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. Introduction 

he geometry of totally real submanifolds is an interesting field 

hich is studied by many geometers. For example, Houh [3] , 
au [4] , Chen and Ogiue [5] have studied totally real subman-

folds in an almost Hermitian manifold or a Kaehlerian mani- 
old of constant holomorphic sectional curvature and obtained 

any interesting results. Moreover, Yano and Kon [1,2] have 
eneralized some of the results proved in [6–9] . On the other
and, Kaehlerian product manifold has also been paid atten- 
ion by geometers [10] . The object of this note is to study the
E-mail address: majid_alichoudhary@yahoo.co.in 
Peer review under responsibility of Egyptian Mathematical Society. 

Production and hosting by Elsevier 

s
t  

v

R

1110-256X(15)00029-2 Copyright 2015, Egyptian Mathematical Society. Pro
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-
ttp://dx.doi.org/10.1016/j.joems.2015.02.006 
eometry of totally real submanifolds when the ambient mani- 
old is a Kaehlerian product manifold. 

. Preliminaries 

et M 

n 
be a Kaehlerian manifold of complex dimension n (of 

eal dimension 2 n ) and M 

p 
be a Kaehlerian manifold of com-

lex dimension p (of real dimension 2 p). Let us denote by J n and
 p almost complex structures of M 

n 
and M 

p 
respectively. Now, 

e suppose that M 

n 
and M 

p 
are complex space forms with con- 

tant holomorphic sectional curvatures c 1 and c 2 and denote 
hem by M 

n 
(c 1 ) and M 

p 
(c 2 ) respectively. The Riemannian cur-

ature tensor R n of M 

n 
(c 1 ) is given by 

 n (X , Y ) Z = 

1 
4 

c 1 [ g n (Y , Z) X − g n (X , Z) Y ] 

+ 

1 
c 1 [ g n (J n Y , Z) J n X − g n (J n X , Z) J n Y + 2 g n (X , J n Y ) J n Z] 
4 
duction and hosting by Elsevier B.V. This is an open access article 

nc-nd/4.0/ ). 
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and the Riemannian curvature tensor R p of M 

p 
(c 2 ) is given by 

R p (X , Y ) Z = 

1 
4 

c 2 [ g p (Y , Z) X − g p (X , Z) Y ] 

+ 

1 
4 

c 2 [ g p (J p Y , Z) J p X − g p (J p X , Z) J p Y + 2 g p (X , J p Y ) J p Z] . 

We consider the Kaehlerian product manifold M = M 

n 
(c 1 ) ×

M 

p 
(c 2 ) . Let us denote by P and Q the projection operators of

the tangent space of M 

n 
(c 1 ) and M 

p 
(c 2 ) respectively. Then, we

have P 

2 = P , Q 

2 = Q , PQ = QP = 0 . We put F = P − Q and it
can be verified that F 2 = I . Thus, F is almost product structure
on M . Moreover, we define a Riemannian metric g on M by 

g(X , Y ) = g n ( PX , PY ) + g p ( QX , QY ) 

for any vector field X and Y of M . It also follows that
g( F X , Y ) = g( F Y , X ) . Let us put JX = J n PX + J p QX for
any vector field X of M . Then we see that J n P = PJ , J p Q =
QJ , F J = JF , J 2 = −I , g( JX , JY ) = g(X , Y ) , ∇ X J = 0 . Thus, J
is Kaehlerian structure on M . The Riemannian curvature ten-
sor R of a Kaehlerian product manifold M is given by [10] 

R (X , Y , Z , W ) = 

1 
16 

(c 1 + c 2 )[ g(Y , Z) g(X , W ) − g(X , Z) g(Y , W )

+ g( JY , Z) g( JX , W ) − g( JX , Z) g( JY , W ) 

+ 2 g(X , JY ) g( JZ , W ) + 2 g( F Y , Z) g( F X , W ) 

− g( F X , Z) g( F Y , W ) + g( F JY , Z) g( F JX , W ) 

