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1. Introduction

Lie groupoids and Lie algebroids are now a central notion in
differential geometry and constitute an active domain of re-
search. They have many applications in various part of math-
ematics (see for instance [4-6,14]). Roughly speaking, a Lie
algebroid is a structure where one replaces the tangent bundle
with a new vector bundle with similar properties. In this spirit,
many geometrical notions which involves the tangent bundle
were generalized to the context of Lie algebroids. For instance,
covariant derivatives were generalized by Fernandes [9],
Lagrangian mechanics were generalized by Weinstein [18]
(see also [6]). Actually, a Riemannian metric on a manifold
is a notion which involves the Lie algebroid structure of
the tangent bundle and the Koszul formula, which defines
the Levi-Civita connection, is an illustration of this fact. A
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Riemannian metric on a Lie algebroid is a natural extension
of the classical notion of Riemannian metric on a manifold
and this notion appeared first in the context of Lie algebroids
associated to Poisson structures (see [2,3,12,13]).

In this paper, we present some basic concepts related to a
Riemannian structure on a Lie algebroid, namely, we will show
that most of the classical tools and results known in Riemann-
ian geometry can be stated in this setting. In Section 2, we pres-
ent some basic facts on connections on Lie algebroids based on
recent results of [7]. In Section 3, we define the Levi-Civita con-
nection associated to a Riemannian Lie algebroid and we show
the existence of two tensors similar to those introduced by
O’Neill in the context of Riemannian submersions [15] (see
[1] for a detailed presentation). Section 4 is devoted to the
study of the geodesic flow of a Riemannian Lie algebroid.
As the classical case, we define the Sasaki metric and we com-
pute the divergence of the geodesic flow with respect to this
metric. This divergence does not vanish in general contrast
to Liouville theorem and, in fact, it is a modular cocycle and
its class is the modular class of the Lie algebroid. We state
the first and the second variation formulas and introduce Jaco-
bi sections along a geodesic. This section can be thought of as a
completion of subSection 4.2 in [18] and Section 5 in [11]. In
Section 5, we study the curvature of a Riemannian Lie alge-
broid and generalize some classical results, namely, Mayers
theorem. Section 6 is devoted to the study of integrability of
Riemannian Lie algebroids, for instance, we show that the
vanishing of one of O’Neill’s tensors implies the integrability
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and we give a large class of Riemannian Lie algebroids which
satisfy this condition.

2. Background on Lie algebroids

In this section we review some basic facts related to Lie algeb-
roids and to connections in the context of Lie algebroids (see
[6,7,9] for a detailed presentation).

2.1. Canonical Poisson structure on the dual of a Lie algebroid

Definition 2.1. A Lie algebroid 4 over a smooth manifold M is
a vector bundle p: A — M together with a Lie algebra
structure [, ] on the space of sections I'(4) and a bundle
map # : A — TM called anchor such that, for any sections
a,b € T'(4) and for every smooth function fe€ C*(M), we
have the Leibniz identity

[a,/b] = fla, b] + #(a) ()b (1)
An immediate consequence of this definition is that:

1. the induced map # :I'(4) — X(M) is a Lie algebra
homomorphism;

2. for any x € M, there is an induced Lie bracket say [, ],
on

G. =Ker(#,) C 4,

which makes it into a Lie algebra.

The following theorem describes the local structure of a
Lie algebroid (for a proof see [9]). Let n and r denote,
respectively, the dimension of M and the rank of the vector
bundle 4 — M.

Theorem 2.2 (Local splitting). Let xo € M be a point where
#y, has rank q. There exists a system of coordinates

(X15 e e o3 Xgy 1y e v v s Vpy) valid in a neighborhood U of xy and a
basis of sections {ay,...,a,} of A over U, such that
#(ai):a\'y (12177(1)7

#(a) = b0, (i=q+1,...,r),
J

where b’ € C*(U) are smooth functions depending only on the
V's and vanishing at xo: b = b"(y*), b"(xo) = 0. Moreover, for
any i,j=1,...,r,

[ar, a_,-} = Z Cﬁ-j-am
u

where Cj; € C*(U) vanish if u < q and satisfy 3 % — 0,

u>q Oxg

From this theorem we deduce that the image of # defines a
smooth generalized distribution in M, in the sense of Sussman
[16], which is integrable. This foliation is called characteristic
foliation of A. We call A transitive Lie algebroid if # is surjec-
tive, so the leaves are the connected components of M.

We denote by A; the restriction of 4 to a leaf L. From (1)
one can deduce easily that the bracket [, ] induces a bracket on
the space of sections of p, : 4, — L and hence a transitive Lie
algebroid structure. When x run over L the Q"'\As are all isomor-

phic and fit into a Lie algebra bundle G; over L (see [14]).
Hence, we get an exact sequence of Lie algebroids over L

0—G,— A, — TL. 2)

The dual A" of a Lie algebroid p: A — M carries a natural
Poisson structure which can be described as follows.

For any function Fe C*(4") and for any section
¢ eT(4"), we define a section F; € I'(4) by putting, for any
x € M and for any u, € A7,

e Fi) = 5

Now, for any functions F, H € C*(4"), we define the bracket
{F, H} by putting, for any section ¢ € T'(4%),

{F, H} o &= (¢ [Fe, He]) + #(Fe)(H o & — (&, He))
— #(He)(Fo & — (& Fy)). 3)

One checks that this bracket defines a Poisson structure and
for any f,g € C*(M) and for any a,b € T'(A4), we have

{fop,gopt =0, {fop,a}
=—#(@)(f)op and {a,b}=[a,b]. (4)

If one chooses local coordinates (xi,...,x,) over a neighbor-
hood U of M and a basis of local sections (ay,...,a,) over
U, we have structure functions 4", C}, € C*(U) defined by

F(E(x) + 1a1y).-

n

#(a;) = l_:lb“"'é?x, (s=1,...,r),
layal =" Cha, (s,t=1,....7).
Let (¢;,...,¢,) denote the linear coordinates on the fibers of

A* associated with the dual basis (a', ...
ily that

{xhxj} = 07 {X,‘, 6v} = _bS[ and {ém ét} = Z Crtéw (5)

,a"). One can see eas-

Example 2.3.

1. The basic example of a Lie algebroid over M is the tan-
gent bundle itself, with the identity mapping as anchor.
The associated Poisson structure on 7*M is defined by
the symplectic form dZ4 where 4 is the Liouville form.

2. Every finite dimensional Lie algebra is a Lie algebroid
over a one point space. The associated Poisson struc-
ture on the dual is the Lie—Poisson structure.

3. Any integrable subbundle of TM is a Lie algebroid
with the inclusion as anchor and the induced bracket.

4. Let (P, ) be a Poisson manifold. Then there is a natu-
ral Lie algebra structure on Q'(P) which makes TP
into a Lie algebroid over P (see [17]).

2.2. Connections on Lie algebroids

We develop now the basic theory of connections on Lie algeb-
roids. This notion, which is a natural extension of the usual
concept of covariant connection, have recently turned out to
be useful in the study of Lie algebroids. It appeared first in
the context of Poisson geometry (see [9,10,17]).
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Let p: A — M be a Lie algebroid with anchor map #. An
A-connection on a vector bundle £ — M is an operator
V:T'(4) x I'(E) — I'(E) satisfying:

1. Viups = Vs + Vs for any a,b € I'(4) and s € T'(E);

2. Vu(si+52)=Vus1+V,s, for any ae€I(4) and
51,8 € T(E);

3. Vs =fV,s for any
fecM);

4. V.(fs) = fVs + #(a)(f)s for any a € I'(4), s € T'(E)
and f € C*(M).

acl'(4), seTI(E) and

From this definition, one can deduce immediately that, for
any leaf L, V induces an 4;-connection on E; — L.

