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The object of the present paper is to study the invariant submanifolds of (LCS),-
manifolds. We study semiparallel and 2-semiparallel invariant submanifolds of (LCS),-manifolds.
Among others we study 3-dimensional invariant submanifolds of (LCS),-manifolds. It is shown that
every 3-dimensional invariant submanifold of a (LCS),-manifold is totally geodesic.
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1. Introduction

In 2003 the first author [1] introduced the notion of Lorentzian
concircular structure manifolds (briefly, (LCS),-manifolds),
with an example, which generalizes the notion of LP-Sasakian
manifolds introduced by Matsumoto [2] and also by Mihai
and Rosca [3]. Then Shaikh and Baishya [4,5] investigated
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the applications of (LCS),-manifolds to the general theory of
relativity and cosmology. It is to be noted that the most inter-
esting fact is that (LCS),-manifold remains invariant under a
D-homothetic transformation, which does not hold for an LP-
Sasakian manifold [6]. The (LCS),-manifolds have been also
studied by Atceken [7], Narain and Yadav [8], Prakasha [9],
Shaikh [10], Shaikh et al. [11,12], Shaikh and Binh [13], Shaikh
and Hui [14], Sreenivasa et al. [15], Yadav et al. [16] and others.

In modern analysis the geometry of submanifolds has be-
come a subject of growing interest for its significant application
in applied mathematics and theoretical physics. For instance,
the notion of invariant submanifold is used to discuss prop-
erties of non-linear autonomous system [17]. Also the notion
of geodesics plays an important role in the theory of relativity
[18]. For totally geodesic submanifolds, the geodesics of the am-
bient manifolds remain geodesics in the submanifolds. Hence,
totally geodesic submanifolds are also very much important in
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physical sciences. The study of geometry of invariant submani-
folds was initiated by Bejancu and Papaghuic [19]. In general the
geometry of an invariant submanifold inherits almost all prop-
erties of the ambient manifold. The invariant submanifolds have
been studied by many geometers to different extent such as
[20-35] and many others.

Motivated by the above studies the present paper deals with
the study of invariant submanifolds of odd dimensional (LCS),,-
manifolds. The paper is organized as follows. Section 2 is con-
cerned with rudiments of (LCS),-manifolds. Section 3 deals
with the study of some basic properties of invariant subman-
ifolds of (LCS),-manifolds. It is shown that an invariant sub-
manifold of a (LCS),-manifold is also a (LCS),-manifold.

Let N and M be two Riemannian or semi-Riemannian man-
ifolds, f: N — M be an immersion, / be the second fundamental
form and V be the Vander—Waerden—Bortolotti connection of
N. An immersion is said to be semiparallel if

F(X, Y) ‘ /’l = (6){?)/ —ﬁyg)( —v[ny])]’l == 0 (11)

holds for all vector fields X, Y tangent to N [36], where R de-
notes the curvature tensor of the connection V. Semiparallel
immersions have also been studied in [37,38].

In [39] Arslan et. al defined and studied submanifolds satis-
fying the condition

R(X,Y) - Vh=0 (1.2)

for all vector fields X, Y tangent to NV and such submanifolds
are called 2-semiparallel. In [30] Ozgiir and Murathan studied
semiparallel and 2-semiparallel invariant submanifolds of LP-
Sasakian manifolds. In Section 4 of the paper we study semi-
parallel and 2-semiparallel invariant submanifolds of (LCS),-
manifolds. It is proved that an invariant submanifold N of
a (LCS),-manifold is semiparallel if and only if N is totally
geodesic.

A transformation of an n-dimensional Riemannian manifold
M, which transforms every geodesic circle of M into a geodesic
circle, is called a concircular transformation [40]. The interest-
ing invariant of a concircular transformation is the concircular
curvature tensor C, which is defined by Yano [40]

CX,Y)Z=R(X,Y)Z— gY, 2)X —g(X, Z)Y],

’
nn— 1)[
(1.3)

where r is the scalar curvature of the manifold. Section 5 deals
with the study of invariant submanifolds of (LCS),-manifolds
satisfying C(X,Y)-h=0 and C(X,Y)-Vh=0. It is shown
that if N is an invariant submanifold of a (LCS),-manifold
with r £ n(n — 1)(e — p) then the condition C(X, Y) - Vh =0
holds if and only if N is totally geodesic. Section 6 is devoted to
the study of 3-dimensional invariant submanifolds of a (LCS),-
manifold and it is proved that such a submanifold is totally
geodesic.