− g( F JX , Z) g( F JY , W ) + 2 g( F X , JY ) g( F JZ , W )] 

+ 

1 
16 

(c 1 − c 2 )[ g( F Y , Z) g(X , W ) − g( F X , Z) g(Y , W ) 

+ g(Y , Z) g( F X , W ) − g(X , Z) g( F Y , W ) 

+ g( F JY , Z) g( JX , W ) − g( F JX , Z) g( JY , W ) 

+ g( JY , Z) g( F JX , W ) − g( JX , Z) g( F JY , W ) 

+ 2 g( F X , JY ) g( JZ , W ) 

+ 2 g(X , JY ) g( JF Z , W )] (2.1)

for any vector fields X , Y and Z on M . An n -dimensional Rie-
mannian manifold M isometrically immersed in a Kaehlerian
product manifold M is called totally real submanifold of M if
JT x (M) ⊥ T x (M) for each x ∈ M where T x (M) denotes the
tangent space to M at x ∈ M. Here we have identified T x (M)

with its image under the differential of the immersion because
our computation is local. If X ∈ T x (M) , then JX is a normal
vector to M . Let g be the metric tensor field of M and g be the
induced metric tensor field on M . We denote by ∇ (resp. ∇) the
operator of covariant differentiation with respect to g (resp. g ).
Then the Gauss and Weingarten formulas are given by 

∇ X Y = ∇ X Y + B(X , Y ) (2.2)

∇ X N = −A N X + D X N (2.3)

for any tangent vector fields X , Y and normal vector field N
on M , where D is the operator of covariant differentiation with
respect to the linear connection induced in the normal bundle.
Both A and B are called the second fundamental form of M and
satisfy 

g (B(X , Y ) , N) = g(A N X , Y ) . (2.4)

A normal vector field N in the normal bundle is said to be
parallel if D X N = 0 for any tangent vector field X on M . The
mean curvature vector H is defined as H = (1 /n ) T rB , where
T rB = 

∑ 

i B(e i , e i ) for an orthonormal frame { e i } . We say that 
• M is minimal if H = 0 . 
• M is totally umbilical if the second fundamental form of M

satisfies B(X , Y ) = g(X , Y ) H . 
• M is totally geodesic if the second fundamental form of M

vanishes identically, that is, B = 0 . 

We choose a local field of orthonormal frames
e 1 , . . . , e n ; e n +1 , . . . , e n + p ; e 1 ∗ = Je 1 , . . . , e n ∗ = Je n ; e (n +1) ∗ =
Je n +1 , . . . , e (n + p) ∗ = Je n + p in M in such a way that re-
stricted to M, e 1 , . . . , e n are tangent to M . With respect
to this frame field of M , let ω 

1 , . . . , ω 

n ; ω 

n +1 , . . . , ω 

n + p ;
ω 

1 ∗ , . . . , ω 

n ∗ ; ω 

(n +1) ∗ , . . . , ω 

(n + p) ∗ be the field of dual frames.
Unless otherwise stated, we use the conventions that the
ranges of indices are respectively A, B, C, D = 1 , . . . , n +
p, 1 ∗, . . . , (n + p) ∗; i, j, k, l, t, s = 1 , . . . , n ; a, b, c, d =
n + 1 , . . . , n + p, 1 ∗, . . . , (n + p) ∗; α, β, γ = n + 1 , . . . , n + p;
λ, μ, ν, = n + 1 , . . . , n + p, (n + 1) ∗, . . . , (n + p) ∗ and that
when an index appears twice in any term as a subscript and a
superscript, it is understood that this index is summed over its
range. Then the structure equations of M are given by 

dω 

A = −ω 

A 
B ω 

B , ω 

A 
B + ω 

B 
A = 0 , 

ω 

i 
j + ω 

j 
i = 0 , ω 

i 
j = ω 

i ∗
j ∗ , ω 

i ∗
j = ω 

j ∗
i , 

ω 

α
β + ω 

β
α = 0 , ω 

α
β = ω 

α∗
β∗ , ω 

α∗
β = ω 

β∗
α , (2.5)

