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1. Introduction 

Influenza, also called the flu, is a disease caused by a virus that
affects mainly the nose, throat, bronchi and, occasionally, lungs.
The virus can spread from person to person through air by
coughs, sneezes or from infected surfaces, and by the direct con-
tact to infected persons. There are three types of influenza virus,
namely, A, B, and C. Among these, influenza A viruses are more
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severe than others for human populations. Mathematical mod-
els have provided a useful tool to understand disease dynamics
and give out preventive strategies [1,2] . 

In 2003, Neil and coworkers [3] constructed a mathematical
model of influenza transmission simulating the effect of neu-
raminidase inhibitor therapy on infection rates and transmis-
sion of drug-resistant viral strains. They concentrate on nu-
merical investigation without considering the stability of the
model. Fraser et al. [4] studied the transmission model of in-
fluenza A (H1N1) in the human population, but they did not
include cross-species transmission. Coburn [5] presented a com-
plex model for transmission of three species (birds, pigs and hu-
man). In [1] , Pongsumpun considered the model for the trans-
mission of Swine flu, a new strain of type A influenza virus,
with different probability of the patients who have symptomatic
and asymptomatic infections. Recently, Zhou and Guo [2] ana-
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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Figure 1 Transfer diagram of the model (1) . 
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2 
yzed an influenza model with vaccination. However, many ar- 
icles did not concern with disease resistance in human. 

The stability of epidemic models has been studied in many 
apers [6–8] . Many authors paid attention to local stability 
f equilibria. Recently, the study of epidemic models mainly 
oncerns global asymptotic stability. The most successful ap- 
roaches to the problem are the direct Lyapunov method [9–
3] and the geometric method [14,15] . 

In this paper, we consider a new SEIR model depicting the 
ransmission of influenza virus with disease resistance in hu- 
an. In the model, a person in exposed group or infected group

an come back to susceptible group without treatment. This de- 
cribes realistic modeling of treatment. The model is given by a 
ystem of four differential equations depending on parameters. 
y using the method of next generation matrix [16] , we found
 threshold R 0 called basic reproduction number. In general, 
hen R 0 ≤ 1 , the disease dies out and when R 0 > 1 , the disease
ersists in the population. If we suppose that the endemic equi- 

ibrium also exists for R 0 < 1 , although it is not true, then the
ifurcation occurring in the model can be explained as a trans- 
ritical bifurcation. Several various methods are used to deter- 
ine the stability of equilibria. We concentrate our study on the 

lobally stable stability of equilibria. This is obtained by Lya- 
unov functional approach and geometric approach. A numer- 

cal investigation is carried out by Mathematica software and 

UTO software package confirming theoretical results. 
The paper is organized as follows. In the next section, we in-

roduce the structure of the transmission model, equilibria and 

asic reproduction number. Section 3 deals with the local sta- 
ility of equilibria. In Section 4 , we prove the global stability
f equilibria by Lyapunov functional approach and geometric 
pproach. Some numerical simulations are given in Section 5 . 
inally, Section 6 summarizes this work. 

. The model and its basic properties 

.1. The structure of the model 

e consider the transmission of influenza virus among the peo- 
le. The total population, size N(t) , is divided into four distinct
pidemiological subclasses of individuals which are suscepti- 
le, exposed, infectious and recovered, with sizes denoted by 
 (t) , E (t) , I (t) , R (t) , respectively. In exposed group, there are 
eople who have been in contact with an infected individual but 
ninfected. Besides, infectious group has people infected but be- 
ome exposed without treatment. We assume that the environ- 
ent is homogeneous and natural death rates have common rate 
. 

