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We start with the Heisenberg—Weyl algebra and after the definitions of the Fock states

we give the definition of the coherent state of this group. This is followed by the exposition of the

Lie algebras;
Quantum states

SU(2) and SU(1,1) algebras and their coherent states. From there we go on describing the binomial
state and its extensions as realizations of the SU(2) group. This is followed by considering the neg-

ative binomial states, and some squeezed states as realizations of the SU(1,1) group. Generation
schemes based on physical systems are mentioned for some of these states.
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1. Introduction

With the advances in the field of quantum optics which began
with the 60s, group theory started to infiltrate in this branch.
Groups involving simple Lie algebras such as SU(2) and
SU(1,1) and their simple generalizations have been used to
study different aspects in quantum optics. However, the use
of the theory of groups in quantum mechanics started with
the early days of that theory. Weyl’s book that was first pub-
lished in German in 1928 [1] is a standing witness on this.
Wider dimensions in various branches of physics benefited
greatly from the use of the group theory.

Some states used in the field of quantum optics as realiza-
tions of the SU(2) or SU(1,1) groups are reviewed. We start
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by some preliminaries about the annihilation and creation
operators and the number operators which constitute the cor-
ner stones of the Hesenbeg-Weyl algebra, then their eigenstates
and their coherent states are defined. The familiar algebras of
the SU(2) and SU(1,1) are introduced. Then some quantum
states which are realizations of the SU(2) are reviewed in Sec-
tion 3. Section 4 is devoted to states as realizations of SU(1, 1)
group. Some comments are given about the generations of
some of these states through physical processes.

2. Preliminaries
2.1. The harmonic oscillator

In the study of the harmonic oscillator, the following operators

are introduced: the annihilation operator & the creation oper-

ator a' and the number operator 71 = a'a. They satisfy the com-

mutation relations

[a,a'] =1, [nd']=d, [nad=-a (1)
The eigen-states | n) of the number operator # are called

Fock states or number states. They satisfy

fln) = nln). 2)
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The non-negative integer n can be looked upon as the num-
ber of particles in the state. When n = 0 we call| 0) the vacuum
state with no particles present.

The operations of ¢ and a' on | ny are given by

aln) = nn = 1), d'n) =vVn+1n+1). (3)

The states {| n)} form a complete set and resolve the unity

S ndnl = L 4)

2.1.1. Coherent states
The coherent state | o) can be looked upon as an eigenstate of
the operator «a such that

alo) = ofa). (5)

Also, it can be produced by applying the Glauber displace-
ment operator which is a unitary operator on the vacuum state
[0) [2.3].

) = D(2)|0) = exp(aa’ — o*a)|0).

This is the coherent state of the Heisenberg—Weyl group
[4,5].

This state, which is a superposition of infinite series of the
Fock states with their distribution being Poissonian. It is given
by its expansion in the number state as

-y — ot %
|oc) n;c,,|n>, C,=e N (6)

This state describes to a great deal the laser field where the
phase is fixed while the number is not. The sates {| «)} are over-
complete and they satisfy [ |o) (| "27“ =1

2.2. The angular momentum (SU(2) group)

The angular momentum defined as 7 x p as well as the spin, are
described by the three operators Jy, J,, and J. which satisfy the
commutation relations (we take h = 1)

[‘IX7‘],\"] = iJza [J,\WJ:} = i-]m [J:7Jx] = in7 (7)
with
P =L+ +

which commutes with each component. Raising and lowering
operators are introduced through the relations

Jj: = Jx + l,]}
Hence the commutation relations (7) become
[(Jo,Je] =+£Jr and [J4,J-]=2J.. (8)

The simultaneous eignestates of the operators J. and J* de-
noted by | j,m) are given from [5,6]

and J.

Plj,m) = j(j + 1)|j,m) j,m) = mlj,m), 9)

with | ml < j, j half integers.
The operations of J, and J_ on | j,m) are given by

(10)
J_ljm)y=/(G+m)(j—m+1) |[jm—1).