ω 

i 
α + ω 

α
i = 0 , ω 

i 
α = ω 

i ∗
α∗ , ω 

i ∗
α = ω 

α∗
i , 

dω 

A 
B = −ω 

A 
C ω 

C 
B + φA 

B , φA 
B = 

1 
2 

K 

A 
BCD 

ω 

C ∧ ω 

D (2.6)

Restricting these forms to M , we have 

ω 

a = 0 , (2.7)

dω 

i = −ω 

i 
k ∧ ω 

k , (2.8)

dω 

i 
j = −ω 

i 
k ∧ ω 

k 
j + 	i 

j , 	i 
j = 

1 
2 

R 

i 
jkl ω 

k ∧ ω 

l (2.9)

Since 0 = dω 

a = −ω 

a 
i ∧ ω 

i , by Cartan’s lemma we have 

ω 

a 
i = h a i j ω 

j , h a i j = h a ji (2.10)

We see that g(A a e i , e j ) = h a i j . The Gauss-equation is given by 

R 

i 
jkl = K 

i 
jkl + 

∑ 

a 

(h a ik h 
a 
jl − h a il h 

a 
jk ) (2.11)

Moreover we have 

dω 

a 
b = −ω 

a 
c ∧ ω 

c 
b + 	a 

b , 	a 
b = 

1 
2 

R 

a 
bkl ω 

k ∧ ω 

l (2.12)

and the Ricci-equation is given by 

R 

a 
bkl = K 

a 
bkl + 

∑ 

i 

(h a ik h 
b 
il − h a il h 

b 
ik ) (2.13)

From (2.5) and (2.10) we have 

h i 
∗
jk = h j 

∗
ik = h k 

∗
i j (2.14)

We define the covariant derivative h a i jk of h a i j by setting 
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a 
i jk ω 

k = dh a i j − h a il ω 

l 
j − h a l j ω 

l 
i + h b i j ω 

a 
b . (2.15) 

he Laplacian 
h a i j of h a i j is defined as 

h a i j = 

∑ 

k 

h a i jkk (2.16) 

here we have put h a i jkl ω 

l = dh a i jk − h a l jk ω 

l 
i − h a ilk ω 

l 
j − h a i jl ω 

l 
k +

 

b 
i jk ω 

a 
b . The forms (ω 

i 
j ) define the Riemannian connection of M

nd the forms (ω 

a 
b ) . If a Riemannian manifold M is of constant

urvaturbare k , then we have 

 

i 
jkl = k (δik δ jl − δil δ jk ) . (2.17) 

e call such a manifold a real space form and denote it by
(k ) . 
Now, let us suppose that M be a totally real n -dimensional

ubmanifold of a Kaehlerian product manifold M . We denote 
y T x (M) the tangent space of M at x ∈ M and by T x (M) ⊥ 

he normal space of M at x ∈ M. Then we see that JT x (M) ⊂
 x (M) ⊥ . We can decompose T x (M) ⊥ in the following way: 

 x (M) ⊥ = JT x (M) � N x (M) 

here N x (M) is an orthogonal complement of JT x (M) in 

 x (M) ⊥ . If N ∈ N x (M) , we obtain JN ∈ N x (M) . If N is a vec-
or field in the normal bundle T (M) ⊥ , we put 

N = PN + f N (2.18) 

here PN and fN are the tangential and normal part of JN .
hen P is a tangent bundle valued 1-form on the normal bundle
nd f is an endomorphism of the normal bundle. Putting N =
X and applying J in (2.18) , we find [7,9] : 

f N = 0 , f 2 N = −N − JPN , PJX = −X , f JX = 0 

(2.19) 

here X is a tangent vector field to M and N is a vector field in
he normal bundle. Eq. (2.19) imply that 

f 3 + f = 0 . 

herefore, f being of constant rank, if f does not vanish, then
t defines an f -structure in the normal bundle [11] . From (2.18) ,
sing the Gauss–Weingarten formulas, we have 

