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. Introduction 

nformation geometry (Geometry and Nature) has emerged 

rom the study of invariant properties of the manifold of proba- 
ility distributions. It is regarded as mathematical sciences hav- 

ng vast developing areas of applications as well as giving new 

rends in geometrical and topological methods. Information ge- 
metry has many applications which are treated in many dif- 
erent branches, for instance, statistical inference, linear and 

onlinear systems, time series, neural networks, linear program- 
ng, convex analysis, completely integrable dynamical systems, 
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uantum information geometry and geometric modeling [1] . A 

lassical and intuitive way of describing the relationship be- 
ween the differential geometry and the statistics is introduced, 
ee, for instance [2–7] , but in a slightly modified manner. 

Pareto distribution is named after an Italian-born Swiss 
rofessor of economics, Vilfredo Pareto (1848–1923). Pareto 

8] originally used this distribution to describe the allocation of 
ealth among individuals since it seemed to show rather well 

he way that a large portion of wealth of any society is owned
y a smaller percentage of the people in that society [8,9] . Pareto
istribution plays an important role in socio-economic studies. 
t is often used as a model for analyzing areas including city
opulation distribution, stock price fluctuations and oil field 

ocation. In addition, it has found applications in the military 
rea. It has been found to be suitable for approximating the
ight tail of distribution with positive skewness [10] . 

Bivariate Pareto distributions are popular models in many 
pplied areas. They are very versatile and a variety of uncertain-
ies can be usefully modeled by them. We mention: modeling of
adiation carcinogenesis, performance measures for general sys- 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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tems, reliability, modeling of drought, modeling of dependent
heavy tailed risks with a non-zero probability of simultaneous
loss and modeling of daily exchange rate data [11] . 

Creation of parallel surfaces is useful in design and manu-
facture. Enhancing or reducing the size of free-form surfaces re-
quires calculation of curvature and other properties of a new
surface, which is parallel to the original surface. In the Rie-
mannian framework, several authors studied parallel and semi-
parallel submanifolds, and a good survey can be found in [12] . 

In the differential geometry of surfaces, a Darboux frame
is a natural moving frame constructed on a surface. It is the
analog of the Frenet–Serret frame as applied to surface geome-
try. A geodesic curve is intrinsic to the geometric characteriza-
tion of surfaces. Geodesics are used in many fields, for example,
they are used in object segmentation, multi-scale image analysis,
computer vision and image processing [13] . 

Abdel-All et al. [14] defined the parameter space of one-
dimensional Pareto distribution of the first kind using its
Fisher’s matrix. They calculated the Riemannian and scalar cur-
vatures to the parameter space. The differential equations of
the geodesics are obtained and solved. The J-divergence, the
geodesic distance and the relations between them are found. A
development of the relation between the J-divergence and the
geodesic distance is illustrated. The scalar curvature of the J-
space is represented. 

Many different forms of bivariate Pareto distributions have
been constructed in the literature [15] . The main objective of
this paper is to study a bivariate Pareto distribution (two-
dimensional Pareto distribution) of the first kind that was given
by Mardia, cited in [15] , corresponding to the one-dimensional
Pareto distribution of the first kind [14] , without using its
Fisher’s matrix. 

2. Geometrical and statistical preliminaries 

Let P : M = M (u , v ) be an orientable surface and let N be a
unit normal vector field of P . We consider a surface P to be
parallel to P if there is a normal geodesic congruence between
P and P such that the distance between corresponding points is
constant, i.e. for each M ∈ P we have 

P : M (u , v ) = M (u , v ) + r N (u , v ) , (1)

where, r � = 0 is a real constant. We can say that P and P are par-
allel surfaces at distance r . If K , H and K , H denote the Gaus-
sian and mean curvatures of P and P , respectively, then we have
[16] : 

K = 

K 

�
, H = 

H + rK 

�
, � = 1 + 2 rH + r 2 K � = 0 , (2)

where, the relation between the principal curvatures (κ1 , κ2 ) and
( κ1 , κ2 ) of (P , P ) is given by 

κ1 = 

κ1 

1 + rκ1 
, κ2 = 

κ2 

1 + rκ2 
. 

