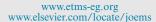


Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society



Original Article

On invariant submanifolds of $(LCS)_n$ -manifolds

Absos Ali Shaikh a,*, Yoshio Matsuyama b, Shyamal Kumar Hui c

Received 11 October 2014; revised 27 April 2015; accepted 12 May 2015 Available online 17 August 2015

KEYWORDS

(*LCS*)_n-manifold; Invariant submanifold; Semiparallel submanifold; 2-semiparallel submanifold; Totally geodesic **Abstract** The object of the present paper is to study the invariant submanifolds of $(LCS)_n$ -manifolds. We study semiparallel and 2-semiparallel invariant submanifolds of $(LCS)_n$ -manifolds. Among others we study 3-dimensional invariant submanifolds of $(LCS)_n$ -manifolds. It is shown that every 3-dimensional invariant submanifold of a $(LCS)_n$ -manifold is totally geodesic.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 53C15; 53C40; 53C50

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 2003 the first author [1] introduced the notion of Lorentzian concircular structure manifolds (briefly, (*LCS*)_n-manifolds), with an example, which generalizes the notion of LP-Sasakian manifolds introduced by Matsumoto [2] and also by Mihai and Rosca [3]. Then Shaikh and Baishya [4,5] investigated

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

the applications of $(LCS)_n$ -manifolds to the general theory of relativity and cosmology. It is to be noted that the most interesting fact is that $(LCS)_n$ -manifold remains invariant under a D-homothetic transformation, which does not hold for an LP-Sasakian manifold [6]. The $(LCS)_n$ -manifolds have been also studied by Atceken [7], Narain and Yadav [8], Prakasha [9], Shaikh [10], Shaikh et al. [11,12], Shaikh and Binh [13], Shaikh and Hui [14], Sreenivasa et al. [15], Yadav et al. [16] and others.

In modern analysis the geometry of submanifolds has become a subject of growing interest for its significant application in applied mathematics and theoretical physics. For instance, the notion of invariant submanifold is used to discuss properties of non-linear autonomous system [17]. Also the notion of geodesics plays an important role in the theory of relativity [18]. For totally geodesic submanifolds, the geodesics of the ambient manifolds remain geodesics in the submanifolds. Hence, totally geodesic submanifolds are also very much important in

^a Department of Mathematics, University of Burdwan, Burdwan 713104, West Bengal, India

^b Department of Mathematics, Chuo University, Faculty of Science and Engineering, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

^c Department of Mathematics, Sidho Kanho Birsha University, Purulia 723 104, West Bengal, India

^{*} Corresponding author. Tel.: +91 9434546184. E-mail addresses: aask2003@yahoo.co.in, aashaikh@math.buruniv.ac. in (A.A. Shaikh), matuyama@math.chuo-u.ac.jp (Y. Matsuyama), shyamal hui@yahoo.co.in (S.K. Hui).

A.A. Shaikh et al.

physical sciences. The study of geometry of invariant submanifolds was initiated by Bejancu and Papaghuic [19]. In general the geometry of an invariant submanifold inherits almost all properties of the ambient manifold. The invariant submanifolds have been studied by many geometers to different extent such as [20–35] and many others.

Motivated by the above studies the present paper deals with the study of invariant submanifolds of odd dimensional $(LCS)_n$ -manifolds. The paper is organized as follows. Section 2 is concerned with rudiments of $(LCS)_n$ -manifolds. Section 3 deals with the study of some basic properties of invariant submanifolds of $(LCS)_n$ -manifolds. It is shown that an invariant submanifold of a $(LCS)_n$ -manifold is also a $(LCS)_n$ -manifold.

Let N and M be two Riemannian or semi-Riemannian manifolds, $f: N \to M$ be an immersion, h be the second fundamental form and $\overline{\nabla}$ be the Vander–Waerden–Bortolotti connection of N. An immersion is said to be semiparallel if

$$\overline{R}(X,Y) \cdot h = (\overline{\nabla}_X \overline{\nabla}_Y - \overline{\nabla}_Y \overline{\nabla}_X - \overline{\nabla}_{[X,Y]})h = 0 \tag{1.1}$$

holds for all vector fields X, Y tangent to N [36], where \overline{R} denotes the curvature tensor of the connection $\overline{\nabla}$. Semiparallel immersions have also been studied in [37,38].

In [39] Arslan et. al defined and studied submanifolds satisfying the condition

$$\overline{R}(X,Y) \cdot \overline{\nabla}h = 0 \tag{1.2}$$

for all vector fields X, Y tangent to N and such submanifolds are called 2-semiparallel. In [30] Özgür and Murathan studied semiparallel and 2-semiparallel invariant submanifolds of LP-Sasakian manifolds. In Section 4 of the paper we study semiparallel and 2-semiparallel invariant submanifolds of $(LCS)_n$ -manifolds. It is proved that an invariant submanifold N of a $(LCS)_n$ -manifold is semiparallel if and only if N is totally geodesic.