JA N X + f D X N = B(X , PN ) + D X ( f N ) (2.20) 

rom which 

D X f ) N = −B(X , PN ) − JA N X . (2.21) 

e say that if D X f = 0 for any tangent vector field X , then the
 -structure in the normal bundle is parallel. 

emma 2.1. Let M be a totally real n-dimensional submanifold 
f a Kaehlerian product manifold M . If the f-structure in the 
ormal bundle is parallel, then we have 

 N = 0 f or N ∈ N x (M) . (2.22) 

roof. If N ∈ N x (M) , then we have PN = 0 . Thus, by the as-
umption and (2.21) we have (2.22) . �
emark. We can define a frame e 1 ∗ , . . . , e n ∗ for JT x (M) and a
rame e n +1 , . . . , e n + P , e (n +1) ∗ , . . . , e (n + p) ∗ for N x (M) . Therefore if
he f -structure in the normal bundle is parallel, then we have 

 λ = 0 , i . e ., h λi j = 0 . (2.23) 

. Integral formulas 

et M be a totally real submanifold of real dimension n of
aehlerian product manifold M (c ) of complex dimension n + p

nd of constant holomorphic sectional curvature c . We prove 
he following lemma for later use. 

emma 3.1. Let M be a totally real submanifold of Kaehlerian
roduct manifold M (c ) = M 1 

n 
(c 1 ) × M 2 

p 
(c 2 ) . Then, we have 

 

a,i, j 

h a i j 
h a i j = 

∑ 

a,i, j,k 

h a i j h 
a 
kki j 

 

1 
16 

(c 1 + c 2 ) 
∑ 

a 

[ { n + 9 + 15 ( T rF J ) 2 + 6 ( T rF ) 2 } T rA 

2 
a 

(3 + ( T rF ) 2 + ( T rF J ) 2 ) ( T rA a ) 
2 ] 

 

1 
16 

(c 1 − c 2 ) 
∑ 

a 

[(n + 1)( T rF ) T rA 

2 
a − 2( T rF ) ( T rA a ) 

2 ] 

 

1 
16 

(c 1 + c 2 ) 
∑ 

t 

[(4 ( T rF ) 2 − 2) T rA 

2 
t − (1 + ( T rF ) 2 ) ( T rA t ) 

2 ]

 

1 
16 

(c 1 − c 2 ) 
∑ 

t 

[2( T rF )( T rA 

2 
t ) − 2( T rF ) ( T rA t ) 

2 ] 

 

1 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h a ii h 
b 
kk 

7 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h b ji h 
a 
i j 

 

∑ 

a,b 

{ T r (A a A b − A b A a ) 
2 − [ T r (A a A b )] 

2 − T rA b T r (A a A b A a ) } 

(3.1)

here we have put A t = A t ∗ . 

roof. By a straightforward computation, we have [12] 

 

a,i, j 

h a i j 
h a i j = 

∑ 

a,i, j,k 

(h a i j h 
a 
kki j − K 

a 
i jb h 

a 
i j h 

b 
kk + 4 K 

a 
bki h 

b 
jk h 

a 
i j − K 

a 
kbk h 

a 
i j h 

b 
i j

+ 2 K 

l 
kik h 

a 
l j h 

a 
i j + 2 K 

l 
i jk h 

a 
lk h 

a 
i j ) 

−
∑ 

a,b,i, j,k,l 

[
(h a ik h 

b 
jk − h a jk h 

b 
ik )(h 

a 
il h 

b 
jl − h a jl h 

b 
il ) 

+ h a i j h 
a 
kl h 

b 
i j h 

b 
kl − h a ji h 

a 
ki h 

b 
k j h 

b 
l l 

]
. 

hen in light of above equation, using (2.1) we have our asser-
ion. �

Now, we use Lemma 2.1 and Eq. (3.1) to obtain the follow-
ng result. 