Given an A-connection on a vector bundle E over M, most
of the classical constructions (related to a classical covariant
derivative) extend to Lie algebroids, provided we use the
appropriate notion of paths on 4.

Definition 2.4. Let p: A — M be a Lie algebroid with anchor
#.

1. An A-path is a smooth path « : [t,#,] — 4 such that

#e0) = S p(at), 1€ 0]

We call the curve y : [, 1] — M given by y(¢) = p(a(r))
base path of o.

2. An A-path o is called vertical if #(«(¢)) =0 for any
te [[()J]].

Remark 2.5. Even if, for a vertical A-path, the base path is
reduced to a constant curve, vertical 4-paths play a non trivial
role in the study of connections on a Lie algebroid.

2.3. Parallel transport

Letp: A — M be a Lie algebroid, £ — M a vector bundle and
V an A-connection on E. Fix an A-path o : [tp, 1] — 4. An a-
section of E is a smooth map s : [fy, #;] — E such that the pro-
jections on M of o and s define the same base path. We denote
by I'(E), the space of a-sections of E. Then there is exists an

unique map
V*:T(E), — T'(E),

o

satisfying:

1. V“(clsl +C2Sz) = CIV"‘SI +02V°‘sz, c1,C € R,

2. V¥fs=fls+ fV’ where f:][t,t;]] — R is a smooth
function;

3. if § is a local section of E which extends s and #(«(¢)) # 0
then

V“S(l) = Vm(,)g;
4. if § is a local section of E which extends s and « is vertical

then

. d
V“S(I) = V“(,)s + ES(I).

An a-section s is called parallel along o if V*s = 0. One has
then the notion of parallel transport along o, denoted by
Tt Ey) = By,

)
and 7! (sp) = s(¢) where s is the unique parallel o-section satis-
fying s(0) = sp.

If oy € A, and s is a section of E in a neighborhood of x,
one can check easily that

4y s((0))), (6)

N %\t:ﬁ

where o is any A-path satisfying o(0) = o.

Vs

2.4. Linear A-connections, geodesics and compatibility with the
Lie algebroid structure

Letp: A — M be a Lie algebroid with anchor #. We shall call
A-connections on the vector bundle A — M linear A-
connections.

Let D be a linear A-connection. An A-path o : [fy, 7] — A is
a geodesic of D if D*u = 0. Let (xy, ..., x,) be a local system of
coordinates on an open set U and (ay,...,a,) a basis of local
sections over U. The structure functions 5", C", € C*(U) are
given by

#aszsziavx‘i (S: 1,.,.7}’),
i=1

las,a,] = Zq‘tau (s,0=1,...,r).
u=1

We define the Christoffel symbols of D according to
(ai,...,a,) as usually by

p
u
D,a, = E I a,.
u=1

The A-path « is a geodesic if, fori=1,...,nandj=1,...,r,

(1) = Sy (1 (1), xa(1),
, (7

D o (0o (O, (41 (1) - X (1),

su=1

ay(t) = —

where a(f) =37 0;(f)a; is the local expression of o and
p(a(r)) = (x1(2),...,x,(¢)) is the local expression of its base
path.

Exactly as in the classical case, one has existence and
uniqueness of geodesics with given initial base point x € M
and “initial speed” ay € A4.. Actually, there exists a vector field
G on A such that the geodesics of D are the integral curves of
G. We call G the geodesic vector field associated to D and D is
called complete if G is complete.

We introduce now two natural notions of compatibility be-
tween linear A-connections and the structures of Lie
algebroids.

Definition 2.6.
1. A linear A-connection D is strongly compatible with the

Lie algebroid structure if, for any A-path o, the parallel
transport t, preserves Ker#.
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2. A linear A-connection D is weakly compatible with the
Lie algebroid structure if, for any vertical A-path o, the
parallel transport 7, preserves Ker#.

The following proposition gives an useful characterization
of the these notions of compatibility.

Proposition 2.7.

1. A linear A-connection D is strongly compatible with the
Lie algebroid structure if and only if, for any leaf L and
Sor any sections o € T'(4,) and f € T(G,), D,p € T(Gy).

2. A linear A-connection D is weakly compatible with the
Lie algebroid structure if and only if, for any leaf L
and for any sections o €T(G) and BeT(G),
D.peT(G).

Proof. This is a consequence of (6). [

Example 2.8. Let p: 4 — M be a Lie algebroid and V be a
TM-connection on A. Associated with V there is an obvious
linear A-connection

Db = Vb

which is clearly weakly compatible with the Lie algebroid
structure. A bit more subtle is the following linear A-
connection

Db = Vypa+ [a,b]

which is strongly compatible with the Lie algebroid structure.
These connections play a fundamental role in the theory of
characteristic classes (see for instance [9]).

Remark 2.9. In [9] there is a notion of compatibility between
linear A-connections and the Lie algebroid structure which is
stronger than the notion of compatibility given in Definition
2.6.

2.5. Variations of A-paths, homotopy and curvature of A-
connections

We give an interpretation of the torsion and the curvature of
an A-connection which leads naturally to the notion of homot-
opy of A-paths. This notion plays a crucial role in the integra-
bility of Lie algebroids (see [7]).

Let p: 4 — M be a Lie algebroid with anchor # and
E — M a vector bundle. The curvature of an A4-connection
V on E is formally identical to the usual definition

R(a,b)s = V,Vys = Vy Vs — Vigys,

where a,b € T'(4) and s € I'(E). The connection V is called
flat if R vanishes identically.
If D is a linear A-connection the torsion of D is given by

Tp(a,b) = D,b — Dya — [a, b].
In the classical case (4 = TM), the curvature and the torsion
can be interpreted by using variations of paths. We will show

now that we have a similar interpretation in the general case.
First, let us give the appropriate notion of variation of paths.

A variation of A-paths is a
o:[0,1] x [0,1] — A, (e, t)—a(e, £) such that:

smooth  map

(i) for any € € [0, 1], the map #i—a(e, ¢) is an A-path,
(i) the base variation y(e,t) = p(a(e,¢)) lies entirely in a
fixed leaf L of the characteristic foliation.

Let o be a variation of A-paths. A transverse variation to o is
a smooth map f: [0, 1] x [0, 1] — A such that o and f§ have the
same base variation y and #(f) = %

It is clear that if # is injective, there is an unique transverse
variation to a given variation of A-paths. However, if # is not
injective, a given variation of A-paths admits many transverse
variations to it. There is a way which permit the control of
transverse variations to a fixed variation of 4-path. Let us ex-
plain this important fact which is at the origin of the notion of
homotopy of A-paths used in [7].

First, let us fix some notations. Let o« and f be, respectively,
a variation of A-paths and a transverse variation and let y de-
note the commune base path. Let V be an A-connection on a
vector bundle E — M and let 5 : [0, 1] x [0, 1] — E be a section
over y. For any ¢ € [0, 1], t—o(e, ) is an A-path and V,s de-
notes the derivative of #—s(e,#) along this A-path. On the
other hand, for any 7 € [0, 1], e—pf(e, t) is an A-path and V.s
denotes the derivative of e—s(e, 1) along this A-path.

The first claim in the following proposition is a reformula-
tion of a part of Proposition 1.3 in [7].