A transformation of an n-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation [40]. The interesting invariant of a concircular transformation is the concircular curvature tensor C, which is defined by Yano [40]

$$C(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y],$$
(1.3)

where r is the scalar curvature of the manifold. Section 5 deals with the study of invariant submanifolds of $(LCS)_n$ -manifolds satisfying $\overline{C}(X,Y) \cdot h = 0$ and $\overline{C}(X,Y) \cdot \overline{\nabla} h = 0$. It is shown that if N is an invariant submanifold of a $(LCS)_n$ -manifold with $r \neq n(n-1)(\alpha^2-\rho)$ then the condition $\overline{C}(X,Y) \cdot \overline{\nabla} h = 0$ holds if and only if N is totally geodesic. Section 6 is devoted to the study of 3-dimensional invariant submanifolds of a $(LCS)_n$ -manifold and it is proved that such a submanifold is totally geodesic.

2. $(LCS)_n$ -manifolds

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian

metric g, that is, M admits a smooth symmetric tensor field g of type (0,2) such that for each point $p \in M$, the tensor $g_p: T_pM \times T_pM \to \mathbb{R}$ is a non-degenerate inner product of signature $(-,+,\cdots,+)$, where T_pM denotes the tangent vector space of M at p and \mathbb{R} is the real number space. A non-zero vector $v \in T_pM$ is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies $g_p(v,v) < 0$ (resp., $\leq 0, = 0, > 0$) [41].

Definition 2.1. [40] In a Lorentzian manifold (M, g) a vector field P defined by

$$g(X, P) = A(X),$$

for any $X \in \Gamma(TM)$, is said to be a concircular vector field if

$$(\widetilde{\nabla}_X A)(Y) = \alpha \{ g(X, Y) + \omega(X) A(Y) \}$$

where α is a non-zero scalar and ω is a closed 1-form and $\widetilde{\nabla}$ denotes the operator of covariant differentiation of M with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike concircular vector field ξ , called the characteristic vector field of the manifold. Then we have

$$g(\xi, \xi) = -1. \tag{2.1}$$

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

$$g(X,\xi) = \eta(X), \tag{2.2}$$

the equation of the following form holds

$$(\widetilde{\nabla}_X \eta)(Y) = \alpha \{ g(X, Y) + \eta(X) \eta(Y) \}, \quad \alpha \neq 0$$
 (2.3)

for all vector fields X, Y, where $\widetilde{\nabla}$ denotes the operator of covariant differentiation of M with respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

$$\widetilde{\nabla}_X \alpha = (X\alpha) = d\alpha(X) = \rho \eta(X),$$
 (2.4)

 ρ being a certain scalar function given by $\rho = -(\xi \alpha)$. Let us take

$$\phi X = -\frac{1}{\alpha} \widetilde{\nabla}_X \xi, \tag{2.5}$$

then from (2.3) and (2.5) we have

$$\phi X = X + \eta(X)\xi,\tag{2.6}$$

from which it follows that ϕ is a symmetric (1,1) tensor and called the structure tensor of the manifold. Thus the Lorentzian manifold M together with the unit timelike concircular vector field ξ , its associated 1-form η and an (1,1) tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly, $(LCS)_n$ -manifold), [1]. Especially, if we take $\alpha=1$, then we can obtain the LP-Sasakian structure of Matsumoto [2]. In a $(LCS)_n$ -manifold (n>2), the following relations hold [1,10]:

$$\eta(\xi) = -1, \quad \phi \xi = 0, \quad \eta(\phi X) = 0,
g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$
(2.7)

$$\phi^2 X = X + \eta(X)\xi,\tag{2.8}$$

$$S(X, \xi) = (n-1)(\alpha^2 - \rho)\eta(X),$$
 (2.9)

$$R(X, Y)\xi = (\alpha^2 - \rho)[\eta(Y)X - \eta(X)Y], \tag{2.10}$$

$$R(\xi, Y)Z = (\alpha^2 - \rho)[g(Y, Z)\xi - \eta(Z)Y], \tag{2.11}$$

$$R(\xi, X)\xi = (\alpha^2 - \rho)[\eta(X)\xi + X],$$
 (2.12)

$$(\widetilde{\nabla}_X \phi)(Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}, \tag{2.13}$$

$$(X\rho) = d\rho(X) = \beta\eta(X), \tag{2.14}$$

$$R(X, Y)Z = \phi R(X, Y)Z + (\alpha^{2} - \rho)$$

$$\times \{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\}\xi$$
 (2.15)

for all $X, Y, Z \in \Gamma(TM)$ and $\beta = -(\xi \rho)$ is a scalar function, where R is the curvature tensor and S is the Ricci tensor of the manifold. The ξ -sectional curvature $K(\xi, X) = g(R(\xi, X)\xi, X)$ for a unit vector field X orthogonal to ξ play an important role in the study of an almost contact metric manifold.

By virtue of (2.11) we have from (1.3) that

$$C(\xi, Y)Z = \left[\alpha^2 - \rho - \frac{r}{n(n-1)}\right] [g(Y, Z)\xi - \eta(Z)Y], \quad (2.16)$$

$$C(\xi, Y)\xi = \left[\alpha^2 - \rho - \frac{r}{n(n-1)}\right] [\eta(Y)\xi + Y].$$
 (2.17)

