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1. Introduction

Stochastic Fubini theorem for double Wiener integrals was
first proved by Donati-Martin and Yor [4] and then developed
further by Yor and other researchers. See [3] and the references
therein. Subsequently, this theorem was applied to establish
some identities in law for some quadratic functionals of
Brownian motion. Among these identities in law there is one
similar to the integration by parts formula which allowed some
interesting extensions of the famous Ciesielski-Taylor identity.
A simple explanation of the Ciesielski-Taylor identity is pre-
sented in the paper [10]. In view of this, it is natural to ask if
it is possible to developed this for other processes. Because
of their generality, Lévy processes, in particular stable pro-

* Corresponding author.
E-mail address: ouknine@ucam.ac.ma (Y. Ouknine).

! This work was supported by the Academy Hassan II of Sciences
and Technology.

1110-256X © 2011 Egyptian Mathematical Society. Production and
hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

Peer review under responsibility of Egyptian Mathematical Society.
doi:10.1016/j.joems.2011.09.010

Production and hosting by Elsevier

ELSEVIER

cesses, have been the object of intense research activity in
recent years (see e.g. [1,2] and [9]). In this regard it would be
of interest to have a stochastic Fubini theorem for such pro-
cesses. The first adequate extension of Stochastic Fubini theo-
rem to symmetric stable process and the related results was
established by Donati-Martin et al. [5].

Generalization of some well-known results for stochastic
processes indexed by a single parameter to those indexed by
two parameters has attracted considerable interest recently.
In general, processes parametrized by two parameters can pro-
vide more flexibility in their applications in modelling physical
phenomena. Of particular interest, for which several general-
izations have been established, are the Brownian sheet and
bivariate Brownian bridge. For example, as a consequences
of Stochastic Fubini theorem for general Gaussian measures,
the authors in [3] have obtained some identities in law, integra-
tion by parts formula and the law of a double stochastic inte-
gral for such processes. In the same context the authors in [7]
have established new identities in law for quadratic functionals
of conditioned bivariate Gaussian processes. In particular,
their results provide a two-parameter generalization of a
celebrated identity in law, involving the path variance of a
Brownian bridge, due to Watson [12]. We will see how this
kind of identities can be naturally extended to stable processes.

In Section 2, as a first step we establish stochastic Fubini
theorem for general Stable measure. This brings us, first, to
an identity in law of functionals of one parameter time chan-
ged stable process. In fact we extent the well-known identity
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in law involving quadratic functionals of the Brownian bridge
(for more details see [11]), which corresponds to 2-stable pro-
cess, to general o-stable process. As a second consequence we
produce, using minor additional technicalities, the same results
for the well-known symmetric o-stable sheet {X*(¢,f,),
(t1.12) € [0,1]?}, which may be described as follows:

Let 7 be the class of all sets in [0,1]> of the type _>2<1(s,-7 t],

) i

sit; € [0,1]. For a given a function f: [0,1]” — R, the incre-

ment f(I) of f over the set 7 € 7 is defined by

f<£<l (51 z,-}) = fltr, 12) = f11,52) = fls1, 12) +[(s1, ).

For o € (0,2]\{1}, X*is a stochastic process taking values in
R defined on a probability space (Q, F,P) such that:

(i) For any k € N and any choice of disjoint sets /; € Z,
j€ {1, ..., k} the increments X(/;) are independents.
(ii)) Forany 7 € Z and u € R

Eexp(iuX(1)) = exp(—A(1)|u["), )

where A(]) is the Lebesgue measure of I.

It is well known that X* belongs to the space D([0, 1], R) of
functions Z from [0, 1]* into R vanishing at the boundary and
satisfying
(t1:2)<(s1 Vzlﬁr(lvll $2)=(0,82) Z(s1,82) = 21, 2),
where < denotes the natural partial ordering in [0, 1],

It should be noted that our results for the stable sheet are
actually a continuation of those established by Peccati and
Yor [7] for the Brownian sheet.