Let P be a surface, and let β be a unit speed curve on P . At
each point on β, consider the following three vectors: the unit
normal vector N to the surface, the unit tangent vector t to the
curve and the tangent normal vector E = N ∧ t . This vector is
tangent to the surface P , but normal to the curve β. These vec-
tors { t ; E ; N } form a right-handed frame, known as the Darboux
frame for β on P . Darboux equations for this frame are given
by [16,17] 

d 
ds 

⎛ 

⎜ ⎜ ⎝ 

t 

E 

N 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎝ 

0 κg κn 

−κg 0 τg 

−κn −τg 0 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎝ 

t 

E 

N 

⎞ 

⎟ ⎟ ⎠ 

, (3)

where κg is the geodesic curvature, κn is the normal curvature
and τg is the geodesic torsion of β. Thus, we can write κg , κn and
τg in the form 

κg = 

(
β′ , N , β′′ ), κn = 

(
β′′ , N 

)
, τg = 

(
β′ , N , N 

′ ), (4)

and if β is not parameterized by arc length, the above relations
take the forms 

κg = 

1 

| β′ | 3 
(
β′ , N , β′′ ), κn = 

1 

| β′ | 2 
(
β′′ , N 

)
, τg = 

1 
| β′ | 

(
β′ , N , N 

′ ). (5)

The bivariate distribution with joint density function for α > 0 

f X , Y ( x , y ; γ , σ , α) 

= α(α + 1) (γ σ ) α+1 λ−(α+2) , x ≥ γ > 0 , y ≥ σ > 0 , (6)

where, λ = σx + γ y − γ σ may be called a bivariate Pareto dis-
tribution of the first kind [15] , since the marginal distributions
have density functions 

f X i ( x i ; θi , α) = α θα
i x 

−(α+1) 
i , x i ≥ θi > 0 , i = 1 , 2 , (7)

where, X 1 = X , X 2 = Y , x 1 = x , x 2 = y , θ1 = γ , θ2 = σ . 
It can be seen that, for α > 1 , α > 2 , 

E ( X i ) = 

α

α − 1 
θi , E ( X 1 X 2 ) = 

(
α2 − α − 1 

)
( α − 1 ) ( α − 2 ) 

θ1 θ2 , 

ar ( X i ) = 

α

( α − 1 ) 2 ( α − 2 ) 
θ 2 

i . (8)

The conditional density function of Y , given X = x , is 

f Y | X ( y | x ) = (α + 1) γ (σx ) α+1 λ−(α+2) , y ≥ σ > 0 , γ > 0 , α > 0 . (9)

The conditional density function of X , given Y = y , is 

f X | Y ( x | y ) 
= (α + 1) σ (γ y ) α+1 λ−(α+2) , x ≥ γ > 0 , σ > 0 , α > 0 . (10)

Therefore, for α > 1 , we also find 

E ( Y | X = x ) = σ

(
1 + 

x 

γα

)
, 

ar ( Y | X = x ) = 

(
σ

γ

)2 
( α + 1 ) x 

2 

α2 ( α − 1 ) 
, (11)

E ( X | Y = y ) = γ
(

1 + 

y 
σα

)
, 

ar ( X | Y = y ) = 

(γ

σ

)2 ( α + 1 ) y 2 

α2 ( α − 1 ) 
. (12)

Using (8) , we find 

ov (X , Y ) = E ( X Y ) − E (X ) E (Y ) 

= 

γ σ

( α − 1 ) 2 ( α − 2 ) 
, α � = 1 , α � = 2 , (13)

and consequently, the correlation between X and Y , denoted by
R ≡ Cor (X , Y ) , is given from 
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 ≡ Cor (X , Y ) = 

Cov (X , Y ) √ 

Var (X ) 
√ 

Var (Y ) 

= 

1 
α

, α > 0 , α � = 1 , α � = 2 . (14) 

his shows that X and Y are positively correlated. 

. Geometry of parallel bivariate Pareto distribution surfaces 

he bivariate Pareto density given in (6) is represented by an ex- 
licit form (Mong formula), i.e. z = f (x , y ) as a 2-dimensional
urface in Euclidean 3-space [16,17] . Thus, we consider x = 

 , y = v and the equation of the bivariate Pareto distribution
urface in parametric form is given by 

 : M (u , v ) = { u , v , α(α + 1) (γ σ ) α+1 λ−(α+2) } , (15) 

here, λ(u , v ) = σu + γ v − γ σ � = 0 . 
Thus, the metric on the surface P is given by 

(u , v ) = 1 + (γ σ ) 2(α+1) 
(
γ 2 + σ 2 

)
λ−2(α+3) 

2 ∏ 

i=0 

( α + i ) 2 , λ � = 0 , (16) 

here, g = det (g i j ) , g i j are the 1-st fundamental quantities of the
urface P and are given by 

 11 = 1 + 
σ 2 , g 22 = 1 + 
γ 2 , g 12 = 
σγ and 


= (γ σ ) 2(α+1) λ−2(α+3) 

2 ∏ 

i=0 

( α + i ) 2 . 