3. Some basic properties of invariant submanifolds of (*LCS*)_n-manifolds

Let N be a submanifold of a $(LCS)_n$ -manifold M with induced metric g. Also let ∇ and ∇^{\perp} be the induced connection on the tangent bundle TN and the normal bundle $T^{\perp}N$ of N respectively. Then the Gauss and Weingarten formulae are given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{3.1}$$

and

$$\widetilde{\nabla}_X V = -A_V X + \nabla_X^{\perp} V \tag{3.2}$$

for all $X, Y \in \Gamma(TN)$ and $V \in \Gamma(T^{\perp}N)$, where h and A_V are second fundamental form and the shape operator (corresponding to the normal vector field V) respectively for the immersion of N into M. The second fundamental form h and the shape operator A_V are related by [42]

$$g(h(X,Y),V) = g(A_V X,Y)$$
(3.3)

for any $X, Y \in \Gamma(TN)$ and $Y \in \Gamma(T^{\perp}N)$. We note that h(X, Y) is bilinear and since $\nabla_{fX}Y = f\nabla_XY$ for any smooth function f on a manifold, we have

$$h(fX, Y) = fh(X, Y). \tag{3.4}$$

Definition 3.1. [19] A submanifold N of a $(LCS)_n$ -manifold M is said to be invariant if the structure vector field ξ is tangent to N at every point of N and ϕX is tangent to N for any vector

field X tangent to N at every point of N, that is $\phi(TN) \subset TN$ at every point of N. The submanifold N of the $(LCS)_n$ -manifold M is called totally geodesic if h(X, Y) = 0 for any $X, Y \in \Gamma(TN)$.

For the second fundamental form h, the covariant derivative of h is defined by

$$(\overline{\nabla}_X h)(Y, Z) = \nabla_X^{\perp}(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z) \quad (3.5)$$

for any vector fields X, Y, Z tangent to N. Then $\overline{\nabla}h$ is a normal bundle valued tensor of type (0,3) and is called the third fundamental form of N, $\overline{\nabla}$ is called the Vander–Waerden–Bortolotti connection of M, i.e. $\overline{\nabla}$ is the connection in $TN \oplus T^{\perp}N$ built with ∇ and ∇^{\perp} . If $\overline{\nabla}h = 0$, then N is said to have parallel second fundamental form [42]. Throughout the paper each object K produced by the connection $\overline{\nabla}$ (respectively $\widetilde{\nabla}$) will be denoted by \overline{K} (respectively \widetilde{K}). From the Gauss and Weingarten formulae we obtain

$$\widetilde{R}(X, Y)Z = R(X, Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X,$$
 (3.6)

where $\widetilde{R}(X,Y)Z$ denotes the tangential part of the curvature tensor of the submanifold.

From (1.1), we get

$$(\overline{R}(X,Y) \cdot h)(Z,U) = R^{\perp}(X,Y)h(Z,U) - h(R(X,Y)Z,U) - h(Z,R(X,Y)U)$$
(3.7)

for all vector fields X, Y, Z and U, where

$$R^{\perp}(X, Y) = [\nabla_X^{\perp}, \nabla_Y^{\perp}] - \nabla_{[X, Y]}^{\perp}$$

and \overline{R} denotes the curvature tensor of $\overline{\nabla}$. In the similar manner we can write

$$(\overline{R}(X,Y) \cdot \overline{\nabla}h)(Z,U,W)$$

$$= R^{\perp}(X,Y)(\overline{\nabla}h)(Z,U,W) - (\overline{\nabla}h)(R(X,Y)Z,U,W)$$

$$-(\overline{\nabla}h)(Z,R(X,Y)U,W) - (\overline{\nabla}h)(Z,U,R(X,Y)W)$$
(3.8)

for all vector fields X, Y, Z, U and W tangent to N and $(\overline{\nabla}h)(Z, U, W) = (\overline{\nabla}_Z h)(U, W)$ [39]. Again for the concircular curvature tensor C we have [30]

$$(\overline{C}(X,Y) \cdot h)(Z,U) = R^{\perp}(X,Y)h(Z,U) - h(C(X,Y)Z,U) - h(Z,C(X,Y)U)$$
(3.9)

and

$$(\overline{C}(X,Y) \cdot \overline{\nabla}h)(Z,U,W)$$

$$= R^{\perp}(X,Y)(\overline{\nabla}h)(Z,U,W) - (\overline{\nabla}h)(C(X,Y)Z,U,W)$$

$$-(\overline{\nabla}h)(Z,C(X,Y)U,W) - (\overline{\nabla}h)(Z,U,C(X,Y)W).$$
(3.10)

In an invariant submanifold of a $(LCS)_n$ -manifold, we have

$$h(X,\xi) = 0. (3.11)$$

Now we have

Proposition 3.1. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M. Then the following relations hold:

$$\nabla_X \xi = \alpha \phi X, \tag{3.12}$$

A.A. Shaikh et al.

$$R(X, Y)\xi = (\alpha^2 - \rho)[\eta(Y)X - \eta(X)Y], \tag{3.13}$$

$$S(X, \xi) = (n-1)(\alpha^2 - \rho)\eta(X)$$
, i.e., $Q\xi = (n-1)(\alpha^2 - \rho)\xi$,
(3.14)

$$(\nabla_X \phi)(Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}, \tag{3.15}$$

$$h(X, \phi Y) = \phi h(X, Y). \tag{3.16}$$

Proof. Since N is an invariant submanifold of a $(LCS)_n$ -manifold M, we have

$$\widetilde{\nabla}_X \xi = \alpha \phi X. \tag{3.17}$$

Using Gauss formula (3.1) and (3.17), we get

$$\alpha \phi X = \nabla_X \xi + h(X, \xi). \tag{3.18}$$

By virtue of (3.11) it follows from (3.18) that the relation (3.12) holds. Again since M is a $(LCS)_n$ -manifold, we get from (2.13) that

$$(\widetilde{\nabla}_X \phi)(Y) = \alpha \{ g(X, Y)\xi + 2\eta(X)\eta(Y)\xi + \eta(Y)X \}. \tag{3.19}$$

