Journal of the Egyptian Mathematical Society (2016) 24, 210-213

Journal of the Egyptian Mathematical Society

Egyptian Mathematical Society

WWW.etms-eg.org
www.elsevier.com/locate/joems

Original Article

New stability and boundedness results to Volterra

@ CrossMark

integro-differential equations with delay

Cemil Tunc*

Department of Mathematics, Faculty of Sciences, Yiiziincii Yil University, 65080 Van, Turkey

Received 1 June 2015; accepted 13 August 2015
Available online 9 September 2015

Keywords Abstract

Non-linear;

Volterra integro-
differential equation;
Stability;
Boundedness;
Lyapunov functional

In this paper, we consider a certain non-linear Volterra integro-differential equations
with delay. We study stability and boundedness of solutions. The technique of proof involves defining
suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.
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1. Introduction

In the last years, the qualitative properties of Volterra integro-
differential equations without delay have been discussed by
many researches. In particular, the reader can referee to the pa-
pers of Becker [1], Burton [2,3], Burton and Mahfoud [4,5] Dia-
mandescu [6], Hara et al. [7], Miller [8], Staffans [9], Tunc [10],
Vanualailai and Nakagiri [11] and the books of Burton [12],
Corduneanu [13], Gripenberg et al. [14] and the references cited
therein for some works done on qualitative properties of var-
ious Volterra integro-differential equations without delay. An
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important tool to discuss the qualitative properties of solutions
of ordinary and functional differential equations and integro-
differential equations is the Lyapunov’s direct method. Theo-
retically this method is very appealing, and there are numerous
applications where it is natural to use it. The key requirement of
the method is to find a positive definite function or functional
which is non-increasing along solutions.

However, it is a quite difficult task to find a suitable Lya-
punov function or functional for a non-linear ordinary or func-
tional differential equation and a non-linear functional Volterra
integro- differential equation. The situation becomes more dif-
ficult when we replace an ordinary or a functional differential
equation with a functional integro-differential equation. By this
time, the construction of Lyapunov functions and functionals
for non-linear differential and integro-differential systems re-
mains as an open problem in the literature. Besides, in the lit-
erature, there are a few papers on the qualitative behaviors of
Volterra integro-differential equations with delay. See, for ex-
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ample, the recent papers of Adivar and Raffoul [15], Graef and
Tunc [16], Raffoul [17] and Raffoul and Unal [18].

In 2003, Vanualailai and Nakagiri [11] considered the non-
linear Volterra integro-differential equation without delay,

d t
O] = AW f (0 + /O B(t. )g(x(s))ds. )

wheret > 0, x € N, A(¢t) : [0, 00) = (—00,0), f,g: N — Nare
continuous functions, and B(z, s) is a continuous function for
0 < s <t < oo. Vanualailai and Nakagiri [11] studied the sta-
bility of solutions of Eq. (1) by defining a suitable Lyapunov
functional.

In this paper, we consider the nonlinear the Volterra integro-
differential equation with delay

X'(1) = —a@) f(x(1)) +/ B(z, )g(x(s))ds + p(t), 2
11—t

where 1 > 0, 7 is a positive constant, fixed delay, x € i, a(¢) :
[0,00) = (0,00), p:[0,00) > N, f,g: N — N are continu-
ous functions with f(0) = g(0) = 0, and B(z, s) is a continuous
function for 0 < s <t < o0.

We investigate the stability of zero solution and boundedness
of all solutions of Eq. (2) by defining new suitable Lyapunov
functionals, when p(¢) = 0 and p(¢) # 0, respectively.

It follows that Vanualailai and Nakagiri [11] considered a
Volterra integro-differential equation without delay. However,
in this paper, we consider a Volterra integero-differential equa-
tion with delay. Besides, Vanualailai and Nakagiri [11] discussed
the stability of the zero solution of Eq. (1). However, beside the
stability of zero solution, we also discuss the boundedness of
solutions of Eq. (2), when p(¢) = 0 and p(¢) # 0, respectively.
Further, Eq. (2) includes and extends the equations discussed
by Vanualailai and Nakagiri [11], when t = 0.

We give some basic information related Eq. (2).

We use the following notation throughout this paper.

For any 7y > 0 and initial function ¢ € [ty — 7, 1], let x(¢) =
x(t, ty, ¢) denote the solution of Eq. (2) on [ty — t, 0o) such that
x(t) = @(t) on g € [ty — 1, to].

Let C[ty, t1] and C[ty, o0) denote the set of all continuous
real-valued functions on [y, #;] and [¢y, 00), respectively.

For ¢ € C[0, o], ||, == sup{le®)| : 0 <1 < 1o}.

