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1. Introduction 

In 2009, Becker [1] considered the scalar linear homogeneous
Volterra integro-differential equation 

x 

′ (t) = −a (t ) x (t ) + 

∫ t 

0 
b(t, s ) x (s ) ds , (1)

for t ≥ 0 , where a and b are real-valued and continuous func-
tions on the respective domains [0 , ∞ ) and � := { (t, s ) : 0 ≤
s ≤ t < ∞} . The author studied the asymptotic behaviors of so-
lutions of Eq. (1) by using the Lyapunov functionals. 
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In this paper, instead of Eq. (1) , we consider the non-linear
Volterra integro-differential equation of the form 

x 

′ (t) = −a (t ) h (x (t )) + 

∫ t 

0 
b(t, s ) g(x (s )) ds , (2)

for t ≥ 0 , where a : [0 , ∞ ) → [0 , ∞ ) , h : R → R , g : R → R

and b : � → R are continuous functions on their respective do-
mains, � := { (t, s ) : 0 ≤ s ≤ t < ∞} , that h (0) = g(0) = 0 , and
h (x ) and g(x ) are differentiable at x = 0 . 

We can write Eq. (2) in the form of 

x 

′ (t) = −a (t ) h 1 (x (t )) x (t ) + 

∫ t 

0 
b(t, s ) g 1 (x (s )) x (s ) ds , 

where 

h 1 (x ) = 

⎧ ⎨ 

⎩ 

h (x ) 

x 

, x � = 0 

h ′ (0) , x = 0 

and 

g 1 (x ) = 

⎧ ⎨ 

⎩ 

g(x ) 

x 

, x � = 0 

g ′ (0) , x = 0 . 
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In view of the mentioned information, it follows that the 
quation discussed by Becker [1] , Eq. (1) , is a special case of
ur equation, Eq. (2) . That is, our equation, Eq. (2) , includes
q. (1) discussed in [1] . As Becker [1] studied the asymptotic be-
avior of solutions of linear Volterra integro-differential equa- 
ion, we investigate the same topic for the nonlinear case. This 
ase shows the novelty of this paper and is an improvement 
n the topic in the literature. Our results will also be different
rom that obtained in the literature (see [2–11,13–19] and the 
eferences thereof). Namely, the equation considered and the as- 
umptions to be established here are different from that in the 
entioned papers above. It should be noted that this paper has 

lso a contribution to the subject in the literature, and it may
e useful for researchers working on the qualitative behaviors 
f solutions for Volterra integro-differential equation. 

We give some basic information related Eq. (2) and the non- 
omogeneous equation 

 

′ (t) = −a (t ) h (x (t )) + 

∫ t 

0 
b(t, s ) g(x (s )) ds + f (t) , (3) 

here f : [0 , ∞ ) → R is a continuous function. It is worth men-
ioning that the following basic notations and definitions were 
aken from Becker [1] . 

We use the following notation throughout this paper (see [1] ): 
C[ t 0 , t 1 ] (resp. C[ t 0 , ∞ ) ) will denote the set of all continuous

eal-valued functions on [ t 0 , t 1 ] (resp. [ t 0 , ∞ ) ). 
For ϕ ∈ C[0 , t 0 ] , | ϕ | t 0 := sup {| ϕ (t ) | : 0 ≤ t ≤ t 0 } . 
L 

1 [0 , ∞ ) denotes the set of all real-valued functions f that
re Lebesgue measurable on [0 , ∞ ) and for which the Lebesgue
ntegral 

∫ ∞ 

0 | f | is finite. However, we use it to denote those func-
ions in L 

1 [0 , ∞ ) that are also continuous on [0 , ∞ ) . For such
 function, say g , the improper Riemann integral 

∫ ∞ 

0 | g(t) | dt 
onverges, i.e., lim t→∞ 

∫ t 
0 | g(s ) | ds exists and is finite. In short,

y g ∈ L 

1 [0 , ∞ ) we mean that g is continuous and absolutely
iemann integrable on [0 , ∞ ) . 