From (3.1), we have

$$(\widetilde{\nabla}_X \phi)(Y) = (\nabla_X \phi)(Y) + h(X, \phi Y) - \phi h(X, Y). \tag{3.20}$$

Comparing the tangential and normal parts of (3.19) and (3.20), we get the relation (3.15) and (3.16). Again from (3.6), we have

$$\widetilde{R}(X,Y)\xi = R(X,Y)\xi + A_{h(X,\xi)}Y - A_{h(Y,\xi)}X.$$
 (3.21)

Using (2.10) and (3.11) in (3.21), we get the relation (3.13) and consequently follows (3.14).

Thus we can state the following: \Box

Theorem 3.1. An invariant submanifold N of a $(LCS)_n$ -manifold M is a $(LCS)_n$ -manifold.

4. Semiparallel and 2-semiparallel invariant submanifolds of $(LCS)_n$ -manifolds

This section deals with semiparallel and 2-semiparallel invariant submanifolds of $(LCS)_n$ -manifolds.

Theorem 4.1. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M with $\alpha^2 - \rho \neq 0$. Then N is semiparallel if and only if N is totally geodesic.

Proof. Since N is semiparallel, we have $\overline{R} \cdot h = 0$ and hence from (3.7) we get

$$R^{\perp}(X, Y)h(Z, U) - h(R(X, Y)Z, U) - h(Z, R(X, Y)U) = 0.$$
(4.1)

Putting $X = U = \xi$ in (4.1) we obtain

$$R^{\perp}(\xi, Y)h(Z, \xi) - h(R(\xi, Y)Z, \xi) - h(Z, R(\xi, Y)\xi) = 0.$$
(4.2)

By virtue of (3.11), (4.2) yields

$$h(Z, R(\xi, Y)\xi) = 0.$$
 (4.3)

Using (2.10) and (3.11) in (4.3), we get

$$h(Z, Y) = 0,$$

which implies that N is totally geodesic.

The converse is trivial and consequently we get the desired theorem. $\ \square$

Theorem 4.2. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M. Then the second fundamental form of the submanifold N is parallel if and only if N is totally geodesic.

Proof. Since N has parallel second fundamental form, it follows from (3.5) that

$$(\overline{\nabla}_X h)(Y, Z) = \nabla_X^{\perp}(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z). \tag{4.4}$$

Putting $Z = \xi$ in (4.4) and using (3.11), we have

$$h(Y, \nabla_X \xi) = 0. \tag{4.5}$$

In view of (3.12) we have from (4.5) that

$$h(Y, \phi X) = 0. \tag{4.6}$$

Replacing X by ϕX in (4.6) and using (2.8) and (3.11) we get h(Y, X) = 0, which implies that N is totally geodesic.

The converse statement is obvious. This proves the theorem. $\hfill\Box$

Theorem 4.3. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M with non-vanishing ξ -sectional curvature. Then N is 2-semiparallel if and only if N is totally geodesic.

Proof. Let *N* be an invariant submanifold of a (*LCS*)_n-manifold *M* such that $\alpha^2 - \rho \neq 0$, which is 2-semiparallel. Then from (3.8) we get

$$R^{\perp}(X,Y)(\overline{\nabla}h)(Z,U,W) - (\overline{\nabla}h)(R(X,Y)Z,U,W) - (\overline{\nabla}h)(Z,R(X,Y)U,W) - (\overline{\nabla}h)(Z,U,R(X,Y)W) = 0.$$

$$(4.7)$$

Plugging $X = U = \xi$ in (4.7), we obtain

$$R^{\perp}(\xi, Y)(\overline{\nabla}h)(Z, \xi, W) - (\overline{\nabla}h)(R(\xi, Y)Z, \xi, W)$$

$$-(\overline{\nabla}h)(Z, R(\xi, Y)\xi, W) - (\overline{\nabla}h)(Z, \xi, R(\xi, Y)W) = 0.$$
(4.8)

By virtue of (2.5), (2.11), (2.12), (3.5) and (3.11), we have the following:

$$(\overline{\nabla}h)(Z,\xi,W) = (\overline{\nabla}_Z h)(\xi,W)$$

$$= \nabla_Z^{\perp}(h(\xi,W)) - h(\nabla_Z \xi,W) - h(\xi,\nabla_Z W)$$

$$= -\alpha h(\phi Z,W), \tag{4.9}$$

$$\begin{split} &(\overline{\nabla}h)(R(\xi,Y)Z,\xi,W) \\ &= (\overline{\nabla}_{R(\xi,Y)Z}h)(\xi,W) \\ &= \nabla^{\perp}_{R(\xi,Y)Z}(h(\xi,W)) - h(\nabla_{R(\xi,Y)Z}\xi,W) - h(\xi,\nabla_{R(\xi,Y)Z}W) \end{split}$$

$$= -h(\alpha \phi R(\xi, Y)Z, W)$$

= $\alpha(\alpha^2 - \rho)\eta(Z)h(\phi Y, W)$, (4.10)