emma 3.2. Let M be a totally real submanifold of Kaehlerian
roduct manifold M (c ) = M 1 

n (c 1 ) × M 2 
p (c 2 ) . If the f-structure

n the normal bundle is parallel, then we have 
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∑ 

a,i, j 

h a i j 
h a i j = 

∑ 

a,i, j,k 

h a i j h 
a 
kki j 

+ 

1 
16 

(c 1 + c 2 ) 
∑ 

t 

[ { n + 7 + 15 ( T rJF ) 2 + 10 ( T rF ) 2 } T rA 

2 
t 

− { 4 + 2 ( T rF ) 2 + ( T rF J ) 2 } ( T rA t ) 
2 ] 

+ 

1 
16 

(c 1 − c 2 ) 
∑ 

t 

[(n + 3)( T rF ) T rA 

2 
t − 4( T rF ) ( T rA t ) 

2 ] 

+ 

1 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h a ii h 
b 
kk 

− 7 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h b ji h 
a 
i j 

+ 

∑ 

t,s 

{ T r (A t A s − A s A t ) 
2 

− [ T r (A t A s )] 
2 + T rA s T r (A t A s A t ) } (3.2)

We require the following lemma [12] . 

Lemma 3.3. Let A and B be symmetric (n, n ) -matrices. Then 

−T r ( AB − BA ) 2 � 2 T rA 

2 T rB 

2 

and the equality holds for non-zero matrices A and B if and only
if A and B can be transformed by an orthogonal matrix simulta-
neously into scalar multiples of A and B respectively, where 

Moreover, if A 1 , A 2 , A 3 are three symmetric (n, n ) -matrices such
that 

−T r (A a A b − A b A a ) 
2 = 2 T rA 

2 
a T rB 

2 
b , 1 � a, b � 3 , a � = b 

then at least one of the matrices A a must be zero. 

We next put S ab = 

∑ 

i, j h 
a 
i j h 

b 
i j = T rA a A b , S a = S aa , S =∑ 

a S a , so that S ab is a symmetric (n, n ) -matrix and can be as-
sumed to be diagonal for a suitable frame. S is the square of the
length of the second fundamental form. When the f -structure
in the normal bundle is parallel, using these notations, we can
rewrite (3.2) in the following form: 

∑ 

a,i, j 

h a i j 
h a i j = 

∑ 

a,i, j,k 

h a i j h 
a 
kki j + 

1 
16 

(c 1 + c 2 )[ n + 7 + 15 ( T rJF ) 2 

+ 10 ( T rF ) 2 ] S + 

1 
16 

(c 1 − c 2 )(n + 3)( T rF ) S 

−
∑ 

t 

S 

2 
t + 

∑ 

t,s 

{ T r (A t A s − A s A t ) 
2 

− 1 
16 

(c 1 + c 2 ) 
∑ 

t 

[4 + 2 ( T rF ) 2 + ( T rF J ) 2 ] ( T rA t ) 
2 

− 1 
16 

(c 1 − c 2 ) 
∑ 

t 

4( T rF ) ( T rA t ) 
2 + 

∑ 

t,s 

T rA s T r (A t A s A t ) 

+ 

1 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h a ii h 
b 
kk 

− 7 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h b ji h 
a 
i j (3.3)
Now, we prove the following theorem. 

Theorem 3.4. Let M be a compact orientable totally real sub-
manifold of Kaehlerian product manifold M (c ) = M 1 

n (c 1 ) ×
M 2 

p (c 2 ) . If the f-structure in the normal bundle is parallel, then
we have 

∫ 
M 

[ 

W −
∑ 

a 

( T rA a )
( T rA a ) 

] 

∗ 1 � 

∫ 
M 

∑ 

a,i, j,k 

(h a i jk ) 
2 ∗ 1 

� 0 (3.4)

where 

 = 

(
2 − 1 

n 

)
S 

2 − 1 
16 

(c 1 + c 2 )[ n + 7 

+ 15 ( T rJF ) 2 + 10 ( T rF ) 2 ] S − 1 
16 

(c 1 − c 2 )(n + 3)( T rF ) S

+ 

1 
16 

(c 1 + c 2 ) 
∑ 

t 

[4 + 2 ( T rF ) 2 + ( T rF J ) 2 ] 
∑ 

t 

( T rA t ) 
2 

+ 

1 
16 

(c 1 − c 2 ) 
∑ 

t 

4( T rF ) ( T rA t ) 
2 −

∑ 

t 

T rA s T r (A t A s A t )

− 1 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h a ii h 
b 
kk 

+ 

7 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h b ji h 
a 
i j . 