Proposition 2.10. With the notation above the following asser-
tions hold.

1. For any linear A-connection D, the variation
A(O(> ﬂ) = Dtﬁ - De“ - T’D(va ﬁ)

does not depend on D and satisfies #(A(«, ) = 0.
2. for any A-connection V on E and for any section s of E over vy

V.Vs -V Vs = R(O(, ,B)é + VA(%/;)S.

Proof.

1. Fix (e, %) €[0,1] x [0,1] and choose a local coordinates
(X153 Xgs V15 - - 5 V,,) DEAT Xo = (€0, ) and a basis of sec-
tions (i, ...,a,) as in Theorem 2.2 (¢ = rank#, ). In these

coordinates, we have

O‘(@ t) = Z:":lai(g l)ah
ﬁ(ﬁ, l) = Zli':]ﬁi(ev t)afv
p(e 1) = (x1(e, 1), ..., x4(€,2), ¢1, . .

a7 Ox; i
5= 27:1 %ax/ = L4 (6,00,

B cn—q)7

g (IS )
=350, =L P60y,

J=1

where ¢y, ..., c,_, are constant. Now

r aﬁt r .y
D= ; St ;wﬁ D,a; and

L 9 oo
Do = ; aoé a; + ;a’ﬁ/Dula,‘

Hence
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0 0
Dlﬁ_DEaZE ((;j ;)a,—i-TDa[f—}—Elaﬁ a;, a;).
i=1 L]

Now, form (8), we have %’i = "" foranyi=1,...,q, so
_ o' oo
Dlﬁ_ Dla - TD(a7ﬁ) - Z: (8l - aﬁ)ai
i=q+1
+Z Blai, a. 9)

ij=1

One can see that the right hand of this equality lies in Ker#

and does not depend on D.

2. We choose a local trivialization (x1,...,Xg¥1,. -5V, g5
ai,...,a,) as above, we trivialize E near x, by a local basis
of sections (e, ...,e,) and put

V/vfz e,+Zz $V, €.

1% ;08 dx ; Os L
V.V.s Zaate,+z</§ vuﬂd—)v“eﬁzlzmvz,kv(,t,.

ik

- oy s’/ [)[3 ;08 ;
v'vf37;81656’+;(y D +—5- a’ +p o )Vue,JrZoc BV Ve,

ijk

op O ;
V. Ves—V. Vs — R(x, f)s = Z (0—€78—t>3/v“,e, +Zo¢A BV g aier
ij

ik

The above computation and (9) give the desired formula. [

From the expression of A(, §) given by (9) and from (8),
we have

o p

.
1 pk i
Ge—Gr= 2 oApCy
Ao, f)=0=<{ " 7 S
/'_‘2‘[/7[;1 ‘)\/

i=q+1,....r

j=1,....q.
(10)

Now by using the standard results about linear differential sys-
tems one can deduce easily the following useful proposition
(compare to Proposition 1.1 in [7]).

Proposition 2.11. Let p: A — M be a Lie algebroid. Then, for a
given variation of A-paths o and for given f : [0,1] — A such
that #(By)(e) = dgi“ (6,0) there exists an unique transverse
variation f§ to o such that

A, f) =0 and  f(e,0) = fy(e)

Following [7], we can now define the homotpoy of 4-paths
with fixed end-points. Let oy and «; be two A-paths on a Lie
algebroid p: 4 — M such that p(o(0)) = p(;(0)) and
plog(1)) = p(oi(1)). An A-homotopy with fixed end-points
from o to o is a variation of A-paths o such that:

(i) p(a(e,0)) = p((0,0)) and p(a(e, 1)) = p(e(0, 1
e€10,1], a(0,.) = ag and ao(1,.) = ay,

forany e € [0, 1].

)) for any

(i) the unique transverse variation f to o satisfying
A(o, f) = 0 and f(e,0) = 0 satisfies also fi(e, 1) = 0.

The following Lemma will be useful latter.

Lemma 2.12. Let oy :[0,1] = A4 be an A-path and
Bo : [0,1] — A an oy-section such that ,(0) = Bo(1) = 0. Then
there exists an A-homotopy o with fixed end-points such that
a(0,.) = o and the corresponding transverse variation [} satisfies

B(0,.) = fo.

Proof. Consider the base path y, : [0, 1] — M of oy and choose
an homotopy 7y : [0, 1] x [0, 1] — M with fixed end points such
that y lies in the same leaf as 1y, 9(0,.)=1y, and
%(07 1) = #(P,(1)). We choose also f:[0,1] x [0,1] — A4 such
that $(0,7) = f,(t) for any 7 € [0,1], B(e,0) = f(e, 1) = 0 for
any €€ [0,1] and 2 (e, 1) = #(B(e, 1)) for any (e,1).
(10), one can deduce that there exists an unique variation

o:[0,1] x [0,1] — A4 such that the base path of o is 7,
g, (e,1) = #(a(e, 1)), 2(0,.) = o9 and A(e, f) = 0. This variation
is clearly an A-homotopy with fixed end-points and satisfies
the required properties. [

From

2.6. The modular class of a Lie algebroid

We recall briefly the definition of the modular class of a Lie
algebroid. For a detailed presentation see [8].

The canonical representation of a Lie algebroid A4 is the flat
A-connexion D? on the line bundle L = AP4 @ AP T* M
defined by

DXA®V)=[a,] @ v+ 1@ Ly,

where a € I'(4), 2 € T(A'*?4) and v e T(A'PT"M). If A®@ v is
a nowhere-vanishing section of L*, the 1-form 0,5, € T'(4*) gi-
ven by

DHA®V) = 05 ()A @V (11)

is a d4-cocycle and its class is independent of the choice of the
section 4 ® v. The section 0,4, is called a modular cocycle of A
and its class is called the modular class of A.

3. Riemannian metrics on Lie algebroids

In this section, we introduce the notion of Riemannian metric
on a Lie algebroid which is a natural extension of the notion of
Riemannian metric on a manifold. We show that most of the
classical notions associated to a Riemannian metric can be de-
fined in this context, namely, Levi-Civita connection, geode-
sics, geodesic flow, Sasaki metric, first and second variation
formulas, Jacobi fields, the exponential...We show also that
the Riemannian curvature of a Riemannian metric on a Lie
algebroid satisfies formulas which are formally identical to
the O’Neill formulas for Riemannian submersions.

3.1. The Levi-Civita connection of a Riemannian metric on a Lie

A Riemannian metric on a Lie algebroid p: 4 — M is the
data, for any x € M, of a scalar product (, ). on the fiber
A, such that, for any local sections a,b € I'(4), the function
(a, b) is smooth.

A Riemannian metric on a Lie algebroid p: 4 — M is the
data, for any x € M, of a scalar product (, ), on the fiber
A, such that, for any local sections a,b € I'(4), the function
(a, b) is smooth.
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The most interesting fact about Riemannian metrics on Lie
algebroids is the existence on the analogous of the Levi-Civita
connection. Indeed, if (, ) is a Riemannian metric on a Lie
algebroid p : A — M, then the formula

2(Dab, c) = #(a).(b,c) + #(b).(a, ¢) — #(c).(a, b) +
+([e; b], @) + ([a, b], ¢)

([e, d],b)

defines a linear A-connection which is characterized by the two
following properties:

(i) D is metric, i.e., #(a).(b,c) = (D,b,c) + (b, D,c),
(i) D is torsion free, i.e., D,b — Dya = [a, b].

