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Totally real submanifolds have been studied by many geometers in different ambient
manifolds. The purpose of this note is to study totally real submanifolds in Kaehlerian product man-

fold; ifolds. We derive some integral formulas computing the Laplacian of the square of the second fun-
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damental form and using these formulas we prove pinching theorems. In fact, we have generalized
some results due to Yano and Kon [1,2] to the case when the ambient manifold is Kaehlerian product
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1. Introduction

The geometry of totally real submanifolds is an interesting field
which is studied by many geometers. For example, Houh [3],
Yau [4], Chen and Ogiue [5] have studied totally real subman-
ifolds in an almost Hermitian manifold or a Kaehlerian mani-
fold of constant holomorphic sectional curvature and obtained
many interesting results. Moreover, Yano and Kon [1,2] have
generalized some of the results proved in [6-9]. On the other
hand, Kaehlerian product manifold has also been paid atten-
tion by geometers [10]. The object of this note is to study the
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geometry of totally real submanifolds when the ambient mani-
fold is a Kaehlerian product manifold.

2. Preliminaries

Let M" be a Kachlerian manifold of complex dimension 7 (of
real dimension 2n) and M” be a Kachlerian manifold of com-
plex dimension p (of real dimension 2p). Let us denote by J, and
J, almost complex structures of M" and M” respectively. Now,
we suppose that M" and M” are complex space forms with con-
stant holomorphic sectional curvatures ¢; and ¢, and denote
them by M (¢;) and M” (¢») respectively. The Riemannian cur-
vature tensor R, of M (¢,) is given by

F,,(X,Y)Z = %Cl[gn(YaZ)X —g,,(X,Z)Y]

1
+ ch[gn Y )X — gy (JuX,2) )Y + 2, (X, J,Y) ], Z]
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and the Riemannian curvature tensor R, of M (c,) is given by
— 1
R,(X.Y)Z = Zcz[g])(Y>Z)X - g, (X, 2)Y]
1
+ 508U, Y 2),X = U, X 2)],Y +28,(X J,Y)J, 2]

We consider the Kaehlerian product manifold M = M (¢;) x
M’ (¢»). Let us denote by P and Q the projection operators of
the tangent space of Mn(cl) and Hp(cz) respectively. Then, we
have P> = P,0> = Q,PQ= QP =0. We put F =P — Q and it
can be verified that F? = I. Thus, F is almost product structure
on M. Moreover, we define a Riemannian metric g on M by

8(X.Y) =g,(PX,PY) +¢,(0X,0Y)

for any vector field X and Y of M. It also follows that
gFX)Y)=g(FY,X). Let us put JX =J,PX +J,0X for
any vector field X of M. Then we see that J,P = PJ,J,0 =
QJF]=JFJ>=—-1g(JXJY)=g(X,Y),VyJ =0. Thus, J
is Kaehlerian structure on M. The Riemannian curvature ten-
sor R of a Kaehlerian product manifold M is given by [10]

RX.Y.ZW) = %6(01 + )[g(Y.2)g(X, W) — g(X,Z)g(Y.W)
+gJY,Z)g(UX, W) —gUX,Z)g(JY, W)
+28(X,JY)gJZ, W) +2¢(FY,Z)g(FX, W)
—g(FX,Z2)g(FY , W) +g(FJY,Z)g(FJX, W)

—g(FIX, 2)g(FJY, W) +2g(FX,JY)g(FJZ, W)]

1
+ T6(C1 —)gFY, 2)g(X,. W) —g(FX, Z)g(Y, W)

+8(Y, 2)g(FX, W) —g(X, Z)g(FY, W)
+g(FJY, 2)g(JX W) —-gFJIX,Z)gJY, W)
+g(JY, Z2)g(FJIX W) —-g(JX,Z2)gFJY, W)
+2g(FX,JY)g(JZ, W)

+2¢(X, JY)g(JFZ, W)] @.1)

for any vector fields X, Y and Z on M. An n-dimensional Rie-
mannian manifold M isometrically immersed in a Kaehlerian
product manifold M is called totally real submanifold of M if
JT (M) L T (M) for each x € M where T, (M) denotes the
tangent space to M at x € M. Here we have identified 7. (M)
with its image under the differential of the immersion because
our computation is local. If X € T, (M), then JX is a normal
vector to M. Let g be the metric tensor field of M and g be the
induced metric tensor field on M. We denote by V (resp. V) the
operator of covariant differentiation with respect to g (resp. g).
Then the Gauss and Weingarten formulas are given by