The operators J, are the generators of the group SU(2). The
angular momentum coherent state is defined by the action of
the rotation operator

R(0,¢) = exp Bo(e-fm - eid’J_)}, (11)

on the state | j, —).
The angular momentum coherent state | 0, ¢) is given by

m,¢>:§<o,¢)v,—j>:(cos%o) > (/21 m) <tan%()e’i‘/’> o).
(12)

They resolve the identity operator on the space with total
angular momentum j as follows
2j+1
4n

/Zﬂ / sin 0 d0dg|0, $)(0, ¢| = I. (13)
0 0

2.3. The SU(1,1) group

The notion of coherent states can be extended to any set of
operators obeying a Lie algebra. The SU(1,1) is the simplest
non-abelian noncompact Lie group with a simple Lie algebra
(For a comprehensive review we may refer to [6] and the recent
review book [7]).

The SU(1,1) algebra is spanned by the three operators Kj,
K5, K3 which satisfy the commutation meatiness

K, K] = —iK;,  [Ky, K3l =Ky, [K;, K] = iKs.

By using the operators K. = K| £ iKj,, hence

(K3, K:] =+K. and [K, K. ]=—2K;. (14)
The Casimir operator C*> = K3 — K} — K3 has the value

C? = k(k — DI for any irreducible representation. Thus, repre-

sentation is determined by the parameter k£ which is called the

Bargmann number. The corresponding Hilbert space is

spanned by the complete orthonormal basis { k,n)} which
are the eigenstates of C? and Kj, such that

(k,nlk,m) = 8,, and > |k,n){k,n| = 1.
n=0

The operations of the operators K. and K5 on | k,n) are gi-
ven by [5]

K. Veyn) = /G D)2k ) [keon + 1)

K |k,n)=/n(2k +n—1)|k,n—1) - (15)
K3|k7 I’l) = (k + n)lkv I’l>

The ground state | k,0) satisfies K_| k,0) = 0 while

I'(2k)

Ve, m) = n'T(2k + m)

K[k, 0).

There are two sets of coherent states related to the SU(1,1)
group namely:

(i) The Perelomov coherent states.By applying the unitary
operator
DPer(é) = eXp (6K+ - é*K7)7
on the ground state | ,0) to get [2]



Some quantum optical states as realizations of Lie groups

41

|°‘ k>."er =Dper (C)‘k 0

T (2k +n)
(I—o \ o |k,ny,  (16)
; n!l'(2k)

with & =1 de”, « = (tan hl d)e.(95)
(i) The Barut-Girardello coherent states It is defined as the

eigenstate [7]

K_ o k) g = oo, k) g

which can be expressed as

O(szrl oo ot
o Kk) e = k,n). 17
12K Ly (2)a) ; T (n + 2Kk) fesm). (17)

I(x) is the modified Bessel function of the Ist kind.

After this very quick review of these preliminaries we look
at some states which are realization of the SU(2) and SU(1,1)
groups.

3. SU(2) realizations

We look at some states which can be looked upon as realiza-
tions of SU(2) group.

3.1. The single mode Binomial state

These states are of the form [8]

M—n
=S\ (2 -y, (18)
n=0
MezZt neC,lyl?<1

They have the photon-number distribution (probability of
finding n photons) as

Pl = (¥ Y

which is the binomial distribution.
They are the eigen states of the operator [7]

B=nd'a+1\/1—[n’VMI- daa,

with the eigen-value nM, i.e.
BIM.n) = nM|M,n). (19)

We may note the vacuum, Fock and coherent state as lim-
iting cases of this state [7,8].

As it is mentioned in Section 2.2 when we looked at the
SU(2) representations, the angular momentum operators J sat-
isfy the relations (7); and the SU(2) coherent states which is de-
fined as the action of the rotation operator (11) on the ground
state. Hence Eq. (12) is the SU(2) coherent state. Thus when
we take n =sinle ™ and take n = + m and M = 2j, the
binomial state |2/,sin%e ) is the coherent state of the SU(2)
group.

This state can be generated through the following scheme.
An atom under a classical magnetic field B has the interaction
Hamiltonian H = —J - B with the field along the direction x.
Under this Hamiltonian the state| j,—j) evolves to the binomial
state. The evolution operator U(z) is given by

U=exp—itH=-expitB(J, +J_).

Then | (1)) = Ulj,—j) is the coherent state (12) with
0 = 2Bt and ¢ = —3.

3.2. Finite dimensional pair coherent state

It may be termed as the two-mode binomial state | £, ¢). It can
be defined as the eigen state of the operators (a*b + St “bw)

and (a'a + b'b) where a,b are annihilation operators for the
two modes. The states satisfy the eigen value equations [9].

