⊥ we obtain

 (X 1 + X 2 + ξ, Y 1 ) = h (X 1 , Y 1 ) + h (X 2 , Y 1 ) + h (ξ , Y 1 ) , (6.7)

 (X 1 + X 2 + ξ, −Y 2 ) = −h (X 1 , Y 2 ) − h (X 2 , Y 2 ) − h (ξ , Y 2 ) , 

(6.8) 

 (X 1 + X 2 + ξ, ξ ) = h (X 1 , ξ ) + h (X 2 , ξ ) + h (ξ , ξ ) . (6.9)

dding (6.7) –(6.9) and using (6.1) and (6.6) we get 

 (X 1 + X 2 + ξ, Y 1 − Y 2 + ξ ) = h (X 2 , Y 1 ) − h (X 1 , Y 2 ) . (6.10)

s T N = D ⊕ D 

⊥ ⊕ { ξ} , we can write U = X 1 + X 2 + ξ ∈ T N 

nd W = Y 1 − Y 2 + ξ ∈ T N. Hence from (6.10) we have 

 (U, W ) = h (X 2 , Y 1 ) − h (X 1 , Y 2 ) . (6.11)

rom (6.11) it follows that 

h (U, W ) = h (X 2 , φY 1 ) − h (φX 1 , Y 2 ) 

= h (X 2 , Y 2 ) − h (X 2 , Y 2 ) 

= 0 . 

his proves the theorem. �
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