Section 3 is devoted to the integration by parts formula
established first in [11] for the Brownian motion. Since then
several extensions have been made to various processes.
Namely the first one, for the one parameter stable process,
was given in [5] whereas the second one, for Brownian sheet,
was made in [3]. We are going here to show this formula for
stable sheet. Our proof is based on the main result of Section
2 and time reversal stochastic integral with respect to stable
process.

Let us fix some notations to be used throughout the paper:
X< Y means that the random variables X and Y have the same
distribution. T, is a one-sided stable random variable with
exponent y if E(exp(—uT,)) = exp(—u"), for u > 0.

2. Some identities in law between some Lévy functionals

The starting point of this study is Fubini theorem for Stable
measures. Let (4, .4, 1) and (B, B, v) be two measurable spaces,
with u and v denoting positive and o-finite measures.

Let { X(h) : h € L*(4, A, ﬂ)} and {X'(k) : k € L}(B, B, v)}
be two independent stable symmetric processes, with o,ff €
(0,2]\{1}, indexed respectively by functions in L*(A4,.A,u)
and L*(B,B,v), that is, for any u € R, h € L*(4, A, ) and
k € LF(B,B,v), we have

[E[exp {mX':(h)H :exp{—//q\uh(a)\“u(da)},

and

E[exp {iuX?(k)}] :exp{f /B |uk(b)|ﬂv(db)}.

Here we give some examples:

Let {X7,r € [0,1]} be a symmetric stable process with
index o, that is a Lévy process such that for any 7€ [0, 1]
and u € R its characteristic function is defined by

Elexp {iuX;}] = exp (—t|u[").

1. For (4, A, 1) = ([0, 1], B([0, 1]), ), then X7(%) has a sto-
chastic integral representation

X (h) £ /] h(s)dX’.

2. For (4, A, 1) = ([0, 1], B([0, 1]),n(dr)), where 5 denotes a
positive and o-finite measure such that n({0}) = 0, we
have

1
ORI

3. For (4,A,p) = (0,17, B([0, 1]*),dtds), X%(h) has the
law representation as

X*(h) < h(ty, 6)dX* (1), 15).

.17

We now state a fundamental identity, which holds almost
surely, on which our main result Theorem (1) is based on.

/A ( /B $la, b) X7 (db))X;(da)
:/B</A ‘f)(aab)XZ(da))Xf(dbL o

for any ¢ : 4 x B — R, A ® B-measurable function such that

. o/
J

and

/B‘/A |p(a,b)|"p(da)

The main result in this section, which is fundamental for the
rest of the development, is as follows:

B
u(da) < +oo,

/1; |b(a, )" v(db)

B/
v(db) < 400.

Theorem 1. Consider for o,f € (0,2]\{1} the random variables

A

and

Yo(,/} = /
B

Then the following identity holds

xu(da)

/B $(a, b)X? (db)

B
v(db).

/A $(a, b) X (da)

(Yﬁ,m) " T‘, g Yauﬁ: (3)

where y = o/ and T, is a one-sided stable random variable with
exponent y, which is assumed to be independent of Y ,.
For o = [ the identity in law(3) becomes
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(l

v(db).

/¢ab (db) /¢ab X:(da)| v

Proof 1. Taking the characteristic functions of both sides of
(2), for any u € R, we obtain:
i) )|

tlexp (—1u [ | [ otanixtian)
= [E[exp <—u|ﬁ/3 ‘/A d(a,b) X (da) ﬁv(db)ﬂ. (5)

Taking r = |u|” as a new variable, the equality (5) becomes

[E{exp (—V/A aﬂ(da))}
_ [E[eXp <_r1/ [ /A¢(a,b))(;(da) ﬁv(db)ﬂ.

On the other hand, it is easy to see that

[E{GXP (_" /A /B d(a,b) X! (db) au(da))}
ooy )
u(aa)) " T>

exp (—rl/"( ’ /B¢>(a,b)X(,’(db)

where T, is a one-sided stable random variable with exponent y
independent of Yg,.

a

) |

Hence, we have obtained

[E{exp (—rl/“’/
A
I 1/y
— E [exp —r'*f( / ¢(a, b) X' (da) v(db)) 7|,
B A

which is equivalent to (3). O
Remark 1. It should be noted that the case &« = = 2, which
corresponds to the Gaussian measures, has been considered in
[3].