The model is given by a system of ordinary differential equa- 
ions: 

d S 

dt 
= � − γ S (t) 

E (t) + I (t) 
N( t) 

+ c E ( t) + b I (t) 

+ αR (t) − μS (t) 

d E 

dt 
= γ S (t) 

E (t) + I (t) 
N( t) 

− ( c + ε + μ) E ( t) 

d I 
dt 

= ε E (t) − (β + b + μ) I (t) 

d R 

dt 
= βI (t) − (α + μ) R (t) , (1) 
here � is a constant recruitment of susceptible human, γ is 
he contact rate of virus transmission, c is the rate at which the
xposed human become to be susceptible human without treat- 
ent, b is the rate at which the infectious human become to be

he susceptible human without treatment, ε = 1 / IIP where IIP
s the intrinsic incubation period of virus, α is the rate at which
he recovered human become to be the susceptible human again, 

is the rate at which the infectious human become to be the re-
overed human, and μ is the natural death rate of the human
opulation. Fig. 1 shows the transfer diagram of the model (1) .

We assume that the total size of population N(t) is constant,
hat is N(t) = N. Then S (t) + E (t) + I (t) + R (t) = N. 

Let S(t) = 

S (t) 
N , E (t) = 

E (t) 
N , I (t) = 

I (t) 
N , R (t) = 

R (t) 
N . We ob-

ain the reduced system 

dS 

dt 
= μ − γ S(t)(E (t) + I(t)) + cE (t) + bI (t) 

+ αR (t) − μS(t) 
dE 

dt 
= γ S(t)(E (t) + I(t)) − (c + ε + μ) E (t) 

dI 
dt 

= εE (t) − (β + b + μ) I (t) 

dR 

dt 
= βI (t) − (α + μ) R (t) , (2) 

ith the condition S(t) + E (t) + I(t) + R (t) = 1 . 
It follows from the system (2) that (S + E + I + R ) ′ = 

− μ(S + E + I + R ) = � − μ. Then lim sup t→∞ 

(S + E +
 + R ) ≤ �

μ
. Therefore, the feasible region for system (2) is � =

 (S , E , I , R ) : S > 0 , E ≥ 0 , I ≥ 0 , R ≥ 0 , S + E + I + R ≤ �

μ
} . 

It is easy to verify that the region � is positively invariant
ith respect to system (2) . 

.2. Equilibria 

o find equilibria, we set the right-hand side of the system
2) equals zero. Then we get two equilibria in the coordinate
 S , E , I , R ): 

i) Disease free equilibrium P 0 (1 , 0 , 0 , 0) . It is seen that the equi-
librium P 0 always exists. 

ii) Disease endemic equilibrium P 1 (S 

∗, E 

∗, I ∗, R 

∗) with positive
components: 

S 

∗ = 

1 
R 0 

, 

E 

∗ = 

(α + μ)(β + b + μ) G 1 

G 2 
, 

I ∗ = 

ε(α + μ) G 1 

G 

, 
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fied for R 0 > 1 . �
R 

∗ = 

βεG 1 

G 2 
, 

where R 0 = 

γ (β+ b+ μ+ ε) 

(β+ b+ μ)(c + ε+ μ) 
, 

G 1 = (β + b + ε + μ) γ − (β + b + μ)(c + ε + μ) , (3)

G 2 = γ (β + b + ε + μ)[ βε + (α + μ)(β + b + ε + μ)] . (4)

When R 0 > 1 , we have G 1 > 0 . This implies the equilibrium
P 1 exists as R 0 > 1 . 

2.3. Basic reproduction number 

This section presents the basic reproduction number, denoted
by R 0 , that is the number of secondary cases which one case
would produce in a completely susceptible population. We use
the method of next generating matrix to determinate the expres-
sion for R 0 [16] . The model (2) always has a disease free equi-
librium P 0 (1 , 0 , 0 , 0) . Let x = (E, I, S, R ) � . Then the model
(2) can be written as 

dx 

dt 
= F (x ) − V(x ) , 

where 

F (x ) = 

⎛ 

⎜ ⎜ ⎝ 

γ S(E + I ) 

0 
0 
0 

⎞ 

⎟ ⎟ ⎠ 

, 

V(x ) = 

⎛ 

⎜ ⎜ ⎝ 

(c + ε + μ) E 

−εE + (β + b + μ) I 
−μ + γ S(E + I ) − cE − bI − αR + μS 

−βI + (α + μ) R 

⎞ 

⎟ ⎟ ⎠ 

. 

We can get 

F = 

(
γ γ

0 0 

)
, V = 

(
c + ε + μ 0 

−ε β + b + μ

)
. 