$$(\overline{\nabla}h)(Z, R(\xi, Y)\xi, W)$$

$$= (\overline{\nabla}_Z h)(R(\xi, Y)\xi, W)$$

$$= \nabla_Z^{\perp}(h(R(\xi, Y)\xi, W)) - h(\nabla_Z R(\xi, Y)\xi, W)$$

$$-h(R(\xi, Y)\xi, \nabla_Z W)$$

$$= (\alpha^2 - \rho)\nabla_Z^{\perp}h(Y, W) - (\alpha^2 - \rho)h(\nabla_Z \{\eta(Y)\xi + Y\}, W)$$

$$-(\alpha^2 - \rho)h(Y, \nabla_Z W)$$
(4.11)

and

$$(\overline{\nabla}h)(Z, \xi, R(\xi, Y)W)$$

$$= (\overline{\nabla}_Z h)(\xi, R(\xi, Y)W)$$

$$= \nabla_Z^{\perp}(h(\xi, R(\xi, Y)W)) - h(\nabla_Z \xi, R(\xi, Y)W)$$

$$-h(\xi, \nabla_Z R(\xi, Y)W)$$

$$= -h(\alpha \phi Z, R(\xi, Y)W)$$

$$= \alpha(\alpha^2 - \rho)\eta(W)h(\phi Z, Y). \tag{4.12}$$

Using (2.5), (4.9)–(4.12) in (4.8), we obtain

$$-\alpha R^{\perp}(\xi, Y)h(\phi Z, W) - (\alpha^{2} - \rho)\eta(Z)h(\phi Y, W) - (\alpha^{2} - \rho)\nabla_{Z}^{\perp}h(Y, W) + (\alpha^{2} - \rho)h(\nabla_{Z}\{\eta(Y)\xi + Y\}, W) + (\alpha^{2} - \rho)h(Y, \nabla_{Z}W) - \alpha(\alpha^{2} - \rho)\eta(W)h(\phi Z, Y) = 0.$$
(4.13)

Putting $W = \xi$ in (4.13) and using (3.11) and (3.12), we get

$$\alpha(\alpha^2 - \rho)h(\phi Z, Y) = 0. \tag{4.14}$$

The ξ -sectional curvature of a $(LCS)_n$ -manifold for a unit vector field X orthogonal to ξ is given by $K(\xi, X) = g(R(\xi, X)\xi, X)$. Hence from (2.12), we get

$$K(\xi, X) = (\alpha^2 - \rho). \tag{4.15}$$

Since the manifold under consideration is of non-vanishing ξ -sectional curvature, we have from (4.15) that $\alpha^2 - \rho \neq 0$. Again since $\alpha \neq 0$, (4.14) yields

$$h(\phi Z, Y) = 0. \tag{4.16}$$

Replacing Z by ϕZ in (4.16) and using (2.8) and (3.11), we get h(Z, Y) = 0, which implies that N is totally geodesic.

The converse part is trivial. So the theorem is proved. \Box

5. Invariant submanifolds of $(LCS)_n$ -manifolds satisfying $\overline{C}(X, Y) \cdot h = 0$ and $\overline{C}(X, Y) \cdot \overline{\nabla} h = 0$

This section deals with invariant submanifolds of $(LCS)_n$ -manifolds satisfying $\overline{C}(X,Y) \cdot h = 0$ and $\overline{C}(X,Y) \cdot \overline{\nabla} h = 0$.

Theorem 5.1. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M such that $r \neq n(n-1)(\alpha^2 - \rho)$. Then $\overline{C}(X, Y) \cdot h = 0$ holds on N if and only if N is totally geodesic.

Proof. Let *N* be an invariant submanifold of a $(LCS)_n$ -manifold *M* satisfying $\overline{C}(X,Y) \cdot h = 0$ such that $r \neq n(n-1)(\alpha^2 - \rho)$. Then we have from (3.9) that

$$R^{\perp}(X, Y)h(Z, U) - h(C(X, Y)Z, U) - h(Z, C(X, Y)U) = 0.$$
(5.1)

Setting $X = U = \xi$ in (5.1) and using (2.16) and (3.11), we get

$$h(Z, C(\xi, Y)\xi) = 0.$$
 (5.2)

By virtue of (2.17) it follows from (5.2) that

$$\left[\alpha^{2} - \rho - \frac{r}{n(n-1)}\right]h(Z, \eta(Y)\xi + Y) = 0.$$
 (5.3)

Again in view of (3.11), (5.3) yields

$$\left[\alpha^2 - \rho - \frac{r}{n(n-1)}\right]h(Z, Y) = 0,$$

which gives

$$h(Z, Y) = 0, \quad \text{since } r \neq n(n-1)(\alpha^2 - \rho)$$
(5.4)

and hence the submanifold N is totally geodesic. The converse is trivial and hence the theorem. \Box

Theorem 5.2. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M such that $r \neq n(n-1)(\alpha^2 - \rho)$. Then $\overline{C}(X, Y) \cdot \overline{\nabla} h = 0$ holds on N if and only if N is totally geodesic.