4)

¢(a,b)X? (db)

=E

’

¢(a, b) X} (db)

2.1. One parameter case

Let @ be a probability on [0, 1] and set 4, = ([0, 7]). It is well
known that the variation of 4 corresponds to the total varia-
tion of @. Define the right continuous inverse of A4, namely
for any ¢ €[0,1],

=inf{s: 4, > t}.

It is easily seen that A, t for every ¢t and

=inf{s: C;, > t}.

>tand Cy, >

Moreover we have a change variable formula stated as
follows:

/ "h(s)o(ds) = / h(s)dA, = / Y cyds e, (6)

It should be noted that 4 and C play symmetric roles. The
reader is referred to the book [8] for more details and some re-
lated results.

Proposition 1. Let X* be a symmetric stable process with index
o. Then we have

[ et - [ xetan} “

and using the equality (6) we obtain

[ et {x: - [ xetan)

Proof 2. Let us consider the function ¢ : [0, 1]* — R defined by

1
é/ dC,| X7 — uX;|, (7)
0

o 1
,:,/ X, — A" (8)
0

D(u,8) = [l — (1 = 9)],

and set

(4, A, ) = (0, 1], ([0, 1]),dC,) and (B, B,v)
= ([0, 1], B([0, 1]), dr).

It is easily seen that

/d G(u.5) = (X~ X7) — (1 - )X = X 45X,

S|
¥ - [ (1-ax;

Now using integration by parts formula we obtain

1 1
/ dXé‘(ﬁ(u’ S) = Xoéu - / Xmér* dS'
0 0

The set {s : C; # C,-} is countable and so far it is Lebesgue
negligible. Owing to this fact we may replace X7, by X7, in the
right-hand side. Thus we have

1
/ X Bl s) = X, -
0

1 1
/ dxz. é(u,s) = Xg, —/ X¢. ds.
0 : 0

Let X* be an independent copy of X*. Applying the identity
(4), with X7 = X7 and XZ = X%, one has
Xz

1 1
/ 6 — / X?& ds
0 0

Now the identity (7) follows simply from (6). This ends the
proof. O

du—/ |X°‘ sﬂ| dC;.

Remark 2. (i) Let (B,s < 1) is a Brownian motion. It is well
known, see [11], that the following identity holds

2

lg(dt) B, — lg(ds)BX L 1(1?;'@[0‘,])2611, (9)
 atn(m.- [atwn) £ |

where gﬁs, s<1

) is a standard Brownian bridge. It follows
from (6) that

2

/OIQ(dZ)(BM—/OIQ(ds)BS) 4/01(§.v)2dq,
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which corresponds to the case « = 2 in the identity (7) once we
know that standard Brownian bridge has (B, — uB;; u < 1) as
a representation in law.

@ii) For p > 0, let o(du) = du p u"~",
A, =1 and C, = 1'".

we have

It follows from the identity (7) that

1 1 2 1
/ dupu’™! {B,, — / psI”lBA.ds} 4 / du|By — u”Bl\z
0 0 0

1 Y] 1 1 2
é/ du’Bl,n :—/ duw]”l’BL, .
0 P Jo

Note that for p = 1 we have

1 1 2 4! 2
/du {Bu—/ Bsds} :/ du‘Bu
0 0 0

which was obtained in [4].

I

2.2. Two parameters case

so that
1), dtydr,).