The next generation matrix for the model (2) is 

F V 

−1 = 

(
γ (β+ b+ μ+ ε) 

(β+ b+ μ)(c + ε+ μ) 

γ

(β+ b+ μ) 

0 0 

)
. 

The spectral radius of matrix F V 

−1 is ρ( F V 

−1 ) =
γ (β+ b+ μ+ ε) 

(β+ b+ μ)(c + ε+ μ) 
. According to the Theorem 2 in [16] , the basic

reproduction number of the system (2) is R 0 = 

γ (β+ b+ μ+ ε) 

(β+ b+ μ)(c + ε+ μ) 
. 

Note that when R 0 > 1 then G 1 = (β + b + ε + μ) γ − (β +
b + μ)(c + ε + μ) > 0 and the endemic equilibrium P 1 exists. 

3. Local stability and bifurcation of equilibria 

3.1. Local stability of the disease free equilibrium 

Theorem 1. P 0 is locally asymptotically stable if R 0 < 1 .
Whereas, P 0 is unstable if R 0 > 1 . 

Proof. The Jacobian matrix at P 0 is given by 

J P 0 = 

⎛ 

⎜ ⎜ ⎝ 

−μ −γ + c −γ + b α

0 γ − (c + ε + μ) γ 0 
0 ε −(β + b + μ) 0 
0 0 β −(α + μ) 

⎞ 

⎟ ⎟ ⎠ 

.

Eigenvalues of the above matrix are 

λ1 = −μ, λ2 = −(α + μ) , 

λ3 = −1 
2 

(
L + 

√ 

L 

2 + 4 G 1 

)
, 

λ4 = −1 
2 

(
L −

√ 

L 

2 + 4 G 1 

)
. 

where L = β + b + c + ε + 2 μ − γ > 0 , G 1 = (β + b + ε +
μ) γ − (β + b + μ)(c + ε + μ) . 

Eigenvalues λ1 , λ2 and λ3 are always negative. If R 0 < 1 , then
G 1 < 0 . It implies λ4 < 0 . Therefore, P 0 is locally asymptoti-
cally stable. Whereas, for R 0 > 1 then λ4 > 0 and P 0 is unstable.
�

3.2. Local stability of the endemic equilibrium 

The local stability of the endemic equilibrium P 1 is proved by
the Routh-Hurwitz criterion. 

Theorem 2. The endemic equilibrium P 1 of the system ( 2 ) is
locally asymptotically stable in � for R 0 > 1 . 

Proof. The Jacobian matrix at P 1 is given by 

J P 1 = 

⎛ 

⎜ ⎜ ⎝ 

−γ (E 

∗ + I ∗) − μ −γ S ∗ + c −γ S ∗ + b α

γ (E 

∗ + I ∗) γ S ∗ − (c + ε + μ) γ S ∗ 0 
0 ε −(β + b + μ) 0 
0 0 β −(α + μ) 

⎞ 

⎟ ⎟ ⎠ 

.

The characteristic equation is 

λ4 + a 3 λ3 + a 2 λ2 + a 1 λ + a 0 = 0 , 

with 

a 3 = (α + β + b + c + ε + 2 μ − γ ) + 2 μ

+ γ [ G 2 + (α + μ)(L 1 + ε)] 
G 1 

G 2 
, 

a 2 = μ(L 1 + L 2 ) + (α + μ + L 1 )[ μ + L 2 + γ (E 

∗ + I ∗ − S 

∗)] , 

a 1 = (α + μ) γ (L 1 + ε) 2 [(β + μ) ε + (α + 2 μ) L 1 

+ (α + μ)(ε + μ)] 
G 1 

G 2 
+ (α + μ) μ(μL 1 + εL 2 ) , 

a 0 = γ (E 

∗ + I ∗)[ εμ(α + b + μ) + α(α + μ) L 1 ] , 

where L 1 = β + b + μ, L 2 = c + ε + μ and G 1 , G 2 are given by
Eqs. (3) and (4) . 