Proof. Let *N* be an invariant submanifold of a (*LCS*)_n-manifold *M* such that $r \neq n(n-1)(\alpha^2 - \rho)$. If *N* satisfies the condition $\overline{C}(X, Y) \cdot \overline{\nabla} h = 0$, then from (3.10), we get

$$R^{\perp}(X,Y)(\overline{\nabla}h)(Z,U,W) - (\overline{\nabla}h)(C(X,Y)Z,U,W) - (\overline{\nabla}h)(Z,C(X,Y)U,W) - (\overline{\nabla}h)(Z,U,C(X,Y)W) = 0.$$
(5.5)

Putting $X = U = \xi$ in (5.5), we obtain

$$R^{\perp}(\xi, Y)(\overline{\nabla}h)(Z, \xi, W) - (\overline{\nabla}h)(C(\xi, Y)Z, \xi, W) - (\overline{\nabla}h)(Z, C(\xi, Y)\xi, W) - (\overline{\nabla}h)(Z, \xi, C(\xi, Y)W) = 0. (5.6)$$

By virtue of (2.16), (2.17), (3.5) and (3.11), we get

$$(\overline{\nabla}h)(C(\xi,Y)Z,\xi,W)$$

$$= (\overline{\nabla}_{C(\xi,Y)Z}h)(\xi,W)$$

$$= \nabla^{\perp}_{C(\xi,Y)Z}(h(\xi,W)) - h(\nabla_{C(\xi,Y)Z}\xi,W) - h(\xi,\nabla_{C(\xi,Y)Z}W)$$

$$= -h(\alpha \phi C(\xi,Y)Z,W)$$

$$= \alpha \left[\alpha^{2} - \rho - \frac{r}{n(n-1)}\right] \eta(Z)h(\phi Y,W), \tag{5.7}$$

$$(\overline{\nabla}h)(Z, C(\xi, Y)\xi, W)$$

$$= (\overline{\nabla}_{Z}h)(C(\xi, Y)\xi, W)$$

$$= \nabla_{Z}^{\perp}(h(C(\xi, Y)\xi, W)) - h(\nabla_{Z}C(\xi, Y)\xi, W)$$

$$-h(C(\xi, Y)\xi, \nabla_{Z}W)$$

$$= \left[\alpha^{2} - \rho - \frac{r}{n(n-1)}\right]$$

$$\times \left[\nabla_{Z}^{\perp}h(Y, W) - h(\nabla_{Z}\{\eta(Y)\xi + Y\}, W) - h(Y, \nabla_{Z}W)\right]$$
(5.8)

and

$$\begin{split} &(\overline{\nabla}h)(Z,\xi,C(\xi,Y)W)\\ &=(\overline{\nabla}_Zh)(\xi,C(\xi,Y)W)\\ &=\nabla_Z^\perp(h(\xi,C(\xi,Y)W))-h(\nabla_Z\xi,C(\xi,Y)W)\\ &-h(\xi,\nabla_ZC(\xi,Y)W) \end{split}$$

A.A. Shaikh et al.

$$= -h(\alpha \phi Z, C(\xi, Y)W)$$

$$= \alpha \left[\alpha^2 - \rho - \frac{r}{n(n-1)}\right] \eta(W)h(\phi Z, Y). \tag{5.9}$$

In view of (2.5), (4.9) and (5.7)–(5.9) we have from (5.6) that

$$-\alpha R^{\perp}(\xi, Y)h(\phi Z, W) - \left[\alpha^{2} - \rho - \frac{r}{n(n-1)}\right] \times \left[\alpha \eta(Z)h(\phi Y, W) + \nabla_{Z}^{\perp}h(Y, W) - h(\nabla_{Z}\{\eta(Y)\xi + Y\}, W) - h(Y, \nabla_{Z}W) + \eta(W)h(\phi Z, Y)\right] = 0.$$
 (5.10)

Putting $W = \xi$ in (5.10) and using (3.11) and (3.12), we get

$$\alpha \left[\alpha^2 - \rho - \frac{r}{n(n-1)} \right] h(Y, \phi Z) = 0,$$

which implies that

$$h(Y, \phi Z) = 0$$
, since $\alpha \neq 0$ and $r \neq n(n-1)(\alpha^2 - \rho)$. (5.11)

Replacing Z by ϕZ in (5.11) and using (2.8) and (3.11), we get h(Y, Z) = 0, which implies that N is totally geodesic. The converse statement is obvious and hence the proof of the theorem is complete. \square

By virtue of Theorems 4.1–4.3, 5.1 and 5.2, we can state the following:

Theorem 5.3. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M. Then the following statements are equivalent:

- (i) *N is semiparallel*;
- (ii) N has parallel second fundamental form;
- (iii) N is 2-semiparallel;
- (iv) N satisfies the condition $\overline{C}(X, Y) \cdot h = 0$ with $r \neq n(n 1)(\alpha^2 \rho)$;
- (v) N satisfies the condition $\overline{C}(X, Y) \cdot \overline{\nabla} h = 0$ with $r \neq n(n-1)(\alpha^2 \rho)$;
- (vi) N is totally geodesic.