2. (LCS),-manifolds

An n-dimensional Lorentzian manifold M is a smooth con-
nected paracompact Hausdorff manifold with a Lorentzian

metric g, that is, M admits a smooth symmetric tensor field
g of type (0,2) such that for each point p € M, the tensor
gp: TyM x T,M — R is a non-degenerate inner product of sig-
nature (—, +,---,+), where 7T, M denotes the tangent vector
space of M at p and R is the real number space. A non-zero
vector v € T, M is said to be timelike (resp., non-spacelike, null,
spacelike) if it satisfies g,(v, v) < 0 (resp., < 0, =0, > 0) [41].

Definition 2.1. [40] In a Lorentzian manifold (M, g) a vector
field P defined by

g(X, P) = A(X),

for any X € I'(TM), is said to be a concircular vector field if
(VyA)(Y) = afg(X. ¥) + o(X)A(Y)}

where « is a non-zero scalar and w is a closed 1-form and V de-

notes the operator of covariant differentiation of M with respect
to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a
unit timelike concircular vector field &, called the characteristic
vector field of the manifold. Then we have

g.8) =1 2.1

Since & is a unit concircular vector field, it follows that there
exists a non-zero 1-form 5 such that for

g(X, &) = n(X), 2.2)
the equation of the following form holds

Vym(Y) = alg(X, Y) + n(X)n(Y)}, o #0 (2:3)
for all vector fields X, Y, where V denotes the operator of co-

variant differentiation of M with respect to the Lorentzian met-
ric g and « is a non-zero scalar function satisfies

Vya = (Xa) = da(X) = pn(X), (2.4)
p being a certain scalar function given by p = —(§«). Let us
take

1~
PX = avxé, (2.5)

then from (2.3) and (2.5) we have
X =X +nX)§, (2.6)

from which it follows that ¢ is a symmetric (1,1) tensor and
called the structure tensor of the manifold. Thus the Lorentzian
manifold M together with the unit timelike concircular vector
field &, its associated 1-form 5 and an (1,1) tensor field ¢ is
said to be a Lorentzian concircular structure manifold (briefly,
(LCS),-manifold), [1]. Especially, if we take « =1, then we
can obtain the LP-Sasakian structure of Matsumoto [2]. In a
(LCS),-manifold (n > 2), the following relations hold [1,10]:

neE)=-1, ¢&=0, n(eX)=0,
g(pX,9Y) =g(X,Y) +n(X)n(Y), 2.7



On invariant submanifolds of (LCS),-manifolds

265

P’X =X +n(X)E, (2.8)
S(X, &) = (n— 1) — p)n(X), (2.9)
R(X,Y)E = (& = p)In(Y)X —n(X)Y], (2.10)
R, Y)Z = (o = p)[g(Y, 2)§ —n(2)Y], 2.11)
R(E, X)§ = (¢ = p)[n(X)§ + X], (2.12)
(Vxd)(Y) = afg(X, Y)E +20(X)n(Y)E +n(Y)X},  (2.13)
(Xp) =dp(X) = Bn(X), (2.14)
R(X,Y)Z = ¢R(X,Y)Z+ (&* = p)

x{g(Y, Z)n(X) — g(X, Z)n(Y)}§ (2.15)

forall X, Y, Z € T'(TM) and 8 = —(&p) is a scalar function,
where R is the curvature tensor and S is the Ricci tensor of the
manifold. The &-sectional curvature K (&, X') = g(R(&, X)&, X)
for a unit vector field X orthogonal to & play an important role
in the study of an almost contact metric manifold.

By virtue of (2.11) we have from (1.3) that

CE Y)Z= [az —p- L][gm 2)E —n(Z)Y], (2.16)
nn—1)

CE.Y)E= [az —p— (n(Y)§ + Y] (2.17)

r
n(n — 1)]

3. Some basic properties of invariant submanifolds of
(LCS),-manifolds

Let N be a submanifold of a (LCS),-manifold M with induced
metric g. Also let V and V* be the induced connection on the
tangent bundle TN and the normal bundle 7" N of N respec-
tively. Then the Gauss and Weingarten formulae are given by