The unit normal vector field of the surface P is given by 

 = 

1 √ 

g 
{ σφ, γφ, 1 } , (17) 

here, φ = α(γ σ ) 1+ α(2 + 3 α + α2 ) λ−(α+3) , λ � = 0 . 
Thus, one can get the Gaussian curvature function K of P is

qual to zero and consequently, from the relation (2) , the Gaus-
ian curvature function K of its parallel surface P is equal to 

ero also. Therefore, we have the following: 

orollary 1. The points on bivariate Pareto distribution surface 
 and their images on P are parabolic points. Consequently, the 
arabolic points on bivariate Pareto distribution surface P and 
heir images on P , are in one to one correspondence. 

Hence, and using (2) one can obtain the following: 

orollary 2. The mean curvature functions of parallel bivariate 
areto distribution surface P and its original surface P are given, 
espectively, by 

 = 

H 

1 + 2 rH 

, H � = − 1 
2 r 

, (18) 

nd 

 (u , v ) = − 1 

2 g 
3 
2 

{ (γ σ ) α+1 λ−(α+10) 

3 ∏ 

i=0 

( α + i ) [2 ( γ σ ) 2(α+2) 

2 ∏ 

i=0 

× ( α + i ) 2 + σ 2 λ2(α+3) (1 + γ 2 η) 

+ γ 2 λ2(α+3) (1 + σ 2 η)] } , g � = 0 , (19) 

here, η(u , v ) = (γ σ ) 2(α+1) λ−2(α+3) 
∏ 2 

i=0 (α + i) 2 , λ � = 0 . 

From the above two corollaries and using (2) , one can com-
ute the principal curvatures (κ1 , κ2 ) and ( κ1 , κ2 ) of (P , P ) as the

ollowing: 

( )

κ1 , κ2 ) = ( 2 H , 0 ) and ( κ1 , κ2 ) = 2 H , 0 . ϕ
.1. Curvatures of the curves lying on P and P 

ere, the geodesic, normal curvatures and geodesic torsion on 

 and P surfaces in terms of the parameters of P are obtained.
he rest of this subsection is an attempt to find the necessary
nd sufficient conditions for curves on the surfaces P and P to
e geodesic, asymptotic lines and lines of curvature. For this 
urpose we recall the following definitions [16,17] : 

1) β is a geodesic curve if the geodesic curvature κg vanishes 
identically. 

2) β is an asymptotic line if the normal curvature κn vanishes 
identically. 

3) β is a line of curvature if the geodesic torsion τg vanishes 
identically. 

Making use of the bivariate Pareto distribution surface P , 
iven from (15) , let the curve β(u (v )) lying on P . Therefore, we
onsider for simplicity, u = v . Taking (5) into account and con-
idering that | β′ | � = 0 , ϕ 1 � = 0 and μ � = 0 , one can get the fol-
owing: 

orollary 3. The geodesic curvature, normal curvature and 
eodesic torsion of β on P are given from 

 g = − ( γ − σ ) 

| β′ | 3 ϕ 

1 
2 

1 (v ) 

×
[ 

(γ σ ) 2(α+1) ( γ + σ ) 2 α2 μ−(2 α+7) 

3 ∏ 

i=1 

( α + i ) 

] 

, (20) 

 n = 

1 

| β′ | 2 ϕ 

1 
2 

1 (v ) 

[ 

(γ σ ) ( α+1 ) ( γ + σ ) 2 μ−(α+4) 

3 ∏ 

i=0 

( α + i ) 

] 

, (21) 

g = − ( γ − σ ) 

2 | β′ | ϕ 

2 
1 (v ) 

[ 

(γ σ ) (α+1) (γ + σ ) μ(α+2) 

3 ∏ 

i=0 

( α + i ) 

] 

, (22) 

espectively, where | β′ | , ϕ 1 (v ) and μ(v ) are given from 

β′ ∣∣ = 

√ 

1 + ϕ 1 (v ) , ϕ 1 (v ) 

= 1 + (γ σ ) 2 α+2 (γ 2 + σ 2 
)
μ−2(α+3) 

2 ∏ 

i=0 

( α + i ) 2 , 

μ(v ) = σv + γ v − γ σ . (23) 

Making use of the parallel bivariate Pareto distribution sur- 
aces (P , P ) , given from (1) and (15) , let the curve β(u (v )) ly-
ng on P be the image, in parallel correspondence, of the curve
(u (v )) lying on P . Therefore, for simplicity, we consider u = v .
hen, the relation between β(v ) and β(v ) can be expressed in

he following way: 

(v ) = β(v ) + r N (v ) , (24) 

here, β(v ) , β(v ) and N (v ) are given from (1), (15) and (17) , re-
pectively. 