Proof. Taking into account Lemma 3.3 , we have 

−
∑ 

t,s 

T r (A t A s − A s A t ) 
2 + 

∑ 

t 

S 

2 
t 

−W 1 S − W 2 S � 2 
∑ 

t � = s 
S t S s + 

∑ 

t 

S 

2 
t − W 1 S − W 2 S 

= 

[(
2 − 1 

n 

)
S − W 1 − W 2 

]
S − 1 

n 

∑ 

t>s 

(S t − S s ) 
2 (3.5)

where W 1 = 

1 
16 (c 1 + c 2 )[ n + 7 + 15 ( T rJF ) 2 + 10 ( T rF ) 2 ] ,

 2 = 

1 
16 (c 1 − c 2 )(n + 3)( T rF ) . In view of (3.3) and (3.5) , we

have 

−
∑ 

a,i, j 

h a i j 
h a i j � W −
∑ 

a,i, j,k 

h a i j h 
a 
kki j (3.6)

where 

 = 

[(
2 − 1 

n 

)
S − W 1 − W 2 

]
S + 

1 
16 

(c 1 + c 2 ) 
∑ 

t 

[4 + 2 ( T rF ) 2 

+ ( T rF J ) 2 ] 
∑ 

t 

( T rA t ) 
2 + 

1 
16 

(c 1 − c 2 ) 
∑ 

t 

4( T rF ) ( T rA t ) 
2

−
∑ 

t 

T rA s T r (A t A s A t ) 

− 1 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h a ii h 
b 
kk 

+ 

7 
16 

(c 1 − c 2 ) 
∑ 

( T rJF ) g( Je b , e a ) h b ji h 
a 
i j . 

Let us assume that M is compact and orientable, then we
have the following integral formulas [6] : ∫ 

M 

∑ 

a,i, j,k 

(h a i jk ) 
2 ∗ 1 = −

∫ 
M 

h a i j 
h a i j ∗ 1 , 
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∫ ∫ 

U
E

T
i
f∫

 

 

C
i
p  

p

S

t

A

I
e

I
t  

t
t

R

 

 

 

 

 

 

 

 

[  

[

[  
M 

∑ 

a,i, j,k 

h a i j h 
a 
kki j ∗ 1 = 

M 

∑ 

a 

( T rA a )
( T rA a ) ∗ 1 . 

sing inequality (3.6) and above integral formulas we have 
q. (3.4) and this completes the proof of the Theorem. �

heorem 3.5. Let M be a compact orientable totally real min- 
mal submanifold of Kaehlerian product manifold M (c ) . If the 
-structure in the normal bundle is parallel, then we have 
 

M 

[(
2 − 1 

n 

)
S − 1 

16 
(c 1 + c 2 ) { n + 7 + 15 ( T rJF ) 2 + 10 ( T rF ) 2 }

− 1 
16 

(c 1 − c 2 )(n + 3)( T rF ) 
]

S ∗ 1 
∫ 

M 

∑ 

a,i, j,k 

(h a i jk ) 
2 ∗ 1 

� 0 (3.7)

We finish this section by stating the following corollary. 

orollary 3.6. Let M be a compact orientable totally real min- 
mal submanifold of Kaehlerian product manifold M (c ) of com- 
lex dimension n + p . If the f-structure in the normal bundle is
arallel and if 

 < 

1 
16 

n 
(2 n − 1) 

(c 1 + c 2 ) 
{
n + 7 + 15 ( T rJF ) 2 + 10 ( T rF ) 2 

}
+ 

1 
16 

n 
(2 n − 1) 

(c 1 − c 2 )(n + 3)( T rF ) , 

hen M is totally geodesic. 
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