From the Routh-Hurwitz criterion, the endemic equilibrium
P 1 is locally stable when 

a 0 > 0 , a 1 > 0 , a 3 > 0 and a 1 a 2 a 3 − a 2 1 − a 0 a 2 3 > 0 . 

It is easy to see that a 0 > 0 , a 1 > 0 , a 3 > 0 . By using Math-
ematica software, the condition a 1 a 2 a 3 − a 2 1 − a 0 a 2 3 > 0 is satis-



196 N.H. Khanh 

4

4

W
d

T  

s

P

W

w
m

i

W

o

W

S  

t

W

 

α  

t  

t  

{  

b  

t

4

T
P
L

4

T  

c

P

V

w
 

b

V

μ

w

V

V

S

γ

. Global stability of equilibria 

.1. Global stability of the disease free equilibrium 

e use Lyapunov function to prove the global stability of the 
isease free equilibrium. 

heorem 3. If R 0 ≤ 1 , then the free disease equilibrium P 0 of the
ystem (2) is globally asymptotically stable in � . 

roof. We construct the following Lyapunov function: 

 (t) = (S − 1 − ln S) + E + a 1 I + a 2 R. 

here a 1 = 

L 2 
L 1 + ε , 0 < a 2 ≤ σmin + μ(1 −S max ) 

βS max 
, σmin = (c + b + α) ·

in { E, I, R } , L 1 = β + b + μ and L 2 = c + ε + μ . 
The derivative of W (t) along the solution curves of (2) in R 

4 
+ 

s given by the expression: 

 

′ (t) = S 

′ 
(

1 − 1 
S 

)
+ E 

′ + a 1 I ′ + a 2 R 

′ 

= [ μ − γ S(E + I ) + cE + bI + αR − μS] 
(

1 − 1 
S 

)

+ [ γ (E + I ) − L 2 E ] + a 1 [ εE − L 1 I ] 

+ a 2 [ βI − (α + μ) R ] , 

r 

 

′ (t) = [ μ + cE + bI + αR − μS] 
(

1 − 1 
S 

)

+ γ (E + I ) − (L 2 − a 1 ε) E − a 1 L 1 I 

+ a 2 βI − a 2 (α + μ) R. (5) 

ince a 1 = 

L 2 
L 1 + ε then we have L 2 − a 1 ε = a 1 L 1 = 

L 1 L 2 
L 1 + ε . Note

hat γ = 

L 1 L 2 
L 1 + ε R 0 . Substituting these conditions into (5) we get 

 

′ (t) = −[ μ + bE + cI + αR − μS] 
(

1 
S 

− 1 
)

− L 1 L 2 

L 1 + ε 
(1 − R 0 )(E + I ) + a 2 β(1 − S − E − R ) 

− a 2 (α + μ) R = −[ μ + bE + cI 

+ αR − (μ + a 2 β) S] 
(

1 
S 

− 1 
)

− L 1 L 2 

L 1 + ε 
(1 − R 0 )(E + I ) − a 2 βE − a 2 (α + β + μ) R.

Because 0 < a 2 ≤ σmin + μ(1 −S max ) 

βS max 
we have μ + bE + cI + 

R − (μ + a 2 β) S ≥ 0 . Thus, W 

′ (t) is negative if R 0 ≤ 1 . Note
hat, W 

′ (t) = 0 if and only if S = 1 , E = I = R = 0 . Hence,
he invariant set { (S, E, I, R ) ∈ � : W 

′ (t) = 0 } is the singleton
 P 0 } , where P 0 is the disease free equilibrium point. Therefore,
y the LaSalle’s Invariance Principle [17] , P 0 is globally stable in
he set � when R 0 ≤ 1 . This completes the proof. �

.2. Global stability of the endemic equilibrium 

his section presents the stability of the endemic equilibrium 

 1 . The global stability under some conditions is examined by 
yapunov functional method and geometric approach. 
.2.1. Lyapunov functional approach 

heorem 4. If R 0 > 1 , then the unique endemic equilibrium P
1 is globally asymptotically stable, provided that max { b, c, α} ≤
E 

∗ + bI ∗ + αR 

∗ . 

roof. We define a Lyapunov function V as follows: 

 (S, E, I, R ) = 

(
S − S 

∗ − S 

∗ln 

S 

S 

∗

)
+ 

(
E − E 

∗ − E 

∗ln 

E 

E 

∗

)

+ k 

(
I − I ∗ − I ∗ln 

I 
I ∗

)
, 

here k = 

γ S ∗I ∗
εE ∗ . 