Thus, using (5) and taking into account that | β′ | � = 0 and
 1 � = 0 , one can get the following: 
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Corollary 4. The image of geodesic curvature, normal curvature
and geodesic torsion of β on P are given from 

κg = − ( γ − σ ) ∣∣∣β′ ∣∣∣3 
ϕ 

1 
2 

1 (v ) 
�1 ( v ; γ , σ , α) , (25)

κn = 

(γ σ ) ααμ2 ∣∣∣β′ ∣∣∣2 
ϕ 

1 
2 

1 (v ) 
�2 ( v ; γ , σ , α) , (26)

τ g = − ( γ − σ ) 

2 
∣∣∣β′ ∣∣∣ϕ 

2 
1 (v ) 

�3 ( v ; γ , σ , α) , (27)

respectively, and | β′ | is given from 

∣∣∣β′ 
(v ) 

∣∣∣

= 

√ √ √ √ √ √ √ √ 

(γ σ ) 2(1+ α) (γ + σ ) 2 α2 μ−(4 α+14) 

{
−(α + 1)(α + 2) μ(α+4) − λ1 

λ2 

}2 

+ 

{
γ λ3 

λ2 
+ 

γ λ4 √ 

λ2 
− 1 

}2 

+ 

{
σλ3 

λ2 
+ 

σλ4 √ 

λ2 
− 1 

}2 

, 
(28)

where, λ1 , λ2 , λ3 and λ4 are given from 

λ1 = −(γ σ ) α+1 (γ 2 + σ 2 ) α( α + 3 ) λ2 r , 

λ2 = 1 + (γ σ ) 2 ( α+1 ) α2 λ2 μ−2(α+3) 
(
γ 2 + σ 2 μ−(α+3) 

)
r , 

λ3 = −(γ σ ) 3(α+1) (γ + σ )(γ 2 + σ 2 ) α3 ( α + 3 ) λ3 μ−2(3 α+10) r , 

λ4 = (γ σ ) (α+1) (γ + σ ) α( α + 3 ) λμ−(α+4) r , 

respectively, and since the values of polynomials functions �1 , �2 

and �3 of different degrees in the variable v and the parameters
γ , σ and α , are so long, they have been omitted. 

According to the above results one can see that, the normal
curvature and its image of (β, β) on (P , P ) do not vanish. Thus,
we have the following : 

Corollary 5. There are no asymptotic lines on the bivariate
Pareto distribution surface and its parallel. 

In view of (20), (22), (25) and (27) we reach the important
theorem. 

Theorem 1. The curves (β, β) on the parallel bivariate Pareto
distribution surfaces (P , P ) are geodesic curves and lines of curva-
tures if and only if the following condition is satisfied: 

γ = σ . (29)

In other words, the curves (β, β) have a dual property for the
geodesics and lines of curvatures. 

3.2. Curvatures of the parametric curves lying on P and P 

Here, we want to shed light on the geodesic curves and asymp-
totic lines and lines of curvatures of the u /v -parametric curves
(v = v 0 ) / (u = u 0 ) , respectively on (P , P ) . 

By a manner similar to the previous sub Section 3.1 . for the
parallel bivariate Pareto distribution surface (P , P ) , given from
(1) and (15) , let the curve ξ1 (u , v 0 ) and its image ξ1 (u , v 0 ) lying on
(P , P ) , respectively. Thus, the relation between ξ1 and ξ1 takes
the form 

ξ1 (u , v 0 ) = ξ1 (u , v 0 ) + r N (u , v 0 ) , (30)
where, ξ1 (u , v 0 ) , ξ(u , v 0 ) and N (u , v 0 ) are given from (1), (15) and
(17) , respectively. Thus, using (5) and for | ξ′ 

1 | � = 0 and ϕ 2 � = 0 ,
one can get the following: 