VyY =VyY +B(X,Y) 2.2)

VyN =—AyX + DyN (2.3)

for any tangent vector fields X, Y and normal vector field N
on M, where D is the operator of covariant differentiation with
respect to the linear connection induced in the normal bundle.
Both 4 and B are called the second fundamental form of M and
satisfy

gB(X,Y),N)=g(AnX,Y). 2.4

A normal vector field N in the normal bundle is said to be
parallel if Dy N = 0 for any tangent vector field X on M. The
mean curvature vector H is defined as H = (1/n)TrB, where
TrB =}, B(e;, ¢;) for an orthonormal frame {e;}. We say that

e M is minimal if # = 0.

* M is totally umbilical if the second fundamental form of M
satisfies B(X, Y) = g(X, Y)H.

* M is totally geodesic if the second fundamental form of M
vanishes identically, that is, B = 0.

We choose a local field of orthonormal frames
€1,y Gl Cpyls s Cnppy € =Jep, e = Jey) ey =
Jenits ooy luipr =Je,, in M in such a way that re-

stricted to M, ey, ...,e, are tangent to M. With respect
to this frame field of M, let o', ..., 0" "', ..., &"?;
o, 0" YT o™ be the field of dual frames.
Unless otherwise stated, we use the conventions that the
ranges of indices are respectively 4,B,C,D=1,...,n+
p 15 ., (n+p)"; i,k t,s=1,...,nm a, b c,d=
n+1,....,n+p1* ....,(n+p* o B,y=n+1l,....n+p;
A, v,=n+1,....,n+p (n+1D* ...,(n+p)* and that
when an index appears twice in any term as a subscript and a
superscript, it is understood that this index is summed over its
range. Then the structure equations of M are given by

do" = —wpe®, wj+ o =0,

i Jo_ i [
a)j-l-w,-—O, 0, =0, 0 =w;,
o+l =0, of=0f, of =, (2.5)
ol ot =0, o =0, o =,

1
4 4, C 4 4 4 C D

doy = —wiwg + ¢, ¢ = EKBCDQ) A (2.6)
Restricting these forms to M, we have
o’ =0, 2.7)
do' = —w} A o, (2.8)
d i i k Qt‘ Qi _ lRl k ! 29

W) = —wp Aw; + Q) =3 @ N @ 2.9
Since 0 = dw* = —w? A o, by Cartan’s lemma we have
of = he!, b =, (2.10)

We see that g(A4,e;, e;) = h;’j The Gauss-equation is given by

Ry = K;kl + Z(h?k G — hahS) (2.1
Moreover we have

dof = —0? Ny + QF, Q) = %RZ,C,a)k Ao (2.12)
and the Ricci-equation is given by

Ry = Ky + Z(h?kh?/ — hih) (2.13)
From (2.5) and (2.10) we have

= 1 = @14

We define the covariant derivative A, of h; by setting
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W0t = dh, — Ko, — 0! + h)of. (2.15)

The Laplacian Ahf; of hy; is defined as

Al =" W (2.16)
k

where we have put if,0' = dhiy — hi o} — ko) — o +
h?jkwg . The forms (a)j.) define the Riemannian connection of M
and the forms (wj). If a Riemannian manifold M is of constant
curvaturbare k, then we have
lek/ = k((S,-ij/ - 6j[8jk). (217)
We call such a manifold a real space form and denote it by
M (k).

Now, let us suppose that M be a totally real n-dimensional
submanifold of a Kaehlerian product manifold M. We denote
by T.(M) the tangent space of M at x € M and by T,(M)*
the normal space of M at x € M. Then we see that JT (M) C
T.(M)*. We can decompose T, (M)* in the following way:

T(M)* =JT (M) ® N(M)

where N,(M) is an orthogonal complement of JT (M) in
T.(M)*.If N € N (M), we obtain JN € N,(M). If N is a vec-
tor field in the normal bundle 7' (M)*, we put

JN =PN+ fN (2.18)

where PN and fN are the tangential and normal part of JN.
Then P is a tangent bundle valued 1-form on the normal bundle
and f'is an endomorphism of the normal bundle. Putting N =
JX and applying J in (2.18), we find [7,9]:

PfN=0, f’N=-N—JPN, PJX =—-X, fJX =0
(2.19)

where X is a tangent vector field to M and N is a vector field in
the normal bundle. Eq. (2.19) imply that

rer=o.