6. 3-dimensional invariant submanifolds of $(LCS)_n$ -manifolds

Proposition 6.1. Let N be an invariant submanifold of a $(LCS)_n$ -manifold M. Then there exist two differentiable orthogonal distributions D and D^{\perp} on N such that

$$TN = D \oplus D^{\perp} \oplus \{\xi\}$$

and

$$\phi(D) \subset D^{\perp}, \ \phi(D^{\perp}) \subset D.$$

Proof. For an invariant submanifold N, ξ is tangent to N. Hence we can write $TN = D^1 \oplus \{\xi\}$. Since $g(X_1, \phi X_1) = 0$ and $g(\xi, \phi X_1) = 0$ for $X_1 \in D^1$. So ϕX_1 is orthogonal to X_1 and ξ . Consequently, we can write $D^1 = D \oplus D^\perp$, where $X_1 \in D \subset D^1$ and $\phi X_1 \in D^\perp \subset D^1$. For $\phi X_1 \in D^\perp$, we have $\phi(\phi X_1) = \phi^2 X_1 = X_1 + \eta(X_1)\xi = X_1 \in D$. Let $\phi X_1 = X_2 \in D^\perp$. Hence for $X_1 \in D$, $\phi X_1 \in D^\perp$ and for $X_2 \in D^\perp$, $\phi X_2 \in D$. This proves the proposition. \square

Proposition 6.2. For an invariant submanifold N of a $(LCS)_n$ -manifold M, we have

$$h(X,\xi) = 0, (6.1)$$

$$h(X, \phi Y) = \phi h(X, Y) = h(\phi X, Y) \tag{6.2}$$

for two differentiable vector fields $X, Y \in \Gamma(TN)$.

Proof. From (3.4) and (3.11) it can be easily checked that the relations (6.1) and (6.2) hold.

Now we prove the following: \Box

Theorem 6.1. Every 3-dimensional invariant submanifold of a $(LCS)_n$ -manifold is totally geodesic.

Proof. Let N be a 3-dimensional invariant submanifold of a $(LCS)_n$ -manifold M. Then for $X_1, Y_1 \in D$, we have

$$h(X_1, \phi Y_1) = \phi h(X_1, Y_1). \tag{6.3}$$

By virtue of (2.8) it follows from (6.3) that

$$\phi h(X_1, \phi Y_1) = \phi^2 h(X_1, Y_1) = h(X_1, Y_1) + \eta(h(X_1, Y_1))\xi.$$
 (6.4)

Since $h(X_1, Y_1)$ is a vector field normal to N. So $h(X_1, Y_1)$ and ξ are orthogonal. Consequently we get by virtue of (2.2) that $\eta(h(X_1, Y_1)) = 0$. Thus in view of (6.2) and (6.4) we have

$$h(\phi X_1, \phi Y_1) = h(X_1, Y_1). \tag{6.5}$$

Let us take $\phi X_1 = X_2 \in D^{\perp}$ and $\phi Y_1 = Y_2 \in D^{\perp}$. Then from (6.5), we get

$$h(X_2, Y_2) = h(X_1, Y_1).$$
 (6.6)

As h(X, Y) is bilinear, for $X_1, Y_1 \in D$ and $X_2, Y_2 \in D^{\perp}$ we obtain

$$h(X_1 + X_2 + \xi, Y_1) = h(X_1, Y_1) + h(X_2, Y_1) + h(\xi, Y_1),$$
 (6.7)

$$h(X_1 + X_2 + \xi, -Y_2) = -h(X_1, Y_2) - h(X_2, Y_2) - h(\xi, Y_2),$$
(6.8)

$$h(X_1 + X_2 + \xi, \xi) = h(X_1, \xi) + h(X_2, \xi) + h(\xi, \xi). \tag{6.9}$$

Adding (6.7)–(6.9) and using (6.1) and (6.6) we get

$$h(X_1 + X_2 + \xi, Y_1 - Y_2 + \xi) = h(X_2, Y_1) - h(X_1, Y_2).$$
 (6.10)

As $TN = D \oplus D^{\perp} \oplus \{\xi\}$, we can write $U = X_1 + X_2 + \xi \in TN$ and $W = Y_1 - Y_2 + \xi \in TN$. Hence from (6.10) we have

$$h(U, W) = h(X_2, Y_1) - h(X_1, Y_2).$$
(6.11)

From (6.11) it follows that

$$\phi h(U, W) = h(X_2, \phi Y_1) - h(\phi X_1, Y_2)$$

= $h(X_2, Y_2) - h(X_2, Y_2)$
= 0.

This proves the theorem. \Box

Acknowledgment

The authors wish to express their sincere thanks and gratitude to the referee for his/her valuable suggestions towards the improvement of the paper.