Corollary 6. The geodesic curvature, normal curvature and
geodesic torsion of the u-parametric curves (v = v 0 ) of ξ1 on P
are given from 

(
κg 

)
v = v 0 = − 1 ∣∣ξ′ 

1 

∣∣3 
ϕ 

1 
2 

2 (u ) 

[ 
σ (γ σ ) (2 α+3) ( α + 3 ) ω 

−(5 α+7) 

1 

2 ∏ 

i=0 

( α + i ) 2 
] 

, (31)

( κn ) v = v 0 = 

1 ∣∣ξ′ 
1 

∣∣2 
ϕ 

1 
2 

2 (u ) 

[ 
σ 2 (γ σ ) (α+1) ω 

−(5 α+4) 

1 

3 ∏ 

i=0 

( α + i ) 

] 
, (32)

(
τg 

)
v = v 0 = − 1 

2 
∣∣ξ′ 

1 

∣∣ϕ 2 2 (u ) 

[ 
(γ σ ) (α+2) ω 

(α+2) 

1 

3 ∏ 

i=0 

( α + i ) 

] 
, (33)

respectively, where | ξ′ 
1 | , ϕ 2 and ω 1 are given from 

∣∣ξ′ 
1 

∣∣ = 

√ √ √ √ 1 + 

{ 
σ 2 (γ σ ) 2(α+1) ω 

−2(α+3) 

1 

} 2 ∏ 

i=0 

( α + i ) 2 , 

ϕ 2 (u ) = 1 + (γ σ ) 2(α+1) 
(
γ 2 + σ 2 )ω 

−2(α+3) 

1 

2 ∏ 

i=0 

( α + i ) 2 , 

ω 1 (u ) = σu + γ v 0 − γ σ . 

Thus, we have (τg ) v = v 0 = 0 ⇔ ω 1 = 0 , and this implies 

u = 

γ ( σ − v 0 ) 
σ

, σ � v 0 , γ , σ � 0 . (34)

Alternatively, one could use Eq. (30) approach by letting the
curve ξ2 (u 0 , v ) and its parallel image ξ2 (u 0 , v ) lying on (P , P ) , re-
spectively. Thus, the relation between ξ2 and ξ2 takes the form 

ξ2 (u 0 , v ) = ξ2 (u 0 , v ) + r N (u 0 , v ) , (35)

where, ξ2 (u 0 , v ) , ξ2 (u 0 , v ) and N (u 0 , v ) are given from (1), (15) and
(17) , respectively. Thus, using (5) and for | ξ′ 

2 | � = 0 and ϕ 3 � = 0 ,
we obtain the following: 

Corollary 7. The geodesic curvature, normal curvature and the
geodesic torsion of the v -parametric curves (u = u 0 ) of ξ2 on P
are given from 

(
κg 

)
u = u 0 = − 1 ∣∣ξ′ 

2 

∣∣3 
ϕ 

1 
2 

3 (v ) 

[ 
γ (γ σ ) (2 α+3) ( α + 3 ) ω 

−(5 α+7) 

2 

2 ∏ 

i=0 

( α + i ) 2 
] 

, (36)

( κn ) u = u 0 = 

1 ∣∣ξ′ 
2 

∣∣2 
ϕ 

1 
2 

3 (v ) 

[ 
γ 2 (γ σ ) (α+1) ω 

−(5 α+4) 

2 

3 ∏ 

i=0 

( α + i ) 

] 
, (37)

(
τg 

)
u = u 0 = − 1 

2 
∣∣ξ′ 

2 

∣∣ϕ 2 3 (v ) 

[ 
(γ σ ) (α+2) ω 

(α+2) 

2 

3 ∏ 

i=0 

( α + i ) 

] 
, (38)

respectively, where, | ξ′ 
2 | , ϕ 3 and ω 2 are given from 

∣∣ξ′ 
2 

∣∣ = 

√ √ √ √ 1 + 

{ 
γ 2 (γ σ ) 2(α+1) ω 

−2(α+3) 

2 

} 2 ∏ 

i=0 

( α + i ) 2 , 

ϕ 3 (v ) = 1 + (γ σ ) 2(α+1) 
(
γ 2 + σ 2 )ω 

−2(α+3) 

2 

2 ∏ 

i=0 

( α + i ) 2 , 

ω 2 (v ) = σu 0 + γ v − γ σ . 
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hus, we have (τg ) u = u 0 = 0 → ω 2 = 0 , and this implies 

 = 

σ ( γ − u 0 ) 
γ

, γ � u 0 , γ , σ � 0 . (39) 

fter long straight-forward computations analogous to (25)–
27) , we get the parallel images of the curvatures given in Eqs.
31)–(33), (36), (37) and (38) . According to the above results 
ne can see that the geodesic curvatures and normal curva- 
ures of (ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) are undefined for the values
ω 1 (u ) , ω 2 (v )) = (0 , 0) . Thus, we have: 

orollary 8. The u /v -parametric curves (v = v 0 ) / (u = u 0 ) of
ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) cannot be geodesic curves and asymp-
otic lines on (P , P ) . 