We call D the Levi-Civita A-connection associated to the
Riemannian metric (, ).

In a system of coordinates (x,...,x,) over a trivializing
neighborhood U of M where A admits a basis of local sections
(ai,...,a,) the Levi-Civita 4-connection is determined by the
Christoffel’s symbols defined by Da,a,-zz,cl"fjak. A direct
computation gives

1 - - iu ju u
r;j{' = ) Z ngl(b s, (gjl) + 0 0y, (gil) -V 0y, (gij))

=1 u=1
1 r r . ) .
+5 ; Z;gkl(cﬁgu, + Cig,; + Czjgu,>, (12)
where the structure functions 5", C, € C*(U) are given by

H#a, = Z b“"ax,. (s=1,...,r),
)

[as,a] = Z Cla, (s,t=1,...,r),

u=1
g; = {(a;,a;) and (g7) denotes the inverse matrix of (g;).
Remark 3.1. There are two extremal cases:

1. The Lie algebroid A is the tangent bundle TM of a mani-
fold and we recover the classical notion of Riemannian
manifold.

2. The Lie algebroid 4 is a Lie algebra G considered as a Lie
algebroid over a point. In this case a Riemannian metric on
G is a scalar product (, ) and the Levi-Civita G-connection
is the product D : G x G — G given by

2(D,v,w) = ([u, v], w) + ([w, u,v) + ([w, v],u).

Actually D is the infinitesimal data associated to the Levi-Civi-
ta connection of the left invariant metric associated to (, ) on
any Lie group with G as a Lie algebra.

The general setting is a combination of these two extremal
cases. Indeed, let (, ) be a Riemannian metric on a Lie alge-
broid p : A — M with anchor #. For any leaf L of the charac-
teristic foliation and for any x € L,

A, =G, DG,

where G! is the orthogonal to G, with respect (, ) . The
restriction of the anchor # to gf, is an isomorphism into
T.L and hence induces a scalar product on 7L

<Ll, v)L = <(1, b>7

where a,b € G- and #(a) = u and #(b) = v. Thus (, ) induces
a Riemannian metric (, ), on L. We call it the induced Rie-
mannian metric on L. On the other hand, the scalar product
(, ), induces a scalar product on G, and we denote by D the
Levi-Civita G,-connection associated with (Gy, (, ),).

Let us precise more this situation. Fix a leaf L and consider
p.:Ar — L. We have

Ar :gL@gf

We call the elements of I'(G,) vertical sections and the elements
of T'(G;) horizontal sections. For any section a, we denote by a*
and a’, respectively, its horizontal and vertical component.
Note that the bracket of a vertical section with every section
is a vertical section. Thus, in the Riemannian point of view,
the short exact sequence

0—-G,— A, — TL

is formally identical to a Riemannian submersion. So we can
introduce the O’Neill tensors [15] (see [1] for a detailed
presentation).

We denote by 7 and H the elements of I'(4" ® 4" ® A4)
whose values on sections «, b are given by

T,b = (Dpb")' + (Dob")’ and H,b = (Dub")" + (Dub")".

The following properties of T and H follow immediately from
the definition: for any a,b € I'(4),

1 ,
Hub' = 3 [ b, (13)
Db = Tpb" + (Db"), (14)
Db’ = (Dub") + Hub', (15)
Db" = Hyb" + (Dub")'. (16)
Moreover, for any u,v € G,,

D,v = @uv + T,v. (17)

The following proposition is an immediate consequence of

(16).

Proposition 3.2. Let vy : [to, 1] — L be a smooth path and let
Y2 [to, t1] — G be the unique A-path with the base pathy. Then
y is a geodesic with respect to the induced Riemannian metric on
L if and only if y" is a geodesic of the Levi-Civita A-connexion.

The following proposition gives an interpretation of the
tensors 7 and H.

Proposition 3.3.

1. The Levi-Civita A-connection is strongly compatible with
the Lie algebroid structure if and only if T = H = 0.

2. The Levi-Civita A-connection is weakly compatible with
the Lie algebroid structure if and only if T = 0.

Proof. This is a consequence of Proposition 2.7, (14)—(16).
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3.2. Geodesic flow of a Riemannian Lie algebroid

The Riemannian structure on a Lie algebroid 4 gives arise to
an identification between 4 and A*. Thus A inherits a Poisson
structure from the canonical Poisson structure of A4*. As the
classical case (when 4 = TM), the Hamiltonian vector field
associated to the energy function on A is the geodesic flow
of the Riemannian Lie algebroid. In this section, we give a
complete proof of this fact and we generalize all the classical
notions related to the geodesic flow, namely, the Sasaki metric,
the first and second variation formulas, the Jacobi fields and
the exponential. We show that the divergence of the geodesic
flow according to the Sasaki metric is a modular cocycle and
the modular class of the Lie algebroid is the obstruction to
the vanishing of this divergence.

Let p: A — M be a Lie algebroid and (, ) a Riemannian
metric on A. The Riemannian metric defines a bundle isomor-
phism between A and A" which transport the Lie-Poisson
structure on A" into a Poisson structure say 7 ) in 4. Let
E:A4— R be the energy function given by E(a) =1(a,a)
and let Xy denote the hamiltonian vector field associated to
E with respect to ;. The following result is a generalization
of a well-known result in Riemannian geometry.

Theorem 3.4. The geodesics of the Levi-Civita A-connection
associated to () are the integral curves of the hamiltonian
vector field Xg.

Proof. Let (xy,...,x,) be a system of coordinates over an open
set U of M where A admits a basis of local sections (ai, ..., a,).
The structure functions 5”, C%, € C*(U) are given by

#a, =" b0, (s=1,....r),
[as, ] Z Cla, (s,t=1,...,r).

We denote by (g, . .., &) the linear coordinates on the fibers of
A associated to (ay,...,a,) and by (,,...,¢&,) its dual coordi-
nates on A*. Recall that the Poisson brackets on A™ are given by

{xnx} =0, {x,&}=-b" and {55,5,}:265

Put g; = (a;,a;) and denote by (g7) the inverse matrix of (g;).
The isomorphism ( , ># A" — A, the energy function and Xg
are given, respectively, by

1 | " i
(xl7~~-7xrné 7"'7ir)'_)(x17"'7xn7 i= lg lé”"'?Zi:lg”éi)’

1
E= zziifgijuhuﬂ
Xp= Zi:]{E xi}Ox, + Z/zl {E, 15}0,,-

According to (7), we must show that, for i=1,...,n and

j = 17 MR r’

{E,xi} =Y wb" and {Eu}=-> uul, (18)
k st

where I7, are the Christoffel symbols given by (12), i.e.,

)

I\)I'—‘

T =0 S0 ST, (g) + D0, (&)~ 0., (s,)

=1 u=1

X ng[ (q}gul + q:'guj + q}gui) .
u=1

1. The first relation in (18) is a straightforward computation.
Indeed,

{E,xi} = 5 Zgu{llkﬂhx} =5 ng/ td by i} + e, xi})

k.l

= ng/.“k{ﬂhx:} = nghuk{zg &jrxi}

k1

= ngg & xiy = ng,g b’

klj klj
= Z <Z gkzgli> " = Z Hkbki~
kj ! k

2. We must work much more to establish the second relation
in (18).Note first that

_1
)
x Zg”(b‘"an, () + 5" 8y, (8) — 0", (€)1t

s,tu,l

X‘t‘uwutl—j‘/\:t

u )
+3 Zg/l C rgul + Clvgm + Clrgu\):us:ul

stu/

x 3 (bwav,, (2) — 30, <g,,>)u "

s,tu,l

+ Y &2, Chu,

s,tul

We have used in (a) the fact that C' =

2{E> #j} = Z{g.mus:un :u/}
8,t

—C. Now

=3 (godmo g} + gy 1}
5.t

= (gu o 1} + gumpg 1}
8,1

+ Z ,u“ulg"’{g‘w él}

5,0

=2 Zg‘,ﬂ (o} =D &b 0y, (g - (20)

s.tlu

By comparing (19) and (20), one can see that the desired rela-
tion is equivalent to