Gw+g%%il>&@—éf>;wM+me@=ﬂé@7(%)

and takes the form

q
Zé unu ‘qfn ),

This is a type of the entangled states where we find (¢ — n)
particles in 1st mode and () particles in the 2nd mode.
When we define

i i i T
Jx:afb—‘-ab’ Jy:cﬁb—'ab7 zza'a—bby
2 2i 2
which are the generators of the SU(2) group. Hence the
raising and lowering operators are J, = J, + iJ, = a'b,
J_o=J.—il, = ab".

Thus is the state (21) are the coherent states of SU(2) when
we label ¢ = 2j and identify the states {| jm — j)} as the states
{l ¢ — n.n)}. This state can be generated as demonstrated in
Ref. [9,10].

e = cl)

n=0

(22)

3.3. Nonlinear two-mode binomial state

An extension to the earlier state is performed by introducing
the nonlinear finite dimensional pair coherent state as the eigen

state satisfying
1 )
47na) Falm) b )

fi(na)a bfs () + & ( o

1<,q),=¢1E,q),,  (23)

and

(nn+nb |£7 > q‘é7

with the usual notation.
It is expanded in the Fock states for the two modes as [10]

&), }jed g =) (24)

with f(n)! = f0)- f(1) ... f(n) and f(0) =
In order to relate these states to SU(2) group realization, we
introduce the operators

fi(na)alfu(np)b+afy ! (na)bf5 " (np)

Jx = 2 )
fi(na)afo (np)b—afy (na)b 15 () (25)
J),: 1(na)a fulny 2‘,~l a)D'fy (1 , Jz_m,zn;,
which satisfy the relations [J\,J,] = iJ., [J,,J.] = i/, [J.,J,] =

iJ,. Note that neither J, nor J, is hermitian, hence we define
1 b 1 7

Si(na) ~ fa(ny)

consequently [J.,.J.] = £J., [J+,J_] = 2J.

J. = filn)a'fa(np)b, J_=a
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These operators can be thought of as generators of an ex-
tended SU(2) group. When we take 2j = ¢ and the states
{lj,;n — )} to correspond to {| ¢ — nny}, then we get an ex-
tended SU(2) coherent state similar to Eq. (24). Some proper-
ties of these states may be found in Ref. [10] and also a
generation scheme.

4. SU(1,1) Realizations

There are a large number of states that can be termed as real-
izations of the SU(1, 1) group reviewed in Section 2.3. Here we
mention some of these states.

4.1. The negative binomial states

This state is defined as the Fock state expansion [11]

1M, 8), fj\/ 1) ). (26)

n=|

This state follows the negative binomial distribution for the
photon number distribution

pny = VL

The special case of M = 0 is the Pascal distribution or the thermal
distribution. The state (26) interpolates between the pure thermal
state and the coherent state (¢ =0, M — oo, M| 42 -] 2,
hence it is termed as an intermediate state.

The SU(1, 1) realization can be achieved by introducing the
operators

K. =dvMI+n K =vVMI+hna,

which are the raising, lowering and generators of the SU(1,1)

group.
Thus the unitary evolution operator D(i)) = exp(nKy —n"
K_) can be applied on the vacuum state to have the state

D(n)|0) = exp(¢K,)[1 — [¢7% exp<ff:1<7>\0>
l

1 >0 o _
BN Mlnl |”>_

n=0

|5|2)M+l .

M

|M7 5>N7

where ¢ =L tanh | 5 |.

4.2. The non-linear negative binomial state

The nonlinear extension to the above state has been introduced
[12]. It amounts to deform the operator a to A = af(n) where
f(n) is an operator valued function. Hence the state is given by

M8y = N3 (1 [y P (28)
The commutation relation
(A4, 4" = [af(n), f1(n)a'] = (n+ Dfn+ V) = alf(n)].

It becomes [4,47] = 1 for f{(n) = f~'(n) i.e. unitary operator.
For the operator f(n) being unltary, the following SU(1,1)
generators are defined

K, =d'ff(n)vVMI+n, K, =vMI+nf(n)a, KZ:%I—H:. (29)

The state (28) is obtained by applying D(1) of Section 4.1
but with the operators given by (29), on the vacuum state [ 0
which is the SU(1,1) realization for the nonlinear negative
binomial state (28).