Let u = v be the Lebesgue measure on [0, 1],
(4, A, 1) = (B,B,v) = ([0, 1%, B([o,

Then X* and X* are two independent symmetric stable
sheet. We consider now the random variables

Z*(s1,52) :/ 2¢(517527lhtz)Xm(dll’dlz),
[0.1]

and

Do) = [ [ blorsst, )X, d).
0.1

In this special case, the conclusion of Theorem 1 becomes
1/7
// Z%(s1,5)Pdsidsy | T, £ //
0.1 .1

The consideration developed above can be applied to the
following:

G1(s1,8, 1, 6) =1,
hy(s1,8, 11, ) = Lo
= (I =0)lpy( )

In this setting, we have

(10)

s (1) Lo (12) — (1 = 11)(1 = 12),
st (1) Lo (12) — (L= 1) Lo (82)
(1=0)(1-1).

Proposition 2. For o € (0,2]\{1} the following identities hold

1 1 1 o
Xy(ShSz)*/ / Xu(ll,lz)dtldlz
0 0

1 1
4 / / (1, 12) — 16X (1, 1) diyda, (11)
0 0

dSldSZ

1 1 1
Xi(Sl,Sz) —/ Xa(Sh[z)de—/ Xu(ll,Sz)dll
0 0

0
1 1 o
+/ / Xa(ll,lz)dlldfz
0 0

1 1
g/‘ / |X‘z(ll,lg)—l‘lX'X(l,lz)—lsz(ll,1)
0 0
+1112X%(1,])|adlldlz (]2)

dSl dS2

([1, [Q)V(,l'lldl‘z.

Proof 3. Applying (10) to ¢, and ¢, with o = 5, we get

X*(s1,52) // (I =1)(1 = ) X*(dt,, dty)

( t,,l)—(l—tl)(l—tz)[\”(l,l)

[ [
/l 01 1 — 1)1 (02)X*
1
o
4/01 01 ( 1,71])—(1—11))(“(17(1271])

—(1 =) X*((t1,1],1) + (1 — 1) (1 — ) X*(1, 1)|"dt,dbt,.
It is readily checked that the following identities hold:

1 1 1 1
/ / (1 - ll)(l - lg)z‘ﬂ(dl‘l,dtz) :/ / p(tl,lz)dtldl‘z
0 0 0 0
1 1 1
/ / (1 = 1) 15 () X (dty, dts) :/ X*(ty, 82)dt
0 0 0
1 1 1
/ / (1 — l‘z)l[oﬂ](l‘])/\m(dl‘l,dfz) = / AM(SI, Iz)dlz.
0 0 0

Hence, the above identities in law become:

S‘],Yz / / Xz t],tz)dtldtz

( (1, 1]) — (I =1)(1 —£r)X*(1,1)

dv]dvz

dtydt,

(dll s dlz)

(1 = 1)Ly, (1)) X*(dty, dts)

o

1 — fz)X'x(dl‘],db) dSldSz

dvldvz

o

dl‘ldlj

and

1 1 1 1 1 1 *
/ / X*(s1, % —/ X*(t,8)dt —/ X*(s1,82)dty +/ / X (0, t)dtdt
Jo o Jo Jo o Jo

4 x (B 01} = 0 001 1)
17[7 X (0,1, 1) + (1= 1)(1 = &) X*(1, 1)[*dty dt.

dsyds,

Now from (1) the following distributional identity between
processes

{X“(éﬂ (t:, 1])7(11,12) e, 1]2}
é{X’(l —t1,1 = 1), (t, 1) €0, 1]2}7

hold which leads us, with the change variable (r,rp) =
(1 — 11,1 — 1), to the identities (11) and (12). O

Remark 3. It should be noted that the identities (11) and (12)
are the extension of the identity (7), with o(du) = du, to the
two parameters case.