In view of (33), (34), (38) and (39) we find that the geodesic
orsions are defined for the values (ω 1 (u ) , ω 2 (v )) = (0 , 0) , i.e.
he geodesic torsions are defined at the points (v 0 , 

γ (σ−v 0 ) 
σ

) and 

u 0 , 
σ (γ−u 0 ) 

γ
) . Hence we reach the following corollary: 

orollary 9. The u /v -parametric curves (v = v 0 ) / (u = u 0 ) of
ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) are not lines of curvatures on (P , P ) . 

The curves (β, β) , (ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) are shown in
ig. 1 . 

. Geometrical and statistical interpretations of some results 

his section is considered the most important section, where the 
ffect of some geometrical results on moments of P is illustrated. 

oreover, the effect of the weak, moderate and strong positive 
inear relationships between two variables on some curvatures 
f/on P is shown. 

.1. Effect of some geometrical results on moments 

emark 1. [18] . Taking (7) into account, one can easily verify,
he standard form of (6) (γ = σ = 1) , like its univariate version,
s characterized by form invariance in the context of size biased 

ampling. 

Combining the above statistical remark and the geometrical 
ondition (29) , we have the following: 
Fig. 1 The curves (β, β) , (ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) . 
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orollary 10. At the geodesic curves and lines of curvatures on
he bivariate Pareto distribution surface P and its parallel P , the
ean curvature functions of P and its original P are given by

18) and 

 (v ) | γ= σ=1 = − 1 

2 g 
3 
2 (v ) 

[ 

2 μ2(α+3) (1 + η) + μ−(α+10) 

3 ∏ 

i=0 

( α + i ) 

[ 

2 
2 ∏ 

i=0 

( α + i ) 2 
] ] 

, (40) 

espectively, where, μ(v ) is given from (23) and 

(v ) | γ= σ=1 = 1 + 2 μ−2(α+3) 

2 ∏ 

i=0 

( α + i ) 2 , η(v ) | γ= σ=1 

= μ−2(α+3) 

2 ∏ 

i=0 

( α + i ) 2 . (41) 

orollary 11. At the geodesic curves and lines of curvatures on
he bivariate Pareto distribution surface P and its parallel P , the
oments in (8) take the following forms: 

The means and variances of the marginal distributions are 
iven from 

(X ) = E (Y ) = 

α

α − 1 
, α > 0 , α � = 1 , (42) 

ar (X ) = Var (Y ) = 

α

( α − 1 ) 2 ( α − 2 ) 
, α � = 1 , α � = 2 . (43) 

The conditional density functions in (9) and (10) are given 

y 

f Y | X ( y | x ) = (α + 1) (x ) α+1 λ−(α+2) , x > 0 , y > 0 , α > 0 , 

f X | Y ( x | y ) = (α + 1) (y ) α+1 λ−(α+2) , (44) 

hus, taking into account that α > 0 , α � = 1 and γ = σ = 1 ,
e find that there are symmetrical relations of the conditional 
eans and variances as the following: 

 ( Y | X = x ) = 

(
1 + 

x 

α

)
, Var ( Y | X = x ) = 

( α + 1 ) 
α2 ( α − 1 ) 

x 

2 , (45) 

 ( X | Y = y ) = 

(
1 + 

y 
α

)
, Var ( X | Y = y ) = 

( α + 1 ) 
α2 ( α − 1 ) 

y 2 . (46) 

sing (13) , we find 

ov (X , Y ) = 

1 

( α − 1 ) 2 ( α − 2 ) 
, α � = 1 , α � = 2 . (47) 

eometrically, we can give a geometric visualization of the re- 
ations (45) and (46) . The conditional means are represented 

inear functions and the conditional variances are represented 

arabolic curves in the plane. 