Definition. The zero solution of Eq. (2) is stable if for each
& > 0 and each #y > 0, there exists a § = (e, fp) > 0 such that
¢ € C[0, to] with |¢(2)],, < & implies that |x(z, fy, ¢)| < ¢ for all
> t.

Let p(t) = 01in Eq. (1).

The following theorem is need for the stability result of this
theorem.

Theorem 1 (Driver [19]). If there exists a functional V (t, ¢(.)),
defined whenever t > ty > 0 and ¢ € C([0, t], R), such that
(1) V(t,0) =0, Vis continuous in t and locally Lipschitz in ¢,
(i) V¢, o) = W({e@®]), W : [0, 00) — [0, 00) is a contin-
uous function with W(0) =0, W(r) > 0ifr >0, and W
strictly increasing (positive definiteness), and
(i) V'(z,9()) <0,

then the zero solution of Eq. (2) is stable, and

Vit,o() =Vt e@s):0=<s=1)

is called a Lyapunov functional for Eq. (2).

2. The main results

We state some assumptions on the functions that are appearing
in Eq. (2).

A. Assumptions
(A1) There exist positive constants «, m, J, M and N such that
£(0)=0,g0)=0, g(x) <mf(x)if x| < M,
a > 4 such that 4x> < (@ — 4) f%(x) if |x] < N.
(A2) a(t) > 0 for t > 0, B(t, s) is continuous for 0 <s <t <

00,

J>1, 4;(,) ,Lr |B(t, s)|ds < } foreveryt >s—1 >0,
ff’r |B(u + 1, 5)|du is defined and continuous for 0 < s —
T<t<o00.

a(t)y —k [~ |Bu+t,1)|du>0foreveryt > s—1 > 0.
For the case p(t) = 01in Eq. (2), we have the following result.

Theorem 2. Assume conditions (A1) and (A2) hold. If k =
’"2(1%“), then the zero solution of Eq. (2) is stable.

Proof. We introduce a functional V = V(1) = Vi (1, x(t)) de-
fined by

o= 3+ [ VFudu+ 5a [ fad
0 0

+k / / ” |B(u+ 1, 5)|duf?(x(s))ds, 3)
0 -t

where k is a positive constant to be determined later in the
proof. [

It is clear that the functional Vj is positive definite.
Differentiating the functional V4 with respect to ¢, we obtain
from (3) that

Vy = xx' + o/ f(x)xx' + %af(x)x/
+k/oo |B(u+ 1, 0)|duf?(x) —k/ |B(1, )| f2 (x(s))ds.
-t 0

(4)
Then, it is clear that

xx' = —a(t)xf(x) + x/ B(t, s)g(x(s))ds

—a(t)xf(x) — |:\/a(t)x -

1 ' :
W /T_I B(t, s)g(x(s))ds]

] / ’
+a(t)x” + o (I)[ - B(ns)g(x(s))ds]

t 2
—a()xf(x) +a()x* + b [ / B(t, s)g(x(s))ds]

<
- da(t) | J,_,
< —a()xf(x) +aO)x’
1 ! '
+m - |B(t, S)|dS‘/[lr |B(175)|82(X(S))ds

< —a)xf(x) +a(t)x?
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mz t t 5
o /,7, |B(t. 5)|ds / IB(t, )L (x(s))ds

< —a(t)xf(x)+ %aa(t)fz(x) —a(t) [*(x)

m2 t
+ / IB(t, )1 (x(s))ds

by the assumption of Theorem 2 and the Schwarz inequality,
that is,

(A42) and [ _ B(t, s)g(x(s))dsP <
$)1g* (x(5))ds.

Besides, as before, by the assumptions of Theorem 2 and the
Schwarz inequality, we have

Vo f (x)xx’

L IB@Ls)ds [ |B(t,

= |:2\/TY —Va(t) \/f(x)x] +m(x) +a(t) f(x)x
Sm(x) +a(t) f(x)x

1 t
=a()f(x)x+ %a(t)fz(X) - Eaf(X)/ B(1, 5)g(x(s))ds

+-2 /[ B(t, )g(x(s))d
K(f)[rq (¢, 8)g(x(s) s:|

1 t
<a()f(x)x+ %a(t)fz(x) - i“f(x)f B(t,5)g(x(s))ds

2

2 t
+ = / |B(, 9)| f2(x(5))ds
-t
and
| 2 (I
3af (¥ = =3 £+ 5000 [ B 9gx(0)ds.
On gathering the above discussion into (4), it follows that
v < —[k— w]f |B(t. )|/ (x(s))ds

2 t—
= B aenas
0

2 t—1
“E [ B e
0

- a(z)—k |B(u—|—r t)|du (%)

-t
| M]/ IB(t, )12 (x(s))ds

—-a(l) —k/ [B(u+t,0)|du fz(X)-

2
Letk = w Hence, we have

Vs < —[a(r) - k/w |Bu+, r)|du}f2(x).