VyY = VyY +h(X,Y) (3.1
and
ViV = —ApX + ViV (3.2)

for all X, Y e I'(TN) and V e T'(T*N), where h and Ay are sec-
ond fundamental form and the shape operator (corresponding
to the normal vector field V) respectively for the immersion of N
into M. The second fundamental form / and the shape operator
Ay are related by [42]

gh(X,Y),V)=gdrX,Y) (3.3)
for any X, Y € I'(TN) and V € I'(T*N). We note that A(X, Y) is
bilinear and since V,x Y = fVy Y for any smooth function f'on
a manifold, we have

hfX,Y) = fh(X,Y). (3.4)
Definition 3.1. [19] A submanifold N of a (LCS),-manifold M

is said to be invariant if the structure vector field & is tangent
to N at every point of N and ¢ X is tangent to N for any vector

field X tangent to N at every point of N, that is ¢(TN) C TN at
every point of . The submanifold N of the (LCS),-manifold M
is called totally geodesic if #(X, Y) = 0 for any X, Y € I'(TN).

For the second fundamental form A, the covariant derivative
of /1 is defined by

(Vyh) (Y, Z) = VEh(Y,Z) —h(Vy Y, Z) —h(Y,VxZ) (3.5)

for any vector fields X, Y, Z tangent to N. Then V/ is a normal
bundle valued tensor of type (0,3) and is called the third funda-
mental form of N, V is called the Vander—Waerden—Bortolotti
connection of M, i.e. V is the connection in TN® T+ N built with
V and V1. If Vi = 0, then N is said to have parallel second fun-
damental form [42]. Throughout the paper each object K pro-
duced by the connection V (respectively %) will be denoted by
K (respectively K). From the Gauss and Weingarten formulae
we obtain

R(X,Y)Z=R(X,Y)Z+ Aux.2)Y — Apy X, (3.6)

where R(X, Y)Z denotes the tangential part of the curvature
tensor of the submanifold.
From (1.1), we get
(R(X,Y)-h)(Z,U) = R*(X, Y)I(Z,U) — h(R(X, Y)Z, U)
—h(Z, R(X,Y)U) (3.7)

for all vector fields X, Y, Z and U, where
RY(X,Y) = [Vy, V¥l = Viyy

and R denotes the curvature tensor of V. In the similar manner
we can write
(R(X,Y)-Vh(Z, U W)
= RL(X, Y)(?h)(Z, Uw)-— (?h)(R(X, Z, U W)
—(Vh)(Z, R(X, YU, W) — (Vh)(Z, U, R(X, Y)W) (3.8)
for all vector fields X, Y, Z, U and W tangent to N and
(Vh)(Z, U, W) = (Vzh)(U, W) [39]. Again for the concircular
curvature tensor C we have [30]
(CX.Y) -h)(Z,U)=R"(X,Y)I(Z,U) — h(C(X,Y)Z,U)
—h(Z,C(X,Y)U) (3.9)
and
(C(X,Y)-Vh)(Z, U W)
=RY X, V) (Vh(Z, U, W) — (Vh)(C(X,Y)Z, U W)
—(Vh)(Z,C(X, Y)U, W) = (Vh)(Z, U, C(X, Y)W).
(3.10)

In an invariant submanifold of a (LCS),-manifold, we have

h(X,&) =0. (3.11)

Now we have
Proposition 3.1. Let N be an invariant submanifold of a (LCS),-
manifold M. Then the following relations hold:

Vyé =agX, (3.12)
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R(X,Y)§ = (@ = p)[n(Y)X —n(X)Y], (3.13)

S(X,8) = (n— D@ = p)n(X), ie, 0§ = (-1 - p),

(3.14)
(Vx®)(Y) = a{g(X, Y)§ + 2n(X)n(Y)é +n(Y) X}, (3.15)
(X, ¢Y) = ph(X,Y). (3.16)

Proof. Since N is an invariant submanifold of a (LCS),-
manifold M, we have

VyéE = agX. (3.17)
Using Gauss formula (3.1) and (3.17), we get
apX = Vy& +h(X, §). (3.18)

By virtue of (3.11) it follows from (3.18) that the relation (3.12)
holds. Again since M is a (LCS),-manifold, we get from (2.13)
that

(Vyd)(Y) = alg(X, Y)E + 2p(X)n(Y)E +n(Y)X}).  (3.19)
From (3.1), we have
(Vep)(Y) = (V@) (Y) + h(X, ¢Y) — ph(X, Y). (3.20)

Comparing the tangential and normal parts of (3.19) and (3.20),
we get the relation (3.15) and (3.16). Again from (3.6), we have

R(X,Y)t = R(X,Y)é + Apye)Y — Ay X. (3.21)

Using (2.10) and (3.11) in (3.21), we get the relation (3.13) and
consequently follows (3.14).
Thus we can state the following: [

Theorem 3.1. An invariant submanifold N of a (LCS),-manifold
M is a (LCS),-manifold.