.2. The effect of the correlation R ≡ Cor (X , Y ) on some of 
eometrical results 

he ultimate goal of every research or scientific analysis is 
nding relationships between variables. The philosophy of sci- 
nce teaches us that there is no other way of representing
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“meaning” except in terms of relationships between some quan-
tities or qualities. Thus, the advancement of science must always
involve finding new relations between variables. Statistics help
us evaluate the relation between variables. Before we embark
upon studying the relationship between variables let us see the
basic definition of correlation. 

Linear correlation coefficient is a measure which determines
the strength and direction of a linear relationship between two
variables. The value of linear correlation coefficient always lies
between −1 and +1, i.e. −1 ≤ R ≤ +1 . The + and − signs are
used for positive (+) linear correlation and negative ( −) linear
correlation, respectively. 

Positive values indicate that if X values are increasing (de-
creasing) then the values of Y are also increasing (decreasing).
If X and Y have a strong positive linear correlation, R is close
to +1. When R is exactly +1 it indicates a perfect positive fit. 

Negative values indicate that if X values are increasing then
the values of Y are decreasing and vice versa. If X and Y have a
strong negative linear correlation, R is close to −1. When R is
exactly −1 it indicates a perfect negative fit. 

If there is no linear correlation, R is equal 0. Thus, the values
of the correlation coefficient show the relation between the two
variables according to the following diagram [19,20] : 

Actually, it is a remarkable fact that to calculate the corre-
lation coefficient of X and Y , we have to compute the moments
given in (8) . Hence, the correlation coefficient has an effective
role in classifying the relation between X and Y that appears in
the above diagram. That is why, here, we study the effect of the
weak, moderate and strong positive linear relationships between
two variables on the mean curvature function of (P , P ) . 

From the following diagram, using (14) and for λ � = 0 , we
have three cases. 

(i) Case α = 3 . We have a weak positive linear relationship.
Thus, we get the following: 

Corollary 12. At a weak positive linear relationship, the mean
curvature functions of P and its original P are given by (2) and 

H (u , v ) | α=3 = − 1 

g 
3 
2 

[
180 (γ σ ) 4 λ−13 

[
14400 ( γ σ ) 10 + λ12 

(
σ 2 

+ γ 2 
)]]

, (48)

respectively, where, λ is given from (15) and g(u , v ) = 1 +
3600 (γ σ ) 8 λ−12 (γ 2 + σ 2 ) . 
(ii) Case α = 1 . 5 . We have a moderate positive linear rela-
tionship. Thus, we get the following: 

Corollary 13. At a moderate positive linear relationship, the
mean curvature functions of P and its original P are given by
(2) and 

H (u , v ) | α=1 . 5 = − 1 

g 
3 
2 

[
( 29 . 53 ) (γ σ ) 2 λ−(11 . 5) [ ( 689 . 06 ) ( γ σ ) 7 

+ λ9 (σ 2 + γ 2 )] 
]
, (49)

respectively, where, g(u , v ) = 1 + (172 . 27) (γ σ ) 5 λ−9 (γ 2 + σ 2 ) . 

(iii) Case α = 1 . 3 . We have a strong positive linear relation-
ship. Thus, we get the following: 

Corollary 14. At a strong positive linear relationship, the mean
curvature functions of P and its original P are given by (2) and 

H (u , v ) | α=1 . 3 = − 1 

g 
3 
2 

[
( 21 . 21 ) (γ σ ) 2 . 3 λ−(11 . 3) [ ( 389 . 43 ) ( γ σ ) (6 . 6) 

+ λ(8 . 6) 
(
σ 2 + γ 2 

)
] 
]
, (50)

respectively, where, g(u , v ) = 1 + (97 . 36) (γ σ ) (4 . 6) λ−(8 . 6) (γ 2 +
σ 2 ) . 

Finally, we have to check the effect of the weak, moderate and
strong positive linear relationship on the geodesic curvature of β
on P. Using the above three cases of α and for | β′ | � = 0 , ϕ 1 � = 0
and μ � = 0 , we obtain the following: 

Corollary 15. At a weak positive linear relationship, the geodesic
curvature of β on P is given from 

k g | α=3 = − ( γ − σ ) 

| β′ | 3 ϕ 

1 
2 

1 (v ) 

[
1080 (γ σ ) 8 ( γ + σ ) 2 μ−13 

]
, (51)

where, | β′ | and μ(v ) are given from (23) and ϕ 1 (v ) = 1 +
(3600) (γ σ ) 8 (γ 2 + σ 2 ) μ−12 . 