References

- A.A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003) 305–314
- [2] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata Univ. Nat. Sci. 12 (1989) 151–156.
- [3] I. Mihai, R. Rosca, On Lorentzian para-Sasakian manifolds, World Scientific Publication, Singapore, 1992, pp. 155–169.
- [4] A.A. Shaikh, K.K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005) 129–132.
- [5] A.A. Shaikh, K.K. Baishya, On concircular structure spacetimes II, Am. J. Appl. Sci. 3 (4) (2006) 1790–1794.
- [6] A.A. Shaikh, H. Ahmad, Some transformations on (*lcs*)_n-manifolds, Tsukuba J. Math. 38 (2014) 1–24.
- [7] M. Atceken, On geometry of submanifolds of (*lcs*)_n-manifolds, Int. J. Math. Math. Sci. (2012), doi:10.1155/2012/304647.
- [8] D. Narain, S. Yadav, On weak concircular symmetries of $(lcs)_{2n+1}$ -manifolds, Glob. J. Sci. Front. Res. 12 (2012) 85–94.
- [9] D.G. Prakasha, On Ricci η-recurrent (*lcs*)_n-manifolds, Acta Univ. Apulensis 24 (2010) 109–118.
- [10] A.A. Shaikh, Some results on (*lcs*)_n-manifolds, J. Korean Math. Soc. 46 (2009) 449–461.
- [11] A.A. Shaikh, T. Basu, S. Eyasmin, On locally φ-symmetric (lcs)_n-manifolds, Int. J. Pure Appl. Math. 41 (8) (2007) 1161–1170.
- [12] A.A. Shaikh, T. Basu, S. Eyasmin, On the existence of ϕ -recurrent (lcs) $_n$ -manifolds, Extracta Math. 23 (1) (2008) 71–83.
- [13] A.A. Shaikh, T.Q. Binh, On weakly symmetric (*lcs*)_n-manifolds, J. Adv. Math. Stud. 2 (2009) 75–90.
- [14] A.A. Shaikh, S.K. Hui, On generalized ϕ -recurrent (lcs) $_n$ -manifolds, in: Proceedings of the AIP Conference, 1309, 2010, pp. 419–429.
- [15] G.T. Sreenivasa, Venkatesha, C.S. Bagewadi, Some results on $(lcs)_{2n+1}$ -manifolds, Bull. Math. Anal. Appl. 1 (3) (2009) 64–70.
- [16] S.K. Yadav, P.K. Dwivedi, D. Suthar, On (*lcs*)_{2n+1}-manifolds satisfying certain conditions on the concircular curvature tensor, Thai J. Math. 9 (3) (2011) 597–603.
- [17] Z. Guojing, W. Jiangu, Invariant submanifolds and modes of nonlinear autunomous system, Appl. Math. Mech. 19 (1998) 687–693.
- [18] K. Matsumoto, I. Mihai, R. Rosaca, ξ-null geodesic vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32 (1995) 17–31.
- [19] A. Bejancu, N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, An Sti. Univ. "AL I CUZA" Iasi 27 (1981) 163– 170.
- [20] B.S. Anitha, C.S. Bagewadi, Invariant submanifolds of Sasakian manifolds, Differ. Integral Equ. 16 (10) (2003) 1249–1280.
- [21] B.S. Anitha, C.S. Bagewadi, Invariant submanifolds of Sasakian manifolds admitting quarter symmetric metric connection-II, Ilirias J. Math. 1 (1) (2012) 1–13.

- [22] M. Atceken, S. Keles, Two theorems on invariant submanifolds of a Riemannian product manifold, Indian J. Pure Appl. Math. 34 (7) (2003) 1035–1044.
- [23] M. Atceken, B. Sahin, E. Kilic, On invariant submanifolds of Riemannian warped product manifold, Turk. J. Math. 27 (2003) 407–423.
- [24] H. Endo, Invariant submanifolds in contact metric manifolds, Tensor, N. S. 43 (1986) 83–87.
- [25] I. Hasegawa, I. Mihai, Contact cr-warped product submanifolds in Sasakian manifolds, Geom. Dedicata 102 (2003) 143–150.
- [26] H.B. Karadag, M. Atceken, Invariant submanifolds of Sasakian manifolds, Balkan J. Geom. Appl. 12 (2007) 68–75.
- [27] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep. 25 (1973) 330–336.
- [28] J. Nikic, Conditions for an invariant submanifold of a manifold with the (ϕ, ξ, η, g) -structure, Kragujevac J. Math. 25 (2003) 147–154
- [29] J. Nikic, N. Pusic, Properties of invariant submanifolds in a (3,ε)-manifold, in: Proc. conf. Appl. Diff. Geom. General relativity and the workshop on global analysis, Diff. Geom. and Lie Algebras, 2001, pp. 103–108.
- [30] C. Özgür, C. Murathan, On invariant submanifolds of LP-Sasakian manifolds, Arab J. Sci. Eng. 34 (2009) 171–179.
- [31] A. Sarkar, M. Sen, On invariant submanifolds of trans-Sasakian manifolds, in: Proceedings of the Estonian Academy of Sciences, 61, 2012a, pp. 29–37.
- [32] A. Sarkar, M. Sen, On invariant submanifolds of LP-Sasakian manifolds, Extracta Math. 27 (2012b) 145–154.
- [33] X. Senlin, N. Yilong, Submanifolds of product Riemannian manifolds, Acta Math. Scientia 20 B (2000) 213–218.
- [34] A.T. Vanli, R. Sari, Invariant submanifolds of trans-Sasakian manifolds, Diff. Geom.-Dyn. Syst. 12 (2010) 277–288.
- [35] K. Yano, S. Ishihara, Invariant submanifolds of almost contact manifolds, Kodai Math. Sem. Rep. 21 (1969) 350–364.
- [36] J. Deprez, Semiparallel surfaces in the Euclidean space, J. Geom. 25 (1985) 192–200.
- [37] J. Deprez, Semiparallel hypersurfaces, Rend. Sem. Mat. Univ. Politech. Torino 44 (1986) 303–316.
- [38] F. Dillen, Semiparallel hypersurfaces of a real space form, Israel J. Math. 75 (1991) 193–202.
- [39] K. Arslan, U. Lumiste, C. Murathan, C. Özgür, 2-semiparallel surfaces in space forms. I: two particular cases, in: Proceedings of the Estonian Academy of Sciences, Physics and Mathematics, 39, 1990, pp. 1–8.
- [40] K. Yano, Concircular geometry I. concircular transformations, in: Proceedings of the Imperial Academy Tokyo, 16, 1940, pp. 195– 200
- [41] B. O'Nell, Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- [42] K. Yano, M. Kon, Structures on Manifolds, World Scientific Publishing Company, Singapore, 1984.