4. Semiparallel and 2-semiparallel invariant submanifolds of
(LCS),-manifolds

This section deals with semiparallel and 2-semiparallel invariant
submanifolds of (LCS),-manifolds.

Theorem 4.1. Let N be an invariant submanifold of a (LCS),-
manifold M with o> — p # 0. Then N is semiparallel if and only
if N is totally geodesic.

Proof. Since N is semiparallel, we have R-/ =0 and hence
from (3.7) we get

RE(X, Y)h(Z, U) — h(R(X, Y)Z,U) — h(Z, R(X, Y)U) = 0.
@.1)

Putting X = U = & in (4.1) we obtain

R, Y)h(Z, &) —h(R(E,Y)Z, &) — h(Z, R, Y)§) = 0.
4.2)

By virtue of (3.11), (4.2) yields

h(Z,R(&,Y)E) =0. (4.3)

Using (2.10) and (3.11) in (4.3), we get
WZ,Y)=0,

which implies that N is totally geodesic.
The converse is trivial and consequently we get the desired
theorem. [

Theorem 4.2. Let N be an invariant submanifold of a (LCS),-
manifold M. Then the second fundamental form of the submani-

fold N is parallel if and only if N is totally geodesic.

Proof. Since N has parallel second fundamental form, it follows
from (3.5) that

Nyh)(Y,Z) = Vy(W(Y,Z)) —h(VyY,Z) — h(Y, VyZ).

4.4)
Putting Z = & in (4.4) and using (3.11), we have
h(Y,Vy&)=0. 4.5)
In view of (3.12) we have from (4.5) that
h(Y,$pX)=0. (4.6)

Replacing X by ¢ X in (4.6) and using (2.8) and (3.11) we get
h(Y, X) =0, which implies that N is totally geodesic.

The converse statement is obvious. This proves the
theorem. [

Theorem 4.3. Let N be an invariant submanifold of a (LCS),-
manifold M with non-vanishing &-sectional curvature. Then N is
2-semiparallel if and only if N is totally geodesic.

Proof. Let NV be an invariant submanifold of a (LCS),-manifold
M such that a® — p # 0, which is 2-semiparallel. Then from
(3.8) we get
R*(X, Y)(VI(Z, U, W) — (V) (R(X, Y)Z, U, W)
—(VI)(Z,R(X, YU, W) — (Vh)(Z,U,R(X,Y)W) =0.
4.7

Plugging X = U = £ in (4.7), we obtain

REE Y)(VIN(Z, 6, W) = (VI (R, Y)Z, 6, W)

(4.8)

By virtue of (2.5), (2.11), (2.12), (3.5) and (3.11), we have the
following:
(V) (Z, &, W) = (Vzh)(§,. W)

=V (h(E, W) = h(VzE, W) — h(E, VW)

= —ah(¢pZ, W), 4.9)

(VI)(R(E, Y)Z, 6, W)
= (Vrerzh) (€ W)
= Vie.rz(hE W) = (Ve v) 26, W) = h(E, Vre v zW)
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= —h(apRE, Y)Z, W)

=a(® — p)n(2)h(pY, W), (4.10)

(Vh)(Z, R(E,Y)E, W)
= (Vzh)(RE, Y)E, W)
= V7 (h(R(E, Y)E, W) — h(VZR(E, Y)E, W)
—h(R(, Y)E, VW)
= (& = p)VZh(Y. W) — (& = p)h(Vz{(n(Y)E + Y}, W)
—(® = p)h(Y, VW) 4.11)
and
(Vh)(Z. &, R, Y)W)
= (Vzh) (. RE, V)W)
= Vy(h(E, RE YIW)) — h(VzE, RE, YI)W)
—h(&,VZR(E, Y)W)
=—h(apZ RE, YIW)
=a(e’ — p)n(W)h(PZ, Y).
Using (2.5), (4.9)—(4.12) in (4.8), we obtain
—aR (&, VIYW(PZ, W) — (& — p)n(Z)h(@Y, W)
—(@® = p)VZh(Y, W)+ (&@® — p)h(Vz{n(Y)E + Y}, W)
+(@* = p)h(Y, VW) —a(a® = p)n(W)h($Z,Y) = 0.
(4.13)
Putting W = & in (4.13) and using (3.11) and (3.12), we get