L 

2 [0 , ∞ ) will denote the set of all continuous real-valued
unctions that are square integrable on [0 , ∞ ) . That is, h ∈
 

2 [0 , ∞ ) will mean that h is continuous on [0 , ∞ ) and h 2 ∈
 

1 [0 , ∞ ) . 

efinition 1. A solution of Eq. (2) (resp. (3) ) on [0 , T ) , where
 < T ≤ ∞ , with an initial value x 0 ∈ R is a continuous func-
ion x : [0 , T ) → R that satisfies Eq. (2) (resp. (3) ) on [0 , T )

uch that x (0) = x 0 . 

efinition 2. The zero solution of Eq. (2) is 

(i) stable if for each ε > 0 and t 0 ≥ 0 , there exists a
δ = δ(ε, t 0 ) > 0 such that ϕ ∈ C[0 , t 0 ] with | ϕ| t 0 < δ im-
plies that | x (t, t 0 , ϕ) | < ε for all t ≥ t 0 . 

(ii) globally asymptotically stable (asymptotically stable in 

the large) if it is stable and if every solution of Eq. (2) ap-
proaches zero as t → ∞ . 

(iii) uniformly stable if for each ε > 0 , there exists a
δ = δ(ε) > 0 such that ϕ ∈ C[0 , t 0 ] with | ϕ| t 0 < δ (any
t 0 ≥ 0 ) implies that | x (t, t 0 , ϕ) | < ε for all t ≥ t 0 . 

(iv) uniformly asymptotically stable if it is uniformly sta- 
ble and if there exits an η > 0 with the following prop-
erty: For each ε > 0 , there exists a T = T (ε) > 0 such
that ϕ ∈ C[0 , t 0 ] with | ϕ| t 0 < η (any t 0 ≥ 0 ) implies that

| x (t, t 0 , ϕ) | < ε for all t ≥ t 0 + T . t
. Main results 

t the beginning, we obtain some sufficient conditions so that 
ll of the solutions of Eq. (2) belong to L 

2 [0 , ∞ ) . Then we will
dd more conditions that will drive these L 

2 solutions tend to
ero as t → ∞ . 

emma 1. If 

 ≤ h 1 (x ) ≤ α, σ ≤ g 1 (x ) ≤ 1 , 

here α and σ, σ ∈ (0 , 1) , are positive constants, 

 (t) −
∫ t 

0 
| b(t, s ) | ds ≥ 0 

or all t ≥ 0 and if 

a (s ) − σ

∫ t 

s 
| b(u, s ) | du ≥ 0 

or all t ≥ s ≥ 0 , then the zero solution of Eq. ( 2 ) is stable. In
ddition, if for some t 1 ≥ 0 there is a constant k > 0 such that
ither 

1 ≤ h 1 (x ) ≤ α, σ ≤ g 1 (x ) ≤ 1 , 

a (t) −
∫ t 

0 
| b(t, s ) | ds ≥ k 

or all t ≥ t 1 or 

1 ≤ h 1 (x ) ≤ α, σ ≤ g 1 (x ) ≤ 1 , 

αa (s ) − σ

∫ t 

s 
| b(u, s ) | du ≥ k 

or all t ≥ s ≥ t 1 holds, then every solution x (t) of Eq. ( 2 ) be-
ongs to L 

2 [0 , ∞ ) . 

roof. We define the Lyapunov functional 

 : [0 , ∞ ) × C[0 , ∞ ) → [0 , ∞ ) 

y 

 (t, ψ(. )) := ψ 

2 (t) + 

∫ t 

0 
{ a (s ) h 1 (ψ(s )) 

−
∫ t 

s 
| b(u, s ) g 1 (ψ(s )) | du } ψ 

2 (s ) ds . (4) 

t is clear from (4) that V (t, 0) = 0 and V (t, ψ(. )) ≥ ψ 

2 (t) for
ll t ≥ 0 . 