The case of the non-unitary f'is also considered in Ref. [12].

4.3. Single mode squeezed vacuum and 1st excited states
The squeezed vacuum state is defined as the eigenstate of the oper-

ator b = pa + va" with eigenvalue zero and | |2 —|v|? =1
[13,14]. It has the expansion

b= 32 Y21 — e, (30)

n=0

where ¢ = tanh r ¢, u = cosh r, v = sinh r ™.
While the squeezed 1st excited state is obtained as the eigen
state of the operator b*> with egien value 0. It has the form

e \/(2n+1)!£n(

2

‘@1 -

n=0

This can be cast as a realization of the SU(1,1) group by
taking

a? a* 1 ' 1
= = — (4 z
K, 7 K_ 7 K; 2(aa+2). (32)
The Casamir operator C, in this case
-3
C=klk—1)I=—1

The state space associated with k = is the even Fock sub-
space with {| 2n)} and that associated w1th k =2 1is the odd
Fock subspace with {|2n + 1)}. The unitary operdtor (the
squeeze operator) is:

1 1
S(z) = exp(zK, —z'K_) = exp (izaTz - Ez"az).

The SU(1,1) coherent states are the single-mode squeezed
sates. For k = j—‘ we have squeezed vacuum

1
E2) = SEI0 =18, of(0) ¢= 7 nhi

% we have the squeezed one photon state

63) = SO =1, of (1),

for k =

4.4. Nonlinear squeezed states

The use of the following operators

1 2
=5 (afln))". (33)

For the unitary operator function fT(n) = f~!(n), we have

K =1 (da+2
3—2 ada 2

Under these operators, we have the nonlinear squeezing operator

1 t )
Si(z) = exp5 (zA™? —z'4%), where A = af(n).
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Consequently
B 1 % = \/( n
1.3 Z: 2,,n, 1)&"|2n)
3 ieay/(2n+1)!
ey =01 Y R o pean ). (34

2;1 |

n=1
The case of the non-unitary f has been considered and dis-
cussed in [15].

4.5. Single mode squeezed coherent state

These states are the solutions of eigenvalue problem [16]

b|B) = ua +va'|B) = BIp),

with u = cosh r, v = sinh r &',

If we write £ = — 2 = —e'® tanh r, then the state
1B) = 1B, &) = |o,7)
= (1—¢py
1 2 ‘é| i} *2 —zd) o %é)g

exp [~ {107 = Gl + g} 3 8

Y (AVE (35)
m\ =z m),

/—2¢

with f = po + va'.
When we use the representation (32) for the operators K ..,
K3, the state (35) can be cast as the operation of the operator

S(E) =exp(éK, — EK.) = exp3 (Ca’“ &b,
on the state | §) of the form (6). Therefore we have
1<, B) = S(O)1B) = S(&)D(B)|0).

After using the disentanglement of the squeezing operator and
applying it to the state —f5) we get the expression (35). We may
use the relation

S(E)D(B) = D)S(z) with 2= b+ v,

Hence we get
<, B) = S(E)D(B)[0) = D(«)S(£)[0)

i.e. we displace the squeezed vacuum, or squeeze the coherent
state [6].

4.6. Nonlinear squeezed coherent state

The nonlinear operator A is defined as 4 = a f{n) and 47 = /1
(n)a’ where the operator valued function f{n) is a unitary opera-
tor i.e. /1 = £7!. In this case we find [4,47] = I.

The operators K. ,K5 of the SU(1,1) are defined as is (33).
the nonlinear realization in this case is given in [17]. With the
appearance of the function f(m) denotes the effect of the
nonlinearity.

Also, the case for non-unitary nonlinear function has been
discussed there.

4.7. Squeezed displaced Fock states
These states are defined as application of the squeezed opera-

tors and the displacement operators on the Fock state | m) in
the following form [18].