(4.12)

a(a® — p)h(pZ,Y) =0. 4.14)
The &-sectional curvature of a (LCS),-manifold for a unit vector
field X orthogonal to & is given by K(&, X) = g(R(§, X)&, X).
Hence from (2.12), we get

K. X) = (& — p). (4.15)
Since the manifold under consideration is of non-vanishing
£-sectional curvature, we have from (4.15) that o — p # 0.
Again since « # 0, (4.14) yields
h(¢Z, Y) = 0. (4.16)
Replacing Z by ¢Z in (4.16) and using (2.8) and (3.11), we get
h(Z,Y) = 0, which implies that N is totally geodesic.
The converse part is trivial. So the theorem is proved. O

S. Invariant submanifolds of (LCS),-manifolds satisfying
C(X,Y)-h=0and C(X,Y)-Vh=0

This section deals with invariant submanifolds of (LCS),-
manifolds satisfying C(X,Y)-h=0and C(X, Y)-Vh=0.

Theorem 5.1. Let N be an invariant submanifold of a (LCS),-
manifold M such that r # n(n — 1)(a*> — p). ThenC(X,Y) -h =
0 holds on N if and only if N is totally geodesic.

Proof. Let N be an invariant submanifold of a (LCS),-manifold
M satisfying C(X, Y)-h =0 such that r # n(n — 1)(@? — p).
Then we have from (3.9) that

RYX, Y)(Z, U) — h(C(X,Y)Z, U) — h(Z,C(X, Y)U) = 0.

(5.1)

Setting X = U = ¢ in (5.1) and using (2.16) and (3.11), we
get

hZ,CE,Y)E) =0. (5.2)

By virtue of (2.17) it follows from (5.2) that

r

[zxz —o— 7];1(2, n(Y)é+Y) =0. (5.3)
nn—1)

Again in view of (3.11), (5.3) yields

[az—p— ]h(Z, Y)=o0,

r
nn-—1)
which gives
hZ,Y)=0, sincer#nn—1)@*—p) (5.4)

and hence the submanifold N is totally geodesic. The converse
is trivial and hence the theorem. [

Theorem 5.2. Let N be an invariant submanifold of a (LCS),-
manifold M such that r # n(n —1)(a®> = p). Then C(X,Y) -
Vh = 0 holds on N if and only if N is totally geodesic.

Proof. Let N be an invariant submanifold of a (LCS),-manifold

M such that r # n(n — 1)(a® — p). If N satisfies the condition

C(X,Y)-Vh=0, then from (3.10), we get

R (X, Y)(Vh)(Z, U, W) — (VI)(C(X,Y)Z, U, W)
—(VI)(Z,C(X, YU, W) — (Vh)(Z, U, CX,Y)W)=0.

(5.5)

Putting X = U = £ in (5.5), we obtain

RY&,Y)(Vh)(Z.E, W) — (V) (CE, Y)Z,E, W)
—(VI)(Z,C(. V), W) — (Vh)(Z, &, C(E, Y)W) = 0. (5.6)

By virtue of (2.16), (2.17), (3.5) and (3.11), we get

(Vh)(C(E.Y)Z.E. W)
= (Vee.nzh) (€, W)
= Ve rzhE W) = h(VeeyzE W) — h(E, VegryzW)
=—h(a ¢C(E, Y)Z. W)

D D L A
=afo’ = p— s @Y, W), (5.7)
(VA)Z. CE. V), W)

= (Vzh)(C(E. V), W)

= VE((CE V)E W) = h(VzC(E, V)E, W)

B I L
—[a P n(n—l):|

X[VZh(Y, W) = h(Vz{n(Y)E + Y}, W) — h(Y, V. W)]
(5.8)
and
(V) (Z.&,CE. )W)
= (Vzh)(§.CE YIW)
=V (h(E, CE YIW)) —h(VzE,CE YIW)
—h(g,V,CE, YIW)
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— (@ $Z, C(E, YIW)
- a[a2 —p——T ]n(W)h(¢Z, Y).
nn-—1)

In view of (2.5), (4.9) and (5.7)—(5.9) we have from (5.6) that

(5.9)

—aRY(E, Y)h($Z, W) — |:(x2 o ;]
nn—1)

x [an(Z)h(@Y . W) + Vzh(Y . W) — h(Vz{n(Y)§ + Y}, W)
—h(Y, VW) +n(W)Hh(@Z, Y)] = 0. (5.10)