The derivative of V along the solution curves of (2) is given
y 

 

′ = S 

′ 
(

1 − S 

∗

S 

)
+ E 

′ 
(

1 − E 

∗

E 

)
+ kI ′ 

(
1 − I ∗

I 

)

= [ μ − γ S(E + I ) + bE + cI + αR − μS] 
(

1 − S 

∗

S 

)

+ [ γ S(E + I ) − (c + ε + μ) E ] 
(

1 − E 

∗

E 

)

+ k [ εE − (β + b + μ) I ] 
(

1 − I ∗

I 

)
. 

Using 

= γ S 

∗(E 

∗ + I ∗) + μS 

∗ − ( cE 

∗ + bI ∗

+ αR 

∗) , (c + ε + μ) E 

∗ = γ S 

∗E 

∗ + γ S 

∗I ∗, 

e get 

 

′ = 

[
γ S ∗(E 

∗ + I ∗) + 2 μS ∗ − μS − γ S ∗(E 

∗ + I ∗) 
S ∗

S 
− μS ∗

S ∗

S 

+ γ S ∗E + γ S ∗I 
]

+ [ c (E − E 

∗) + b(I − I ∗) + α(R − R 

∗)] 
(

1 − S ∗

S 

)

+ 

[
−(c + ε + μ) E − γ E 

∗S − γ E 

∗ SI 
E 

+ (γ S ∗E 

∗ + γ S ∗I ∗) 
]

+ 

[
kεE − k (β + b + μ) I − kεI ∗

E 

I 
+ k (β + b + μ) I ∗

]
. 

The expression for V 

′ can be rewritten in the following form: 

 

′ = μS 

∗
(

2 − S 

S 

∗ − S 

∗

S 

)

+ γ S 

∗E 

∗
(

2 − S 

S 

∗ − S 

∗

S 

)

+ γ S 

∗I ∗
(

3 − S 

∗

S 

− S 

S 

∗
I 
I ∗

E 

∗

E 

− I ∗

I 
E 

E 

∗

)

+ [ c (E − E 

∗) + b(I − I ∗) + α(R − R 

∗)] 
(

1 − S 

∗

S 

)

+ 

(
γ

S 

∗I ∗

E 

∗ − kε 

)
I ∗

E 

I 
+ [ γ S 

∗ − (c + ε + μ) + kε] E 

+ [ γ S 

∗ − k (β + b + μ)] I − γ S 

∗I ∗ + k (β + b + μ) I ∗. 

ince k = 

γ S ∗I ∗
εE ∗ and εE 

∗ = (β + b + μ) I ∗, we have 

S 

∗I ∗

E 

∗ − kε = 0 , γ S 

∗ − (c + ε + μ) + kε = 0 , 

γ S 

∗I ∗ − k (β + b + μ) I ∗ = 0 . 

Now, V 

′ has a new form 
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I ′ 
I −

 + I )
 

′ = −μS 

∗
(

S 

S 

∗ + 

S 

∗

S 

− 2 
)

− γ S 

∗E 

∗
(

S 

S 

∗ + 

S 

∗

S 

− 2 
)

+ − γ S 

∗I ∗
(

S 

∗

S 

+ 

S 

S 

∗
I 
I ∗

E 

∗

E 

+ 

I ∗

I 
E 

E 

∗ − 3 
)

+ [ c (E − E 

∗) + b(I − I ∗) + α(R − R 

∗)] 
(

1 − S 

∗

S 

)
. 