Corollary 16. At a moderate positive linear relationship, the
geodesic curvature of β on P is given from 

k g | α=1 . 5 = − ( γ − σ ) 

| β′ | 3 ϕ 

1 
2 

1 (v ) 

[
(88 . 61) (γ σ ) 5 ( γ + σ ) 2 μ−10 

]
, (52)

where, ϕ 1 (v ) = 1 + (172 . 27) (γ σ ) 5 (γ 2 + σ 2 ) μ−9 . 
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Fig. 4 The mean curvature function of P at a strong positive linear 
relationship. 
orollary 17. At a strong positive linear relationship, the 
eodesic curvature of β on P is given from 

 g | α=1 . 3 = − ( γ − σ ) 

| β′ | 3 ϕ 

1 
2 

1 (v ) 

[
(55 . 16) (γ σ ) (4 . 6) ( γ + σ ) 2 μ−(9 . 6) 

]
, (53) 

here, ϕ 1 (v ) = 1 + (97 . 36) (γ σ ) (4 . 6) (γ 2 + σ 2 ) μ−(8 . 6) . 

As a similar way to Eqs. (51)–(53) one can study the effect 
f the weak, moderate and strong positive linear relationship 

n the normal curvature and the geodesic torsion of (β, β) on 

P , P ) . Also, the same study on the geodesic curvature, normal
urvature and the geodesic torsion of a u /v -parametric curves 
v = v 0 ) / (u = u 0 ) of (ξ1 , ξ1 ) and (ξ2 , ξ2 ) on (P , P ) can be done
sing the same technique as in the above equations. 

Having the above obtained results in mind, we can con- 
lude that from Eqs. (48)–(50) we obtain the relations be- 
1

2

3

4

u

5

6

7

8

v

1.5 107

1.0 107

5.0 106

0

H 3

ig. 2 The mean curvature function of P at a weak positive linear 
elationship. 

ig. 3 The mean curvature function of P at a moderate positive 
inear relationship. 
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v
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kg v 3

Fig. 5 The geodesic curvature of β on P at a weak positive linear 
relationship. 
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Fig. 6 The geodesic curvature of β on P at a moderate positive 
linear relationship. 

t
a  

p
r

ween the mean curvature functions H and the two vari- 
bles u and v of P at the week, moderate and strong
ositive linear relationships that are shown in Figs. 2–4 , 
espectively. 
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Fig. 7 The geodesic curvature of β on P at a strong positive linear 
relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Eqs. (51)–(53) we obtain the relations between the
geodesic curvature k g and the variable v on P at the week,
moderate and strong positive linear relationships that are given
through the Figs. 5–7 , respectively. 

From the Figs. 5–7 , it is easy to see that the geodesic curva-
tures are continuous ( differentiable ) functions on the intervals
[1 . 4 , 3] ((1 . 4 , 3)) , [1 . 2 , 2 . 8] ((1 . 2 , 2 . 8)) and [1 . 1 , 1 . 9] ((1 . 1 , 1 . 9)) , re-
spectively, and also have a relative maximum at the points
(2 . 1 , 0 . 034) , (1 . 8 , 0 . 072) and (1 . 7 , 0 . 085) , respectively. 

5. Conclusion 

These results show the usefulness of the present geometric
framework. The Mong formula is a geometrical concept intro-
duced in a theory of statistical manifold and has been discussed
to be useful for finding geometrical and statistical results. It
should again be noted that the new geometric results were first
introduced in a manifold of statistical models, and have already
been proved to play an essential role in the theory of statistical
manifold. The present paper aims to study invariant differential
geometric structures inherent in a bivariate Pareto distribution
manifold. We have shown that the geometrical results can be
obtained using statistical concepts, and that help in establish-
ing several dependency properties of this model. We have es-
tablished several new results of this distribution manifold. The
field is developing rapidly, and there are a lot of problems to be
solved and more work is needed to establish different results of
new distributions. 

Numerical computations of the correlation coefficient R
given in Eq. (14) for different values of the parameter α are ob-
tained. We have been able to construct some bounds for the pa-
rameter α to give the weak, moderate and strong positive linear
relationships that are given, respectively, by 2 < α ≤ 65 , 1 . 45 ≤
α < 2 and 1 < α ≤ 1 . 4 . Therefore, there are no more relation-
ships rather than the weak, moderate and strong positive linear
relationships. 
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