Zgwﬂs{ﬂnﬂ/} = Zg}l =0y, (gu) + b’ an,(gsz)).u My

s,tu,l

- Zg/ 8urClybs ;- (21)

s.tu,l

Let us establish this relation. Note first that

{Hm“/} = Z {gﬂfhg/kfk}
k.,
= Z (g"d" (¢ &} + g'alen ey + & edd" &)
_ thlg/kc é + ngi b[uaw( /k)

ke, lu kdu

- > eno,, ("

k,lu

_ Zg”fkcﬂf + Zb/A ’[8 /u

ke, lu klu

—£"9,(¢")) <
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Hence
Zg.czﬂ.r{ﬂlvﬂf} = Z g.vtg”g/kcyk:“sctu
8.t

8.tk lu

+ 3 (8705, (") — 80, (8")) it

stk
Now
> ' il =Y & Clnl, =Y & Chngun,
stk s,k ,u s,t,ku

== 2. Crun,

s.tu,l

D b "0 (@)gum s =D b 0 (€")nk,

s,k lLu s,k,u

= 52,05 (&,

s,tku

= Z bSk 8.xk (guigf“ ) Ky

s,k

=) 0 (),

s.t,k,u

- Z bmgﬂaxu (glt)tumur'

s,tu,l

> b 0, (¢gun s = = > b0 (g,)8" 1,

s,k lLu s,k lLu

= ) 0 (88" iy

KRN NETN]

= — Z b/kgjlax,, (g.vr)ﬂsﬂl

s,t,k,l

== Z blugﬂax,, (g.sl)iusﬂl'

s,tu,l

Thus we get (21) and the theorem follows. [

The flow of the Hamiltonian vector field X5 is called the
geodesic flow of (, ).

Remark 3.5. Let p: 4 — M be a Riemannian Lie algebroid.
Then:

1. For any leaf L, the geodesic vector field X is tangent to A,
and to G, for any x € L. This follows from the fact that geo-
desics are A-paths.

2. From Proposition 3.2, one can deduce that, for any leaf L,
the geodesic vector field Xz is tangent to gj.

Corollary 3.6. Let p: A — M be Riemannian Lie algebroid.
Then

1. If L is a compact leaf then the geodesic flow is complete in
restriction to Ay.

2. If M is compact then the geodesic flow is complete and for
any leaf L the induced Riemannian metric { , ), is complete.

We will now construct an analogous of the Sasaki metric on
A and study the divergence of the geodesic flow with respect to
this metric. Actually, the Sasaki metric is not defined on 4 but
only on A; where L is a leaf of the characteristic foliation.

Let p: A — M be a Riemannian Lie algebroid with anchor
#. Fix a leaf L, consider p; : A, — L and put VA, = Kerdp,.

For any a € A;, we consider the subspace H* A4, of T,4,
consisting of the tangent vectors ¥V, such that there exists an
horizontal A-path «:[0,1] — G, satisfying p(x(0)) = p(a)
and V, = :7';“:0‘5;(61)7 where 1, is the parallel transport along
o. We have

TAL :VAL@HLAL. (22)

Indeed, we define K: TA; — A; as follows. Fix a € A; and
Z e T,A; and choose f:[0,1] — A, such that $(0) = a and
B(0) = Z. There exists an unique horizontal A-path
o:[0,1] — G; with the base path p o f(z). Put

K(Z) = (D*P)(0).

It is easy to check that K is well-defined, KerK = H* 4, and,
for any Z € VA;, K(Z) = Z. Then the relation (22) follows.

Let (xi,...,x;) be a system of local coordinates on an open
set Uin L and (ay,...,a,) is a basis of local sections (over U) of
Ayp. This defines a system of coordinates (xy, ..., Xy, fy, ..., 1)
on A, and if Z = Y7 b0, + 3,70, then

K2)=Y" (zz +3 aiﬂ;F§,> a, (23)
! ij
where dp; (Z) = #(3_,%a;) and Y wa; € Gy

Remark 3.7. In general, the geodesic vector field does not lies
in KerK. Indeed, one can check easily that for any a € A,

K(Xg(a)) = —Dpa.
We define the Sasaki metric on A, by

gL(ZtH Za) = <dap(Za)7 dap(za)>L + <K(Zﬂ)7 K(Zfl)>

The projection p, : A, — L becomes a Riemannian submer-
sion. We consider now the Liouville vector field 7 on A,
which is the vector field generating the flow ¢,(a) = ¢'a. By di-
rect computation one can get

(7, Xg] = Xe. (24)

From this relation, one deduce that X preserves the Riemann-
ian volume on A, associated to g, if and only if X preserves
the Riemannian volume of the restriction of g; to the spheres
bundle UA; = {a € A;;(a,a) = 1}. Let us compute the diver-
gence of the geodesic vector field with respect to g, .

Theorem 3.8. The divergence the geodesic vector field Xg with
respect to the Sasaki metric g; is given by

div(Xg)(a) = Trad, + (d", N), (25)

where ady : Gyay — Gpa), b — [a",b] and N =, Tyb; where
(bi,...,by) is any orthonormal basis of G,y and T is the O’ Neill
tensor.

Proof. Denote by / the dimension of L and choose a system of
local coordinates (xp,...,x;) in some open set U of L. Choose
(ai,...,a) an orthonormal basis of sections of G; — U and
(by,...,b,—;) an orthonormal basis of sections of G, — U.
We get a system of coordinates (x,u) in A;. Put, for any
i=1,...,1
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#(a,) = Zpija‘c; and Z'= Zpijax‘/ - Z(Z :ujr‘f'j)am'

j j [
By using (23), one can check easily that K(Z')=0 and
K©,)=a for i=1,...,1 and K(,)=25b  for
i=I1+1,...,1—r. Moreover (Zl,...7Z’78M,...,0,LF) is an
orthonormal frame of g, and hence

div(Xy) = ZgL (2, Xz, Z) +ZgL (04, X£),0y).

Recall that

XE—ZP w0 — > o, T,0

Jsit

So, for 1 <j <,

[0y, XE] = Zp” ., Z,u, (T3, + T30,
gr([0y, X&), 0,) = (K([0,, XE]), K ZM;FI/ZO,
since F/U = (D,aj,a;) = —(a;, D,,a;).
Forj>/+1
[0y, Xz] = Zy, F’+F’ s
8.([04, X&], 0 ZM/
Hence

ZgL au, Xgl, au, =

-3 > ur,

j=lH+1 0t
Y S umas) - ¥
I+l = Jj=l+1
X Z 1,(Dy,bs, by)
=141
= {d", Z Dyb;) — Z (Dy,a’, b))
j=l+1 Jjzi+1
— (3 Tk = S (lba) by
J=l1 JjzH1

= {(d",N) + Trad,.