Let k = cE 

∗ + bI ∗ + αR 

∗. We have 

[ c (E − E 

∗) + b(I − I ∗) + α(R − R 

∗)] 
(

1 − S 

∗

S 

)

= [( cE + bI + αR ) − ( cE 

∗ + bI ∗ + αR 

∗)] 
S − S 

∗

S 

≤ [ k (E + I + R ) − k ] 
S − S 

∗

S 

= [ k (1 − S) − k ] 
S − S 

∗

S 

≤ −k 

(S − S 

∗) 2 

S 

≤ 0 . 

Applying the comparison between the arithmetical and the
geometrical means, we can conclude that V 

′ (t) ≤ 0 for all
(S, E, I ) , and the strict equality V 

′ (t) = 0 holds only for S =
S 

∗, E = E 

∗, I = I ∗. Hence, the invariant set { (S, E, I ) ∈ � :
V 

′ (t) = 0 } is the singleton { P 1 } , where P 1 is the endemic equi-
librium point. Therefore, by the LaSalle’s Invariance Principle
[17] , P 1 is globally stable in the set � when R 0 > 1 . This com-
pletes the proof. �

Theorem 5. If R 0 > 1 and α = b = c then the endemic equilib-
rium P 1 is globally asymptotically stable. 

Proof. The proof of Theorem 5 is the same as in Theorem 4 .
For α = b = c , we have 

[ c (E − E 

∗) + b(I − I ∗) + α(R − R 

∗)](1 − S ∗
S ) = 

−α (S −S ∗ ) 2 

S ≤ 0 . �

4.2.2. Geometric approach 
In the following, we will discuss the global stability of the en-
demic equilibrium P 1 when R 0 > 1 using the geometric ap-
proach. Firstly, we present some preliminaries on the geomet-
ric approach to global dynamics [14] . Consider the autonomous
dynamical system: 

˙ x = f (x ) , (6)

where f : D → R 

n , D ⊂ R 

n open set and simply connected and
f ∈ C 

1 (D ) . 

Let Q (x ) be an ( 
n 
2 ) × ( 

n 
2 ) matrix value function that is C 

1 on
D and consider 

B = Q f Q 

−1 + QJ [2] Q 

−1 , 

where the matrix Q f is (q i j (x )) f = (∂q i j (x ) /∂x ) � · f (x ) =
∇q i j · f (x ) , and J [2] is the second additive compound matrix of
the Jacobian matrix J , i.e. J(x ) = D f (x ) . Consider the Lozin-
ski ̃ ı measure μ of B with respect to a vector norm | · | in R 

( 
n 
2 )

(see [18] ), that is 

B = Q f Q 

−1 + QJ [2] Q 

−1 = 

⎛ 

⎝ 

−γ (E + I ) + γ S − (a + c + ε + 2 μ) γ SI
E 

εE 
I 

E ′ 
E −

0 γ (E
μ(B) = lim 

h → 0 + 
| I + hB | − 1 

h 
. 

Define a quantity q 2 as 

q 2 = lim sup 

t→∞ 

sup 

x 0 ∈ K 

1 
t 

∫ t 

0 
μ(B(x (s, x 0 ))) ds . 

We will apply the following: 

Theorem 6 (see [14] ) . Assume that D is simply connected, and 

 1 ) There exists a compact absorbing set K ⊂ D , 
 2 ) The system (6) has a unique equilibrium ˜ x in D , 

then the unique equilibrium ˜ x of (6) is globally asymptotically
stable in D if q 2 < 0 . 

Theorem 7. For R 0 > 1 , system ( 7 ) admits an unique en-
demic equilibrium which globally asymptotically stable, provided
that max { α, b} ≤ c, 2 α < b + c . 

Proof. Because S(t) + E (t) + I(t) + R (t) = 1 , it is sufficient to
consider the following three-dimensional subsystem: 

dS 

dt 
= μ − γ S(t)(E (t) + I(t)) + cE (t) + bI (t) 

+ α(1 − S(t) − E (t) − I (t)) − μS(t) 
dE 

dt 
= γ S(t)(E (t) + I(t)) − (c + ε + μ) E (t) 

dI 
dt 

= εE (t) − (β + b + μ) I (t) (7)

The Jacobian matrix of the system (7) is 

J = 

⎛ 

⎝ 

−γ (E + I ) − (α + μ) −γ S − α + b −γ S − α + c 
γ (E + I ) γ S − (c + ε + mu ) γ S 

0 ε −(β + b + μ) 

⎞ 

⎠ . 