= S(&)D(2)m) = D(a)S(&)|m),

with oy = acoshr + o'sinhr ¢ = po + va', & = re™.
Its expansion in the Fock state space is given there [18].
Here S(&) is the unitary operator that could be expressed in
terms of the generators of the SU(1, 1) group as defined in the
Eq. (32) .

o, &, m)
i}

4.8. Two-mode squeezed vacuum states

These states are obtained by applying the non-degenerate two-
mode operator

$(6) = exp(—éa'b! + & ab),
on the vacuum state —0;,0,) with & = r ¢’®. These states are ex-
pressed in terms of the two-mode Fock states in the form [6,7]

1 o
[€)2 = 52(6)[04,00) = —— > (tanhre)"|n, n). (36)

These states are considered as a class of entangled states where
the numbers of quanta in both modes are equal in each
component.

Such state can be considered as realization of the SU(1,1) as
coherent state of this group. This is accomplished by defining the
generators as follows

1
K., =ab, K =db', Ki= E(na +n,+1). (37)
The Casimir operator
1 1 2
C2 E(KJrK, +K K+) :Z[(n(,—nh) — 1]
Therefore the irreducible representation with k = ";', q =

0,1,2,... is the eigenvalue of (n, — n,) hence the state | m,k)

=|n+ ¢n) withn =0,1,2,...

k=10 =Y

n=0

|
O ). (9

which reduces to (36) when g = 0.
There is another coherent state of SU(1, 1) (Barut-Girardil-
lo) which is the eigenfunction of the operator K_ namely:

K o, k) o = |, k) g

‘0(‘2k+1 0 n

12k—1(2|°‘|); \/m

|2, ) g n, k).

4.9. Nonlinear two mode squeezed vacuum state

As before we have 4 = afi(n,), B =
tian conjugates, consequently

bf>(n,) and their hermi-

[4, AT] = (n, + Dfi(n, + l)ﬁ (ng+1) - I’l,f; (na)f1(n4), (39)
with a similar formula for [B, B']. ,
For the unitary case /| = /!, . fifl = I, the nonlinear squeez-

ing operator will be a unitary operator and we have

160y = S3(6)10,0) = exp(—A! B + £ 4B)[0,0). (40)

The non-unitary case has been discussed also in [17].
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4.10. SU (1,1) Intelligent states

For the two self-adjoint operator 4, B, one obtains the uncer-
tainty relation

((A4))(AB)*) = %\([A731>\2-

A state is called an intelligent state (IS) if it satisfies the
strict equality. Such states must satisfy the eigen value
equation

(4 = idB)[) = nly), (41)

A is a positive real parameter, # a complex number. When
[4,B] = cI with constant ¢, the minimum uncertainty states
(MUS) coincide with the IS.

For the SU(1,1) the IS —y) are solutions of the eigenvalue
problem

(Ki — i2Ks)|Yr) = nly),

or
(K- + B K )W) =nly), o =1+2 f=1-27 (42)
In the basis | n,k) of the SU(1, 1) of Eq. (15) then| /) is given

by
W) =S cln k).
n=0

The coefficients ¢, can be calculated to be related to the
Pollaczek polynomial [19,20]

= &)”P 1k
“ (on ! (\/ o By 7 >
(B 3 I'(n+ 2k) 3 in
=1 (a—:) (T@k)) 2F1<—m,k+ﬁ,2k,2>.
(43)

Some special cases are discussed in [20]. For example:

(i) The one mode realization include as special cases: the
Barut-Girardillo state, the Perelomov C.S., and the non-
linear squeezed coherent states.

(if) The two-mode realizations include as special cases; the
pair coherent state as the correlated SU(1,1) CS, and
nonlinear realizations.

5. Conclusion

In this article we have tried to review some quantum states and
their relations to some algebraic groups. Some of the Lie alge-
bras and some of the relations of their operators and represen-
tations especially some of their coherent states are mentioned.
As realizations of these groups the discussion included the sin-

gle mode binomial states, the finite dimensional pair coherent
states, and their nonlinear variants. Then came the negative
binomial states, single mode squeezed vacuum, squeezed
coherent, squeezed displaced Fock states and their nonlinear
variants. The two mode squeezed vacuum states and their non-
linear counterparts are discussed. Finally the intelligent states
are mentioned. An extended version of this article with appear
elsewhere.

6. A tribute

This is a small tribute to the late Prof. Gamal M. Abd AlKader
[1963-2009] with whom I have had a very fruitful and most
interesting collaboration for almost two decades. Whose
friendship and amicable personality, I as well as many of his
colleagues and students really miss. May ALLAH accept
him in His Mercy.
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