On the other hand, one can see easily that

/
Xp = ZmZ" Z D w0y =Y wZ+ V.
k=1

J=1 s=i+1
Note that V' is vertical and since, for any i = 1,...,/, Z' is basic
(with respect to the Riemannian submersion p, : 4, — L) then
[Z',V] is vertical. Note also that, for any i,k=1,...,/
dp,([Z',Z"]) = ([ai,ak}). Hence

ZgL ([Z', Xe], Z Zé’L (Z #/(Z] z)

_ZZZ :ul +Zﬂk al7ak #ai>L

ik

*ZZ’ U;) +Zﬂk [anak ,a;)
ik
= ZZ[(.HL) + Zﬂk([a[vak}vao

= —Z#krm + Z”k i =0.

ik

Finally, we get the desired formula. O

The following proposition gives an interesting interpreta-
tion of divXy, namely divXy is a modular cocycle.

Proposition 3.9. Let p: A — M be a transitive Riemannian Lie
algebroid such that both A and TM are orientable. Denote by
L eT(APA) and v € T(APT*M), respectively, the Riemann-
ian volume associated to (,) and the Riemannian volume
associated to ( , },, then

D ®v) = div(Xp) (@ v),

where D* is the canonical representation of A. Thus div(Xg) is a
modular cocycle.

Proof. Choose a local orthonormal basis (ay,...,a,) of sec-
tions of gj and a local orthonormal basis (b, ...,b,_,) of sec-
tions of G;. Recall that

DIA®V)=[a, ] @V + 1@ LywV.

Now

la,4] = (Z (0, ) "z'fqa,bi],bo)z,

i=1 i=1

= <.i<[ah7 al,a;y + i([a, bil, b,<)> A,

On the other hand,

r—n r—n r—n

an’ bi]vbi> = Z([av’bi}vbo + Z([ah?bi]’bi>

r—n

= Trad, + Z(ah, Dy, b;)

i=1
(@ T,by),
i=1

which completes the proof. [

ey rad,

Remark 3.10.

1. If 4 = TM then div(Xz) = 0 and one recover the classical
Liouville Theorem.

2. If 4 is a Lie algebra then div(Xg) =0 if and only if 4 is
unimodular.

3. If 4 is a transitive unimodular Lie algebroid then there
exists a Riemannian metric on A such that div(Xz) = 0.

We will now establish the first and the second variation for-
mulas in the context of Riemannian Lie algebroids.

Let p : A — M be a Riemannian Lie algebroid with anchor
#. For any A-path o : [0, 1] — A, the energy and the length of
o are given, respectively, by
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E(a):%/o (a(),0(2))dt  and E(m):/o VAa(t), at))dt.

For any m, g lying in the same leaf of the characteristic folia-
tion, we denote by Q,, the set of A-path o such that

p((0)) = m and p(a(1)) = ¢.

Proposition 3.11 (First variation formulas). Let p: A — M be
a Riemannian Lie algebroid. Then:

1. For any variation of A-paths o :[0,1] x [0,1] — 4 and for
any B a transverse variation to o, one has

d

SE@) = (B, 1).5(6, 1) = (8(,0).5(.0)) = [ (8. D)

— /01 (A(a, B), o)dt.

2. The h-critical points of E : Q,, — R, namely the A-paths o
such that

d
TE@), =0

for any A-homotopy o in Q,, starting at oy, are geodesics.

3. For any variation of A-paths o such that o, is parameterized
with arc-length,

d d
%E(O‘)\G:o = Eﬂ(“)\fzw

4. An A-path oy € Q,,, is h-critical for L, namely
4
de
for any A-homotopy in Q,,, starting at o, if and only if there
exists a change of parameter p such that the A-path
&y = Wao(u) is a geodesic.

L(et)zg =0

le=

Proof.

1. Let us compute £ E(o). We have

d 1d [! 1 ['d !

%E(ME)ZE&/O <a’a>dt:§_/0 &(a,a)dt:/o (D.o,00)dt
:/1<D,[3,oc>a’t—/I(A(oc,ﬁ),ot>dt (Proposition2.10)
= [Cotpapa= [ gDy~ [ ap).2a
— (Be 1).ale, 1) — (B(e,0),(c.0)) / (B Do)t
7/0 (A(a, B), o)dr.

Analogously one can get

Lo = [l o (p.a)a

- / (a2 ((, D)

- / 22 (Ao, ) o). (26)

0

2. Let oy be geodesic and let « be an 4-homotopy with fixed
end-point starting at op. Then there exists a transverse var-
iation f to o such that f(e,0) = (e, 1) = 0 and A(«, f) = 0.
Hence from 1, we get

d

deje=0 (2) =0
Conversely, suppose that o is an 4-path which is a h-crit-
ical point of E:Q,, — R. Consider the oy-section
Bo(t) = f(t)D,oy where f:[0,1] — R is a smooth function
such that f(0) = f(1) = 0. According to Lemma 2.12, there
exists an A-homotopy o with fixed end-points and starting
at oy and such the corresponding transverse variation /3
satisfies f§(0,¢) = f,(¢). By applying the formula in 1., we
get

8
0= / F0(D 10, Dyt )t
JO

and hence D,0p = 0 which means that o is a geodesic.
3. This is a consequence of (26) and |u| = 1.
4. Immediate from 2. and 3. O

Proposition 3.12. Second variation formulas). Let p: 4 - M
be a Riemannian Lie algebroid. Then the following assertions
hold.

1. For any variation of A-paths o such that oy is a geodesic and
for any B a transverse variation to o such that A(x,f) =0,
one has
P
EE(OC)%:O = <D(ﬂ(0, 1)7 06(0, 1)> - <'D5ﬂ(0, 0)7 OC(O, 0)>

1 1
+A <Dzﬁ07Dtﬁ0>dt+/(; <ﬁ07R(O(0,ﬁO)O(0>dt.

2. Let a be an A-homotopy of A-paths such that oy is a geodesic
and let [ be the corresponding transverse variation. One
has
P 1 1
B o= [P DEY+ [ (B R o)

3. Let o be a variation of A-paths such that oy is a geodesic
parameterized by arc length and let B a transverse variation
to o such that A(a, f) = 0. One has
d2

?ﬁ(a)‘ezo = <D5ﬁ(0, 1)7a(07 1)) - <Dfﬂ(070)7 OC(O, 0)>

+ / (Do, i) + / (Bo. R(co, Bo)o)
1
- / (0, D)t

4. Let o be an A-homotopy of A-paths such that o is a geodesic
parameterized by arc length and let 8 be the corresponding
transverse variation. One has

2 1 1
Lo o= [ (DB DB+ [ (B R o)

- 1 (o, D, o) dt.
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Proof.

1. From the first variation formula, we have

) = (Ble 1) a(e D)~ (B0 e.0) — [ (gD
Then
& E() = (Df(e. 1), ol ) + (Ble. 1), Desle, 1)

- <D6ﬁ(€7 0)7 06(6, 0)> - <ﬁ(€’ 0)7 DE“(@ 0))
- / (DDl — / (DDl

1 1
/<ﬁ7DeDrd>dt:/ <ﬁ,D,DEO(>d[
0 0
1
+/ (B, R(B,x)a)dt (Proposition2.10)
-10 ol
— [ otspanai~ [ g Dajar
JO 0

+ [ R(p 2
= <ﬁ(€7 1)7 'DFO((G, 1)) - <ﬁ(€1 0)7D5a(€1 0)>

gt

1
—/Xamnmm+/<mmnwwﬁ
0 JO

Hence

& B() = (Dp(e, 1), 2(e,1)) ~ (Df(e,0), (e, 0))

f/VaAu@w+/Yanamm
0 0

+/0 (B, R(a, B)orydr.