The associated second compound matrix is given by 

J [2] = 

⎛ 
⎜ ⎝ 

−γ (E + I ) + γ S − (α + c + ε + 2 μ) γ S γ S + α − c 
ε −γ (E + I ) − (α + β + b + 2 μ) −γ S − α + b 
0 γ (E + I ) γ S − (β + b + c + 2 μ) 

⎞ 
⎟ ⎠ . 

We set the matrix function Q by Q = diag { 1 , E 
I , 

E 
I } . Then

Q f Q 

−1 = diag { 0 , E ′ 
E − I ′ 

I , 
E ′ 
E − I ′ 

I } . We obtain 

(γ S + α − c ) I E 
γ (E + I ) − (α + β + b + 2 μ) −γ S − α + b 
 

E ′ 
E − I ′ 

I + γ S − (β + b + c + 2 μ) 

⎞ 

⎠ . 

The matrix B can be written in block form 

B = 

(
B 11 B 12 

B 21 B 22 

)
, 

where 

B 11 = −γ S(E + I ) + γ S − (α + c + ε + 2 μ) , 

B 12 = 

(
γ SI 

E γ S + α − c 
)
, 
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Figure 2 Time series of solutions of the model (2) as R 0 ≤ 1 . 

Figure 3 Time series of solutions of the model (2) as R 0 > 1 . 
 21 = 

(
εE 
I 

0 

)
, B 22 = 

( E ′ 
E − I ′ 

I − γ (E + I ) − (a + β + b + 2 μ
γ (E + I ) 

The vector norm | · | in R 

3 can be chosen as | (u, v, w ) | =
ax { | u | , | v | + | w | } . 

Let μ denote the Lozinski ̃ ı measure with respect to this 
orm. Then we can obtain 

(B) ≤ sup { g 1 , g 2 } , 
ith 

 1 = μ1 (B 11 ) + | B 12 | , g 2 = μ1 (B 22 ) + | B 21 | , 
here | B 12 | , | B 21 | are matrix norms with respect to the L 

1 vector
orm and μ1 denotes the Lozenski ̃ ı measure with respect to the 
 

1 norm. Specifically, 

1 (B 11 ) = −γ (E + I ) + γ S − (α + c + ε + 2 μ) , 

 B 12 | = max 
{ ∣∣∣∣γ SI 

E 

∣∣∣∣, 
∣∣∣∣(γ S + α − c ) 

I 
E 

∣∣∣∣
}
, | B 21 | = ε 

E 

I 
, 

1 (B 22 ) = 

E 

′ 

E 

− I ′ 

I 
− (β + b + 2 μ) + max {−α, γ S − c 

+ | − γ S − α + b|} . 
Because of the condition α ≤ c , it follows | B 12 | = γ SI 

E . 
Since (7) is uniformly persistent, there exists T > 0 such 

hat S(t) ≤ b+ c −2 α
2 γ for t > T . Moreover, from the conditions 

ax { α, b} ≤ c, 2 α < b + c we can include that γ S − c + | −
S − α + b| ≤ −α. Therefore, μ1 (B 22 ) = 

E ′ 
E − I ′ 

I − (β + b + 

 μ) − α. We have 

 1 = −γ (E + I ) + γ S − (α + c + ε + 2 μ) + γ
SI 
E 

. 

It follows from (7) that E ′ 
E = γ S + γ SI 

E − (c + ε + μ) , then
e have 

 1 = 

E 

′ 

E 

− (α + μ) − γ (E + I ) ≤ E 

′ 

E 

− (α + μ) , 

 2 = ε 
E 

I 
+ 

E 

′ 

E 

− I ′ 

I 
− (β + b + 2 μ) − α. 

Based on Eqs. (7) we have I ′ 
I = ε E I − (β + b + μ) . It implies 

 2 = 

E 

′ 

E 

− (α + μ) . 

herefore 

(B) ≤ E 

′ 

E 

− (α + μ) . 