We close this section by a simple extension of the identities
in the above proposition. Precisely, using the same techniques
as before we obtain another variant of the identities in law (11)
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and (12) with 9;(dt,)02(dt,) instead of dt,dt, where @; and @,
are two probability measures on [0,1]. Let 4/ = ¢,([0, 1]) and
C'=inf{s: A4, >} for i=1, 2 and t€[0,1]. We set
(A, A, 1) = (0,17, B([0,1]%),dnndy) and (B, B,v) = (0,1,
B([0,1]), dC,ll dCi). With these notations, we may state :

Proposition 3. For the symmetric stable sheet X* and the
probability measures Q; and Q> we have

[

4 /01 /01|X°‘(t1,lz)—llth“(l,1)‘°‘Q1(dtl)92(d[2)7 (13)

Xo(si,s) - / / X (1, e (dn)ea(dts)| 0 (dsi)ea(dse)

d

an
/“1 /“1 'X*(SI,SZ) *%] X (51,120, (d12)

*A Xy(thSZ)Q](dtl)‘i’/or /O' Xu(h,[z)gl(dtl)gz<dt2) QI([I_S'])QZ(dSz).

PR - o ,
_/0 /0 X401, 1) — 1 X4(1, 1) — 65X (11, 1) + 1 X4(1, 1)
0,(dt),(dt). (14)

The above proposition allows us to establish some exten-
sions of certain identities in law developed by Peccati and
Yor in [7] for the Brownian sheet.

Let p,g > 0 and {W = W(t1,t):(t1,12) € [0,1]%} is a stan-
dard Brownian sheet on [0, 1] vanishing on the axes. We asso-
ciate to W the following processes:

o {B") = Bt 1,):(11,1) € [0, 1]} is the canonical bivariate
Brownian bridge associated to W, i.e.

B(m(tl,tz) = W(l],fz) — l]le(l, 1),

. Bgm :BBW)(thtz) 2 (t, ) €10, 1}2} is the canonical
bivariate tied down Brownian bridge associated to W, i.e.

Bgm(ll,lz) = W([],lz) - ll W(l,lz) - [2W(l17 1) + lltzW(l, 1)

Then for o;(du) = du p w’~" and x(du) = du g u?~" the iden-
tity identities (13)—(14) become:

1 ol
[
1 1
':1;/ / |B<W>(t1,t2)|2tf"zg’]dzldtz,
0 0
and
1 1
[
1 1
+pq/ / W(t, )¢ ¢ drdr,
0 0

1 1
4 / / ‘Bgm(ll,lz)
0 0

3. Application: integration by parts formula

1 pl 2
W(s1,s2) 7pq/ / W(t, lz)t‘;’*ll‘z’*ldﬁ dt, Sq’fls'z’flcis]dsz
o Jo

1 1
Wsi2) - q / Wis1, )4 dts — p / W(tr,2)di,
0 0

o
1 g1
s s dsy dsy

2 p—1 g—1
A d dt.

It is well known that Theorem 1 has several applications.
Namely, an identity which resembles to integration by parts

formula. Here, we give two examples yielding such identity.
The first one deals with one parameter stable process and it
was previously given in [5] but our method is quite different.
Whereas the second one is new and consider the two parame-
ters case. In the sequel we write d, for the unit mass at point x.

3.1. One parameter case

Let f,g: [0, 1] = R™ be two continuous functions with f
decreasing and g increasing. Let us now choose 4 = B =
[0,1] and define the measure u and v by

u(ds) = —df(s) + f(1)o1(ds) and v(dr) = g(0)do(dt) + dg().

Here we are mainly concerned with the definition of time
reversal stochastic integral with respect to Lévy process. First
we make the following notation: Let Z be a process with
cadlag paths defined on [0,1]. Z = {Z,; 1 € [0,1]} will always
denote the associated time reversed process of the process Z
given by:

0 if =0,
Z/ = Z(l,,)’ - Zr lf 0 <t < 17
ZO - Z]* lf = 1,

where Z,- denotes the left limit at u, 0 < u < 1.

Note that the function 7+ f{1 — ¢) is increasing. It is well
known that a semimartingale remains a semimartingale under
time changes. Thus the process { Y, :=X*(f(1 — 1)); t €[0,1]} isa
semimartingale since Lévy processes are semimartingales. Thus
the process

0 if =0,
Y, ={ X*(f(0) - X*(f0)) if 0<i<1,
X(f(1) = X*(f0)) if =1,

is again a semimartingale.