2. In this situation, we have D (e, 1) = D.f(e,0) = D,a =0
and the formula follows:3 and 4 are left to the reader. [

As an application of Proposition 3.11 2, we give now a
description of the geodesics of a left invariant Riemannian
metric on a Lie group using the geodesics of its Lie algebra
considered as a Riemannian Lie algebroid.

Let G be a Lie group and G = T,G its Lie algebra. For any
u € G, we denote by u™ the associated left invariant vector field
on G. Suppose that G is endowed with a left invariant Rie-
mannian metric g and put (, ) = g,. If we think G as a Lie
algebroid, (G, (, )) is a Riemannian Lie algebroid and we will
explain how one can construct the geodesics of (G, g) from the
geodesics of (G, (, }). Choose a basis (ey,...,e,) of G and put
g; = (e, ¢;) . Recall that the geodesics of (G, (, )) are the inte-
gral curves of the geodesic vector field Xz given in the linear
coordinates (x,...,x,) associated to (ey,...,e,) by

Xg=— Z xxx,Fi,,@x/,

st

where I”, are given by

. 1 .
r{y[ = E [Zglj(gulc(gt +gulcz +guvc;‘1)
u

Here (g7) is the inverse matrix of (g;) and Cf] are given by
lei, ej] = >, Ciieu.

Proposition 3.13. Let h€ G and v € T;,G. Then the geodesic
y:R—G of (G,g) satisfving y(0)=h and 7(0) =v is the
integral curve passing through h of the time-depending family of
left invariant vector fields (o (1)),cp Where o: R — G is the
geodesic of (G, (, )) satisfying «(0) = (L,f;)*(v).

Proof. Note first that by invariance the integral curves of
(o*(#)),ex are complete. Note also that both (G,g) and
(G, (, )) are geodesically complete. Let y : R — G be the inte-
gral curve of (a* (1)), satisfying y(0) = #. We have

7(0) = o7 (0) = (Ln), ((0)) = (Ly o L), (v) = v.

We will show that for any 7,7, € R, the restriction of y to
[t1,t] is a critical point of the energy functional E, : Q — R
where Q is the space of smooth curves u : [, ;] — G such that
u(t1) = (1) and p(6r) = y(t).

Let 7 :[0,1] x [t;, 2] — G be an homotopy with end-fixed
points such that 7(0,.) = y. It is well-known (see [7]) that the
variation & : [0, 1] x [t1, ] — G given by

a(e, 1) = (Lﬂe‘z)*’ ) (g (© [))

is a G-homotopy. Moreover, &(0,.) = « and, by invariance,
E,(7) =E( ,(@). By applying Proposition 3.11, we get
LE( (&),o = 0. Thus, £E,(7)._, =0 and, by applying the
classical result on geodesics of Riemannian metric we deduce
that y is a geodesic. [

Remark 3.14. If the Riemannian metric g is bi-invariant then
l"ffi = %Cf‘/ and hence X vanishes identically. We deduce from
Proposition 3.5 that the geodesic of (G,g) passing through
h € G and with initial velocity v € T;,G is the integral curve
(passing through /) of the left invariant vector field (L, 1,(v))™.

Let us define now Jacobi sections along a geodesic.

Definition 3.15. Let 4 be a Riemannian Lie algebroid and
a:[0,1] — A a geodesic. A Jacobi a-section is an a-section f§
which satisfies

ﬁ” - R(“? ﬂ)a = 07

where f§' is the derivative of f along o and so on.

Proposition 3.16. Let o : [0, 1] — A be a geodesic in a Riemann-
ian Lie algebroid A. Then for any a,b € A,y0)) there exists one
and only one Jacobi a-section such that B(0) = a and f'(0) = b.
If B(0) =0 and B(0) = ka(0) then B(t) = kta(t) for any t. If
B(0) and B'(0) are orthogonal to u(0), then B(t) is orthogonal
to o(t) for any t. In particular the vector space of Jacobi o-sec-
tions has dimension 2r and the subspace of Jacobi o-sections
which are normal to o has dimension 2(r — 1).

Proof. Take an orthonormal basis (ay,...,a,) of Apu) such
that a; = ko(0). The parallel transport along o of the vectors a;
gives a basis of orthonormal a-sections (sy,...,s,) with
sy = ko. Every Jacobi a-section f§ is a linear combination of s;,
say i = >y, whose coefficients satisfy the differential system
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= Z( R(a,57)a,5;) y; = 0.
=
For given initial conditions f(0) = a and p/(0) = b, the exis-
tence and uniqueness of f§ come from standard results about
linear differential systems.
If B(0)=0 and p'(0) =ka(0) then p(¢) = kta(t) since
B'(1) =0

The condition $(0) and f'(0) to be orthogonal to o means
that y;(0) = 0 and | (0) = 0. In that case y,(¢) = 0 for any ¢,
since y"(r) =0. O

Proposition 3.17. Let oy : [0,1] — A be a geodesic, and o be a
variation of oy such that all A-paths o(e,.) are geodesics. Then,
for any transverse variation f§ of o such that Alo, f) =0, B, is a
Jacobi ay-section. Conversely, every Jacobi oy-section can be
obtained in this way.

Proof. We have

/))g(t) = DIDIB(07 [)'

Performing the two exchanges of ¢ and ¢, we get from Propo-
sition 2.10

g(t) = DIDEa(()? t) = DED/a(O’ t) + R(aOa ﬁ())a()'

Since the A-paths ¢, are geodesics, the first term vanishes and
we get

g = R(do, /’)0)“0~

Conversely, take a Jacobi og-section b and the geodesic ¢ such
that ¢(0) = b(0). Take parallel sections s, and s, along ¢ such
that so(0) = a(0) and 5,(0) = 5'(0). Set

s(e) = so(e) + esi(e) and a(e, 1) = ¢,(s(€)),

where ¢, is the geodesic flow. Consider the transverse variation
f to a such that f(e,0) = c(e) and A(a, f) = 0. We will show

that f5(0,.) and b coincide. Remark first that these two «g-sec-
tions satisfy the same differential equation namely

V" — R(ag, y)org = 0.

Since 5(0) = (0, 0) = ¢(0), let us show that D,$(0,0) = 5'(0).
Since D,ff = D.a, we have D.0(0,0) is the value at 0 of the
derivative of the curve a(e,0) along the A-path f(e,0). Or
a(e,0) = s(e) and B(e,0) = c(e) and we get
D.a(0,0) = 5,(0) =4'(0). O

As the classical case, the Jacobi sections can be used to
compute the derivative of the exponential which can be defined
as follows. Let p : A — M be a Riemannian Lie algebroid. Fix
a point m € M and denote by L the leaf containing m. We de-
fine the exponential

exp,:UCA,—L

where U, = {a € 4., () is defined}  and
po¢(a) (¢ is the geodesic flow).

exp,, (%) =

Proposition 3.18. We have

deexp,, (u) = #(p(1))

where f is the Jacobi section along t—¢,(a) with initial condition
B(0) = 0 and B'(0) = u.

Proof. We have

duexpy () = (g (a+ ca).

€le=0
We consider the variation of geodesics (e, ) = ¢,(a + eu) with
fixed initial point. We consider the transverse variation f such
that f(e,0) = 0 and A(x, f) = 0. We have that f3, is a Jacobi ay-
section such that f,(0) = 0 and #(B,(1)) = £,_p(¢:(a + eu))
by construction. [

As the classical case, we define the sectional curvature of
two linearly independent vectors a,b € 4,, by

( R(a,b)a,b)

K(a’b):_(a7a>(b7b> “{ab)?