Putting W = & in (5.10) and using (3.11) and (3.12), we get

r

2_ — —
a[a P n(n_l)]h(Y,d)Z)_O,

which implies that
h(Y,$Z) =0, sincea #0 and r#nn—1)(@*—p). (5.11)

Replacing Z by ¢Z in (5.11) and using (2.8) and (3.11), we get
h(Y,Z) =0, which implies that N is totally geodesic. The con-
verse statement is obvious and hence the proof of the theorem
is complete. [

By virtue of Theorems 4.1-4.3, 5.1 and 5.2, we can state the
following:

Theorem 5.3. Let N be an invariant submanifold of a (LCS),-
manifold M. Then the following statements are equivalent:

(1) N is semiparallel;
(i1) N has parallel second fundamental form;
(iii) N is 2-semiparallel;
(iv) N satisfies the condition C(X,Y)-h =0 with r # n(n —

(@ — p); N B
(V) N satisfies the condition C(X,Y) - Vh = 0 withr # n(n —
D(a® = p);

(vi) N is totally geodesic.

6. 3-dimensional invariant submanifolds of (LCS),-manifolds

Proposition 6.1. Let N be an invariant submanifold of a (LCS),-
manifold M. Then there exist two differentiable orthogonal distri-
butions D and D* on N such that

TN =D& D" (&)
and
¢(D) c D, ¢(D') c D.

Proof. For an invariant submanifold N, & is tangent to N.
Hence we can write TN = D' @ {&}. Since g(X;, $X;) = 0 and
g(€,¢X,) =0 for X; € D'. So ¢ X is orthogonal to X, and &.
Consequently, we can write D! = D @ D+, where X; € DC D!
and ¢X, € D' c D'. For ¢ X, € D+, we have ¢ (¢ X;) = ¢* X,
= X, +n(X)E = X, € D. Let $X; = X, € D*+. Hence for X;
€ D, $X, € D* and for X, € D', X, € D. This proves the
proposition. [

Proposition 6.2. For an invariant submanifold N of a (LCS),-

manifold M, we have

h(X,&)=0, (6.1)

h(X,¢Y)=¢ph(X,Y)=h(pX,Y)
for two differentiable vector fields X, Y € T'(TN).

Proof. From (3.4) and (3.11) it can be easily checked that the
relations (6.1) and (6.2) hold.
Now we prove the following: [

(6.2)

Theorem 6.1. Every 3-dimensional invariant submanifold of a
(LCS),-manifold is totally geodesic.

Proof. Let N be a 3-dimensional invariant submanifold of a
(LCS),-manifold M. Then for Xi, Y| € D, we have

h(X1, Y1) = ¢h(Xy, 11). (6.3)
By virtue of (2.8) it follows from (6.3) that

dh(X1, Y1) = $*h(Xy, Y1) = h(X), Y1) + n(h(X}, Y1))E. (6.4)
Since (X, Y1) is a vector field normal to N. So (X, Y1) and
& are orthogonal. Consequently we get by virtue of (2.2) that
n(h(Xy, Y1)) = 0. Thus in view of (6.2) and (6.4) we have
h(@X1, oY1) = h(Xy, 11). (6.5)

Let us take ¢X; = X> € D* and ¢Y, = Y> € D*. Then from
(6.5), we get

h(Xa, Y2) = h(Xy, ). (6.6)
As h(X, Y)is bilinear, for X}, Y; € D and X, Y> € D* we obtain

h(X + X+ &, Y1) = h(Xy, Y1)+ h(Xo, Y1)+ h(E, Y1), (6.7)

h(Xi+ X +§&, —Y) = —h(X1, Vo) —h(X2, Y2) — h(§, Y2),

(6.8)
h(Xi+ X +§,8) = (X1, ) + h(X2,6) + h(§,§). (6.9)
Adding (6.7)—(6.9) and using (6.1) and (6.6) we get
hX1+X+E YT —YHh+E)=h(Xy, Y1) —h(X), 1a). (6.10)

AsTN=D@®D @ {€}, wecanwrite U =X, + X, +& € TN
and W =Y, — Y, 4+ & € TN. Hence from (6.10) we have

hU, W) =h(Xy, Y1) — h(X,, 1a). (6.11)

From (6.11) it follows that

Sh(U, W) = h(X2, ¢Y1) — h(9 X1, Y2)
= h(X2, Y2) — h(X2, 12)
=0.

This proves the theorem. [
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