Therefore, f being of constant rank, if /' does not vanish, then
it defines an f-structure in the normal bundle [11]. From (2.18),
using the Gauss—Weingarten formulas, we have

—JAyX + fDyN = B(X, PN) + Dy (fN) (2.20)
from which
(Dy /)N = —B(X, PN) — JAyX. (2.21)

We say that if Dy /= 0 for any tangent vector field X, then the
[f-structure in the normal bundle is parallel.

Lemma 2.1. Let M be a totally real n-dimensional submanifold
of a Kaehlerian product manifold M . If the f-structure in the
normal bundle is parallel, then we have

Ay =0 for Ne&Ny(M). (2.22)

Proof. If N € N, (M), then we have PN = 0. Thus, by the as-
sumption and (2.21) we have (2.22). O

Remark. We can define a frame ¢y, ..., e, for JT (M) and a
frame e,y1, ..., €np, Cotnyts - - - €uipyr fOr Ny(M). Therefore if
the f-structure in the normal bundle is parallel, then we have

A, =0, e, K,=0. (2.23)

3. Integral formulas

Let M be a totally real submanifold of real dimension n of
Kaehlerian product manifold M (¢) of complex dimension n + p
and of constant holomorphic sectional curvature ¢. We prove
the following lemma for later use.

Lemma 3.1.  Let M be a totally real submanifold of Kaehlerian
product manifold M (c¢) = M, (¢) x M5 (¢>) . Then, we have

a a a 1.a
§ hijAhij = E hijhkkij
a,i, j a,i,jk

+ lié(c1 +6) Xa:[{n + 9+ 15(TrFJ)* + 6(TrF)*}TrA>
— B4 (TrF)* + (TrFJ)*)(TrAy)?

+ %(q —6) ;[(n + 1)(TrF)TrA> — 2(TrF)(TrA,)*]

+»f6<c14—c2)§gju4(TVsz——2>TVA3——(1+—(TVF32>(TVAtf]
+ %(c1 — ) Z[Z(TrF)(TrAtz) — 2(TrF)(TrA)]

1
+ g (€1 = @) Y (TrIF)gles, e)hihiy

7
— gl =) > (TrIF)g(Jes, el i,

+ Y ATr( Ao Ay — ApAn) = [Tr(A AT — TrA, Tr(A,A,4,)}
a,b

(3.1)
where we have put A, = A;.

Proof. By a straightforward computation, we have [12]

b b b
DO HGAKG =Y (i, — Kb + 4Kl b — Ky i,
a,i,j a,i,j.k

DKL i+ 2K i)

- Z [(h?kh?k - h?‘kh?k)(h?lh?[ - h‘}zhf-’;)
abi ikl
R — I 1

Then in light of above equation, using (2.1) we have our asser-
tion. O

Now, we use Lemma 2.1 and Eq. (3.1) to obtain the follow-
ing result.

Lemma 3.2. Let M be a totally real submanifold of Kaehlerian
product manifold M (c) = M\"(c1) x My?(cy). If the f-structure
in the normal bundle is parallel, then we have
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DAk =) il

ai,j a.i.j.k

1
+ 1—6(01 +¢) Z[{n + 74 15(TrJF)* + 10(TrF)*} TrA;
t

— {4+ 2(TrF)* + (TrFEJ)*(TrA4,)*]

+ %(c1 — ) Z[(n +3)(TrF)TrA; — 4(TrF)(TrA,)*

1

+ g (@ = @) Y (TrIF)gUes, e,
7

— 151 = @) Y (TrIF)gles, e)hihy

+ Y ATr( 4,4, — 4,4,

1.5
—[Tr(A4,A)Y + TrA,Tr(4,4,4,)} (3.2)
We require the following lemma [12].

Lemma 3.3. Let A and B be symmetric (n, n) -matrices. Then

—Tr(AB — BA)* < 2TrA*TrB?

and the equality holds for non-zero matrices A and B if and only
if A and B can be transformed by an orthogonal matrix simulta-
neously into scalar multiples of A and B respectively, where

Moreover, if Ay, Ay, Az are three symmetric (n, n) -matrices such
that

—Tr(A Ay — ApA,)* =2TrA>TrB;, 1 < ab

A

3, a#b
then at least one of the matrices A, must be zero.