Proposition 3.19. Let p: A — M be a Riemannian Lie alge-
broid. If the sectional curvature is everywhere nonpositive then
exp,, is a submersion for every m € M.

Proof. Fix a € 4,, and let 7 be the space of Jacobi sections f3
along a(¢) = ¢,(a) such that $(0) = 0 (¢ is the geodesic flow).
We define the linear application

¢ To = Apg (e

by &(f) = p(1). We will show that ¢ is injective and hence an
isomorphism since dimJ{ = dimA,4,(,,)). Suppose that
p € J; satisfies p(1) = 0. The function f: [0,1] — R given by
S(t) = (B(1), p(1)) satisfies
I(6) =2(B'(1), B(1)),
J'(8) = 2(B'(2), B (1)) + 2(B" (1), B(1))

=2(B' (1), B (1)) + 2(R(a(t), B(1)) (1), B (1))

Hence f > 0 and since f{0) = f{1) = 0 we deduce that f van-
ishes identically and then f = 0. This shows that ¢ is injective
and hence an isomorphism. From Proposition 3.18, one can
identify Kerd,exp,, with &' (G, () and the proposition fol-
lows. O

4. O’Neill’s formulas for curvature

Let p: 4 — M be a Riemannian Lie algebroid. The different
curvatures (sectional curvature, Ricci curvature and scalar cur-
vature) can be defined as the classical case (when 4 = TM).
For any leaf L, the short exact sequence

0—-G, — A, — TL

is formally identical to a Riemannian submersion and hence all
formulas on curvature given by O’Neill are valid in this con-
text. We denote by K, K and K, respectively, the sectional cur-
vature of the Riemannian metrics (, ), the restriction of (, )
to G, and the induced metric on L. The following proposition
is a reformulation of Corollary 9.29 pp. 241 in [1].

Proposition 4.1. Let o, f,51,5 € T'(AL) such that o, are
vertical, si,s, are horizontal and |oAB|=1, |s1| = |a| =1,
|s1 Asa| = 1. Then

K(G(,ﬁ) = I?(OC, ﬁ) + |T7ﬁ|2 - <T10(7 T/iﬁ>7
K(Sha) = <(DX| T)DCOC,S1> - ‘Tlsl‘ + |HTIOC|27
K(si,52) = K(s1,52) = 3|H, )"
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The last formula says that the leaves carry “more curva-
ture” than the Lie algebroid and by applying Mayer theorem
(see for instance [1]) we get:

Proposition 4.2. Let A — M be a complete Riemannian alge-
broid and let L be a leaf of the characteristic foliation such that
for any linearly independent horizontal sections sy,s, over L,
K(s1,52) = k. Then diamL < N/ and hence L is compact.

There is another case when one can apply Mayer theorem.
Consider a Riemannian Lie algebroid p : 4 — M such that the
O’Neill tensor T vanishes and fix a leaf L and denote by r and 7
respectively the Ricci curvature of the Riemannian metrics ( , )
and (, ),. The formula 9.36¢ pp.244 in [1] applies in our con-
text and gives

/

"(S|7S2) = F(#(sl)7 #(‘52)) - ZZ<H51(I,~7 chai>

i=1

where (ay, ..., a) is any orthonormal basis of G;. By applying
Mayer theorem (see for instance [1]) we get:

Proposition 4.3. Let A — M be a complete Riemannian alge-
broid such that T =0 and let L be a leaf of the characteristic
foliation such that there exists a constant k such that the
restriction of r to gi satisfies

rzm-DE2(,).

Then diamL < ﬁ and hence L is compact.

5. Integrability of Riemannian Lie algebroids

In this section, we show that a Riemannian Lie algebroid such
that the O’Neill tensor H vanishes is integrable and we give a
large class of Riemannian Lie algebroids which satisfy this
condition.

A groupoid is a small category C in which all the arrows are
invertible. We shall write M for the set of objects of C, while
the set of arrows of C will be denoted by C. We shall often iden-
tify M with the subset of units of C. The structure maps of C
will be denoted as follows: s,t:C — M will stand for the
source map, respectively the target map, m:C’ =
{(g,h);s(g) =t(h)} — C the multiplication map (m(g,h) =
gh), i:C—C (i(g)=g"') for the inverse map and
u: M — C (u(x) = 1,) for the unit map. Given g € C, the right
multiplication by g is only defined on the s-fiber at t(g), and
induces a bijection

Ry 57 (t(g)) — s (s(g))-

A Lie groupoid is a groupoid C, equipped with the structure of
smooth manifold both on the C and on the M such that all the
structure maps are smooth and s and t are submersions.

The construction of a Lie algebra of a given Lie group ex-
tends to Lie groupoids. Explicitly, if C is a Lie groupoid, the
vector bundle 7°C = Ker(ds) over C of s-vertical tangent vec-
tors pulls back along i: M — C to a vector bundle 4 over
M. This vector bundle has the structure of a Lie algebroid.
Its anchor # : A — TM is induced by the differential of the
target map, dt : TC — TM. The sections of 4 over M can be
identified by the space of right invariant s-vertical vector fields
which induce a Lie bracket on the space of sections of 4. With

this construction in mind, one can see that a Riemannian
structure on A4 is equivalent to the data of a Riemannian metric
on any s-fiber such that, for any ge€C,
R, :s7!(t(g)) — s7'(s(g)) is an isometry. In this case, for any
X€EM, t:s!(x) — L, is a Riemannian submersion where
the leaf L, is endowed with the metric defined in 3.1.

A Lie algebroid 4 is called integrable if it is isomorphic to
the Lie algebroid associated to a Lie groupoid. In [7], Crainic
and Fernandes give a final solution to the problem of integra-
bility of Lie algebroids. They show that the obstruction to inte-
grability can be controlled by two computable quantities.

The following proposition is a direct application of Crai-
nic—Fernandes results on integrability.

Proposition 5.1. Let p: A — M be a Riemannian Lie algebroid
such that H= 0. Then A is integrable.

Proof. For any leaf L, the vanishing of H implies, according to
(13), that the space of sections of G; — L is a Lie subalgebra of
I'(A;) and hence there is a splitting o : TL — A; of the
anchor, which is compatible with the Lie bracket. By applying
Corollary 5.2 in [7], we get the result. [

There is a large class of Lie algebroids for which one can
apply this result. Let (M, ) be a Poisson manifold. The cotan-
gent bundle 7" M carries a structure of a Lie algebroid where
the anchor is the contraction by 7, ny : T"M — TM and the
Lie bracket is given by the Koszul bracket

[, B] = En#(oc)ﬂ — En#(ﬂ)oc —dn(o, )

where o, f € Q'(M). Let (, ) be a Riemannian structure in
T*M. In [3], the author studied the triple (M, x, (, )) such that
n is parallel with respect the Levi-Civita T M-connection D. A
triple (M, =, ( , )) satisfying Dr = 0 is called Riemann—Poisson
manifold. The condition Dr = 0 implies that Kerny is invari-
ant by parallel transport and hence D is strongly compatible
with the Lie algebroid structure of 7M. By using Proposition
3.3, we deduce that H = 0. So we get the following result.

Corollary 5.2. Let (M, =, (, }) be a Riemann—Poisson manifold.
Then the Lie algebroid structure of T*M associated to w is
integrable.
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