If
a(t) — k/ |[B(u+1,t)|du >0,
-1

then it follows that
Vy <0.

Therefore, we can conclude that the zero solution of Eq. (2)
is stable.
Let p(t) # 0 and

! o0
p(t) = apa(t) — %/ |B(t, s)|ds — %rnz/ |B(u+ t,t)|du.
-t -1

B. Assumptions

(H1) There exist positive constants «, m and M such that
g(0) =0, (x) <mxif |x| < M, £(0) =0, 12 > ¢y >
0, when x # 0, A

(H2) a(t) > 0 for t > 0, B(t,s) is continuous for 0 < s <1t <
0,
ft(i |B(u+ 7, 5)|du is defined and continuous for 0 < s —
T <t < o0, and
p(t) > 0foreveryt >s—1>0.

We prove the following theorem.

Theorem 3. In addition to assumptions (H1) and (H2), if p €
L'(0, 00) and A = %mz, then all solutions of Eq. (2) are bounded.

Proof. We define a functional V; = V(¢) = Vi (t, x(¢)) by

1 t o0
v, = Ex2 + A / / |B(u + 7, 8)|dux?(s)ds, (5)
0 -t

where A is a positive constant to be determined later in the
proof. O

It is clear that the functional ¥ is positive definite.
Calculating the time derivative of the functional 7} we get
from (5) that

W = —a() f(x)x + x / B, $)g(x(s))ds + xp(t)

+ A /oo |B(u+ 7, 1)|dux* — x/ |B(t, $)|x*(s)ds. (6)
t—1 0

In view of the assumptions of Theorem 3 and the estimate
lap| < 271 (a? + B?), it is obvious that

1 t
Vi < —a()f(x)x+ 5/ IB(1, $)|(x* (1) + & (x(5)))ds

+ 1P|+ 1p0)]x* + A/ |B(u+ 7, 1)|dux’

-1
—x/ |B(t, 8)|x*(s)ds
[ (t)%——/ |B(t, s)|ds— A /m|B(u+r,z)|du]x2

1
PO+ PO + 5 / IB(1, )| (x(5))ds

-t
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1
—A/ |B(t, $)|x%(s)ds
0
t 00
< —[aoa(z)— %f |B(t,s)|ds—A/ |B(u+t,t)|du]x2

-7

1 1
FlpOI+) + 5 f IB(t, )| (x(5)ds

-t

- A/ |B(t, $)|x°(s)ds
0

< —[aoa(z) -3 f |B(t, $)lds — / " Bt t)ldu]x2
t—1 -t
1 t
—(A _ 5mz> / |B(t, )|x*(s)ds + | p(D)] (1 + x?)
0
L /H \B(t, $)|x(s)ds
2 0
<

_[aoa(z) - %f |B(l,5)|ds—k/oo |B(u + t,t)|du]x2
-t t

-7

—(A _ %m2> f IB(. )12 s)ds + [pOI(1+ ).
0

Let A = 1m?. Then, we have

IA

Vi < =pX* + [p(O)| + Ip1x* < Ip()] + | p0)|x°

= (L+2P)Ip@)].

A

Integrating the last estimate from zero 7, to ¢, we have

t t
Vit) < Vilto) + f Ip(s)lds + 2 f Vi(s)|p(s)lds.
0 0

Hence, an application of Gronwall’s inequality bounds V.
Hence we can conclude that all solutions of Eq. (2) are bounded.

Remark. By Theorem 2, we improve and extend a stability re-
sult obtained for a Volterra integro-differential equation with-
out delay to its delay form (see Vanualailai and Nakagiri [11,
Theorem 3.2]). Besides, Theorems 2 and 3 complement to the
papers in the references, and they have a contribution to the
papers of Becker [1], Burton [3], Tunc [10]. Adivar and Raffoul
[15] and Raffoul [17]. By this way, we also mean that the Volterra
integro-differential equation considered and the established as-
sumptions here are different from that in the mentioned papers
above. Theorem 3 gives an additional result, the boundedness
of solutions, to that of Vanualailai and Nakagiri [11, Theorem
3.2]. This paper may be useful for researchers working on the
qualitative behaviors of solutions of functional Volterra integro-
differential equations. These cases show the novelty and origi-
nality of the present paper.

3. Conclusion

A non-linear Volterra integro-differential equation of first or-
der with delay is considered. The stability and boundedness of

solutions are discussed by using the Lyapunov’s functional ap-
proach. The obtained results improve and extend some results
in the literature.
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