The stochastic integral of ¢ € L*(4, A, —df) with respect to
the process {X*(f(¢)), t € [0,1]} is defined by time reversal as
follows:

./0.[<p(s)d)(*(f(s)) - /O.tgo(l — A (1 —s)), 10,1
(15)

Consequently, for u € R and ¢ € [0,1], we have

elexp {1 [ oo |
—elexn { L"’“ —x (i =)
—en{- [ jup(1 =511 =)}
~en{ [ otrana ).

For more details on time reversal stochastic integrals the read-
er is referred to [6].
Let X* and X* are two a-stable symmetric processes and set

X (h) =h(1)X°‘(f(1))*/0 h(s)dX"(f(s)), h € L*(4,A, ),

where the stochastic integral is defined by (15) and
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/k 0d¥ (g

where the stochastic integral is defined in the usual sense.
Since f is decreasing (resp. g is increasing) and using the
fact that the increments of X are independents it follows that

(A1) and [} h(s)dX*(f(s)) (resp. X*(2(0) and [y As)
dX*(g(s))) are independent. So, for all u € R, we have

slexp {0} =exp { - [ o utas .

and

Elexp {iuX?(k)}] = exp {_/0 |uk(l)|ﬂv(dz)}.

A simple calculation, on one hand yields

), ke L*(B,B,v),

1
/0 1,20 X2(d) = X* (1) = X*(g(s)),

and
1
J

On the other hand

o
o

mm=%5ﬂw%mm

o

+ )| X (e(D)] -

1
/mmnw>
0

Am%mm:mmm:rmm

and

/

In order to obtain the desired integration by parts formula, we
shall use (4) of Theorem 1 with ¢(s,) = 1>, which enable us
to get the following

o

/O 1> X7, (ds) V(ﬂll):/0 dg ()| X* ()" + g(O)|X*(10))[".

Proposition 4. For any symmetric stable process X* we have

lA—MMW@@W+ﬂMW
+ ¢(0)|X(£10)) "

u/@ X (A0

We recall that the above integration by parts formula was
shown by Donati-Martin et al. in [5] using the discrete version
of the Fubini-type identity in law (3).

3.2. Two parameters case

Let f1,g, : [0, 1] — R* (resp. /2,8, : [0, 1] = R") be two
continuous functions, with f; (resp. f>) decreasing, and g; (resp.
g») increasing. Let us now choose 4 = B = [0,1] x[0,1] and
define the measure p and v by:

(dS],dSz 7{ dfl S1 +5 (dSl f]( )}{ dfz(Sz) +5 (
v(dt, dy) = {dg,(t1) + do(d1)g,(0) H{dgy(12) + do(dr2)g

ds))f2(1)}
»(0)}.

For a process Z in D ([O, 1]2, [RE), we denote by Z the associated
time reversed process of the process Z given by:

0 if 176,=0,

Z(1=n)",(1=n))-2z(1"
—Z(I=n), 1) +2Z(1",1)

J(1=1)7)

if 0<u1,6<1,

Z(0,(1 - 1)) — Z(1~
—Z(0,17) + Zz(1,17)

(1=n)7)
Z(t, 1) = if n=1n<l,
Z(1—=1),0)—Z(17,0)
—Z(1 =), 1)+ Z(17,17) if n<l,n=1
Z(0,0) — Z(17,0)
—Z(0,17) +Z(17,17)

if h=t6=1

where Z(u—,v") denotes Ny, )<, s 50)—( 0 Z(S1,52) and
<denotes the natural partial ordering in [0, 1]*.