Thus, for t > T we have 

1 
t 

∫ t 

0 
μ(B) ds ≤ 1 

t 
log 

E 

′ (t) 
E (t) 

+ 

1 
t 

∫ T 

0 
μ(B) ds − (α + μ) 

t − T 

t 
, 

hich implies q 2 < 0 . This completes the proof. �
−γ S − α + b 
E ′ 
E − I ′ 

I + γ S − (β + b + c + 2 μ) 

)
. 

. Numerical simulation 

n this section, we carry out a numerical investigation for the
ystem (2) to illustrate the analytic results obtained above. Nu- 
erical results are displayed in the following figures (see Fig. 
 and Fig. 3 ). 

Fig. 2 shows time series of solutions of the model as R 0 ≤ 1 .
or α = 0 . 35 , β = 0 . 5 , b = 0 . 025 , c = 0 . 35 , ε = 0 . 15 , γ = 0 . 1 ,
nd μ = 0 . 015 , we have R 0 = 0 . 248112 < 1 . In this case,
he disease free equilibrium P 0 is globally asymptotically 
table. With the initial condition (S(0) , E (0) , I(0) , R (0)) =
0 . 002 , 0 . 006 , 0 . 003 , 0 . 001) , the exposed component E (t) and
he infectious component I (t) of solutions tends to 0 as t
pproaches to + ∞ . This implies that the disease dies out. 

Fig. 3 indicates time series of solutions of the model 
s R 0 > 1 . For α = 0 . 35 , β = 0 . 33 , b = 0 . 025 , c = 0 . 35 , ε =
 . 1 , γ = 0 . 5 , and μ = 0 . 075 , we have R 0 = 1 . 17386 > 1 . In
his case, the endemic equilibrium is globally asymptotically 
table. With the initial condition (S(0) , E (0) , I(0) , R (0)) =
0 . 01 , 0 . 01 , 0 . 01 , 0 . 01) the exposed component E (t) goes to the
ositive value 0.1124 and the infectious component I(t) ap- 
roaches to the positive value 0.02849 as t tends to + ∞ . This
eans that the disease remains in the population. 

The change of local stability of the equilibria P 0 and P 1 can
e explained by the transcritical bifurcation where two equilib- 
ia collide and interchanges their stability [8] . By using AUTO
oftware package, one can detect the transcritical bifurcation 
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Figure 4 Bifurcation diagram of the model (2) in the plane ( γ , E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the model. For α = 0 . 35 , β = 0 . 5 , b = 0 . 025 , c = 0 . 35 , ε =
0 . 15 , μ = 0 . 005 , let γ vary then we get a transcritical bifurca-
tion occurring at the value γ = 0 . 351872 . The bifurcation dia-
gram is given in Fig. 4 . In the figure, the line passing through
the solution 1, 2 and 3 is the curve of disease free equilibrium,
and the line containing the solution 4, 2 and 5 is the curve of
endemic equilibrium. The solid line is for stable equilibria and
the dashed line is for unstable equilibria. Transcritical bifurca-
tion occurs at the solution 2, corresponding to R 0 = 1 . We also
obtain the same bifurcation when other parameters are varied. 

6. Conclusions 

In this paper, a proposed model for infectious diseases of in-
fluenza virus with resistance in human is introduced and stud-
ied. The basic reproduction number R 0 is the threshold condi-
tion that determines the propagation dynamics. When R 0 ≤ 1 ,
the system has only a disease free equilibrium P 0 which is glob-
ally stable. It implies that the disease dies out eventually. When
R 0 > 1 , the system has a unique endemic equilibrium P 1 , which
is globally stable under some conditions. This shows that the
disease persists in the population and tends to a positive steady
state. The local bifurcation, occurring at R 0 = 1 , is explained by
the transcritical bifurcation. The global stability of system has
been proved by using the Lyapunov function method as well as
geometric approach. As results indicate that spread of disease
is very sensitive to contact parameter γ and transform parame-
ters β, b and c . The transmission will slow down if the value of
γ is decreasing, and β, b and c are increasing (see Fig. 4 ). This
shows the way to reduce the spread of influenza virus. 
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