We next put Sgp =Y, K =Trd,Ap, Si= Su,S=
> . Sa, so that Sy, is a symmetric (n, n)-matrix and can be as-
sumed to be diagonal for a suitable frame. S is the square of the
length of the second fundamental form. When the f-structure
in the normal bundle is parallel, using these notations, we can

rewrite (3.2) in the following form:

1
S hEARG =Y bk + e+ e+ 7+ 15(TrJF)?

a,i,j ai,jk
1
+10(TrF)*1S + E(c1 — ) (n+3)(TrF)S

= D S Y ATr(A, A, — A4,
1
— E(cl + ) 2[4 + 2(TrF)* + (TrFJ)*|(TrA,)?
— %(cl — ) Z4(TrF)(TrA,)2 + ,Z TrA,Tr(A,A,A,)

1 a
+ g (@ = @) Y _(TrIF)gUe, el

7
— e > (TrIF)g(Jey, e, (3.3)

Now, we prove the following theorem.

Theorem 3.4. Let M be a compact orientable totally real sub-
manifold of Kaehlerian product manifold M (c) = M,"(c;) x
M,?(c>). If the f-structure in the normal bundle is parallel, then
we have

/{W‘ZWAHA(TFA»}*I z/ > Ui =1
M a M N

a,i, j.k

v

0 (3.4)
where
N, 1
W=\(2—-—-)S"——=@+a)n+7
n 16
1
+15(TrJF)* 4+ 10(TrF)*]S — E(cl — )+ 3)(TrF)S

1
+ E(cl + ) 2[4 + 2(TrF)* + (TrFJ)*] Z (TrA,)?

1
+ E(c1 —0) Z A(TrF)(TrA,)* — Z TrA,Tr(A4,4,4,)

1
= 15 (@ — ) Y_(TrIF)gles, ehihiy
7
+1g (@ — ) Y (TrIF)gUes, e b
Proof. Taking into account Lemma 3.3, we have
=D Tr(A A, — AA) +) S
1,5 t

— WS —WrS £ 2) S+ ) S]—WiS— WS
t#s t
(2= Ds—w—mls 12(5 S)? (3.5)
- n 1 2 n I>S t K .
where Wi = (i + e)n+7+15(TrJF)* + 10(TrF)*,

W, = lis(cl — ) (n+3)(TrF). In view of (3.3) and (3.5), we
have

=Yy < W= 3 H 6.6)
a,i,j a,i, j.k
where

1 1
W= [(2 _ ;)S— W, — W2]5+ et L’z)Z[4 +2TrF)

1
+(TrFJ)? Z(TrA,)z + E(cl - cQ)Z A(TrF)(TrA,)’

— Y TrA,Tr(4,4,4,)
t
1
— g (€1 = ) Y (TrIF)gen, eahijhiy

7
+ E(Cl — ) Z(TrJF)g(Jeb, ea)h_?,-h;’,-.

Let us assume that M is compact and orientable, then we
have the following integral formulas [6]:

a \2 a a
/M > )« =—th,.jAh,.j*1,

a,i,jk
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/M > h Zkij*l:/MXLZ:(TrA,,)A(TrAa)*l.

a.i, jk

Using inequality (3.6) and above integral formulas we have
Eq. (3.4) and this completes the proof of the Theorem. [

Theorem 3.5. Let M be a compact orientable totally real min-
imal submanifold of Kaehlerian product manifold M (c) . If the
Jf-structure in the normal bundle is parallel, then we have

/ [(2 - 1>S Lt e T+ 1S(TIIFY + 10(TrF )

1
_ E(CI - Cz)(n+3)(TrF)]S* 1 ]]‘W Z (h?jk)z %1

a,i,jk

=0 (3.7)
We finish this section by stating the following corollary.

Corollary 3.6. Let M be a compact orientable totally real min-
imal submanifold of Kaehlerian product manifold M (c) of com-
plex dimension n+ p . If the f-structure in the normal bundle is
parallel and if

1 n 2 2
S< a1 + e){n+ 7+ 15(TrJF)* + 10(TrF)*}
1 n
+Em(01 — ) (n+3)(TrF),

then M is totally geodesic.
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