Let {X”(sl,sz) (s1,%2) € [0, 1} ,i =1, 2 be a pair of inde-
pendent stable sheet. The stochastlc integral of ¥ € L*(4, A,
dfidf>) with respect to the process {X7(fi(s1),/2(s2)),

(s1,52) € [0,1]*} is defined by time reversal as follows:

/[1 /[2 W (s1,82)dXT(f1(s51),/2(s2))

[ [

for (11,1,) € [0,1]%
have

[E[exp { [ [ wssiaxi (Sn%fz(h))H

| I
:[E{exp{iu/ (1 =s1,1 = s5)dX{(f1(1
1—-1 1-1y

1 1
= — 1 - 1 - “dfi (1 —s))df (1 —
exp{ /1—11 /H2 (1 = 51,1 = s0)["dfi (1 — s1)dfa( Yz)}

—exp { [ [ wenran (a)df'z(b)}~

Now, for h € L*(A4, A, ) and k € L*(A4, A, 1), we define

52)dX{(fi(1 = 51),/2(1 = 52)),  (16)

Moreover, for u € R and t#,,t, € [0,1], we

~s).l1 =)}

XﬂM:A‘AhmwMﬂmw&ﬁwD
XAhWM%ﬂMMﬁmﬂ
+Ahmﬁwxwmmﬁmmwmwﬂmuwm»

where the first stochastic integral is defined by (16) and d,,
means stochastic integration with respect to the variable u de-
fined by (15) and

/ / k(ti,t)d

+Akmm¢m@wmmm

X5(g1(11),8:(12))

+/0 k(t1,0)d, X5(g,(t1),£,(0))
(0),£,(0)).

Since the increments of each process X7 and X35 are indepen-
dents it follows, for all u€ R, he L*(4,A,u) and ke
LF(B,B,v), that

+k(0,0)X3(g,
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[E[exp{iuXZ(h)H = exp{—/o1 /Ol |uh(s1,s2)\“u(ds1,dsz)}

and

E[exp {iuX?(k)}] = exp {— /01 /01 ik (s, t2)|ﬁv(dt1,dz2)}.

Now using a simple calculation we get

1 1
/ / s sy Xo(dt, dty) = X (Lo )xp.m)) = X5(21(51),82(52)),
0 0

and
1 1 1 1
/ / :u(dslvdSZ) / / 1{~"1211}1{5221‘2}X$(dt17d[2)
0 0 0 0

:/o /0dfl(51)dfz(sz)’Xg(gl(sl),gz(sz))r

o

A / dfs(52)| X301 (1), 2 (52)) "

o1
~ (1) [ il e
+AMAM]X5(g (1), g ()]
We also obtain
1 o 1
/0 /0 Loy L5 0y Xo(dsy, dsy) = X5 (L i)

= X{(fi(t)./2(12)),

and
1 1 1 1
/ / v(dllvdZZ) / / 1{51>f|}1{522’z}Xft(dslvd52)
0 0 0 0

:/0 /0dgl(l‘l)dgz(lzﬂz\’?(ﬁ(zl)7f2(t2))}a

o

0 (0) / s ()| X2 (1 (0). s (12))|

+ 5,(0) / de, (10| X201 (1), f5(0)[*
+ 1(0)2:(0)|X:(/1(0), (0D

Having all these preliminaries in mind and using once again (4)
with ¢(s1, 8,11, 2) = 1{5, 511 1{s,>1}, We obtain the two param-
eters version of Proposition 4 as follows:

Proposition 5. For every X* stable sheet we have

/0 / dfi () dfa(52)| X7 (81 (1), £a(52)
—fi(l)./o‘ dfs (52X (g1 (1), ga(52))

() / df; ()X (g, (1), g2 (1)
A MADX (1), & (1)

4 / / dg, (11)d ()| X (fi (1), al12))
+,(0) / des (1) | X* (/3 (0), /(1)

+(0) / de, ()X (1), /(O
1 61 (0)g(0)|X*((0). /5(0))*

It should be noted that the case o = 2, that is X* is a
Brownian sheet, was covered in [3].

3.3. Particular cases

1. g1(0) = g2(0) = fi(1) = f>(1) = 0, we obtain
.1 ol

/0 / A (50)dfa(2) | X (g1 (1), €a(52)|”
4 / / de, (1)de ()| X (fi (1), (1))

2. 61(1) = o) = 2 and fi(s) = fals) = log(1/s)
1 1

I

4 4/l /' [(102)! /X (tog (1/0),log (1/0) | s

1 o
WX“(A%,A%) dSldSZ
9192
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