For any t 0 ≥ 0 and initial function ϕ ∈ C[0 , t 0 ] , let
 (t) = x (t, t 0 , ϕ) denote the unique solution of Eq. (2) on

0 , ∞ ) such that x (t) = ϕ(t) for 0 ≤ t ≤ t 0 . For brevity, let
 (t) = V (t, x (. )) , that is, the value of the functional V along

he solution x (t) at t. Taking the derivative of V with respect to
, we have 
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′ (t) = 2 x (t) x ′ (t) + a (t) h 1 (x (t)) x 2 (t) 

−
∫ t 

0 
| b(t, s ) g 1 (x (s )) | x 2 (s ) ds 

= 2 x (t)[ −a (t) h 1 (x (t)) x (t) + 

∫ t 

0 
b(t, s ) g 1 (x (s )) x (s ) ds ] 

+ a (t) h 1 (x (t)) x 2 (t) −
∫ t 

0 
| b(t, s ) g 1 (x (s )) | x 2 (s ) ds ≤

−a (t) h 1 (x (t)) x 2 (t) + 2 
∫ t 

0 
| b(t, s ) || g 1 (x (s )) || x (t) || x (s ) | ds 

−
∫ t 

0 
| b(t, s ) || g 1 (x (s )) | x 2 (s ) ds ≤ −a (t) h 1 (x (t)) x 2 (t) 

+ 

∫ t 

0 
| b(t, s ) || g 1 (x (s )) | (x 2 (t) + x 2 (s )) ds 

−
∫ t 

0 
| b(t, s ) || g 1 (x (s )) | x 2 (s ) ds = −a (t) h 1 (x (t)) x 2 (t) 

+ 

∫ t 

0 
| b(t, s ) || g 1 (x (s )) | x 2 (t) ds ≤

−{ a (t) −
∫ t 

0 
| b(t , s ) | ds } x 2 (t ) . (5)

It follows that the assumptions of Lemma 1 imply 

 

′ (t) ≤ 0 . 

This last estimate, together with V (t) ≥ x 2 (t) , gives 

x 2 (t) ≤ V (t) ≤ V (t 0 ) (6)

for all t ≥ t 0 . It is clear that 

 (t 0 ) = ϕ 2 (t 0 ) + 

∫ t 0 

0 
{ a (s ) h 1 (ϕ(s )) 

−
∫ t 0 

s 
| b(u, s ) g 1 (ϕ(s )) | du } ϕ 2 (s ) ds 

≤ ϕ 2 (t 0 ) + 

∫ t 0 

0 
{ αa (s ) − σ

∫ t 0 

s 
| b(u, s ) | du } ϕ 2 (s ) ds 

≤ | ϕ | 2 t 0 M (t 0 ) , 

where 

M(t 0 ) := 1 + 

∫ t 0 

0 
[ αa (s ) − σ

∫ t 0 

s 
| b(u, s ) | du } ds . 

Then 

| x (t) | ≤ | ϕ| t 0 
√ 

M(t 0 ) (7)

for all t ≥ t 0 . This implies the zero solution of the considered
equation is stable. Namely, for ε > 0 , let δ = 

ε √ 

M(t 0 ) 
. Then, for

ϕ ∈ C[0 , t 0 ] with | ϕ| t 0 < δ, 

| x (t) | ≤ δ
√ 

M(t 0 ) = ε (8)

for all t ≥ t 0 . If the assumptions a (s ) − ∫ t 
0 | b(u, s ) | du ≥ k also

holds, then we can easily get 

 

′ (t) ≤ −kx 2 (t) 

for all t ≥ τ , where τ := max { t 0 , t 1 } . By integrating the last estimate,
we obtain 

 (t) − V (τ ) ≤ −k 
∫ t 

τ

x 2 (s ) ds . 
so that 

x 2 (t) ≤ V (t) ≤ V (τ ) − k 
∫ t 

τ

x 2 (s ) ds (9)

for all t ≥ τ . If, on the other hand, the assumption αa (s ) −
σ

∫ t 
s | b(u, s ) | du ≥ k holds, then (4) and (6) together yield 

x 2 (t) + k 
∫ t 

t 1 
x 2 (s ) ds ≤ V (t) ≤ V (t 0 ) (10)

for all t ≥ t 1 . Either one, (9) or (10) implies that x 2 ∈ L 

1 [0 , ∞ ) . 
We have just proved that under the conditions of Lemma 1 ,

the solution x (t, t 0 , ϕ) of Eq. (2) belongs to L 

2 [0 , ∞ ) . It
seems plausible that x 

2 (t) → 0 as t → ∞ . However, by itself
convergence of an improper Riemann integral of a function
f on [0 , ∞ ) does not ensure that f approaches 0 as t → ∞ (see
[12] ). But if f were also known to be uniformly continuous, then
it would be according to the next lemma attributed to Barb ̆alat
[20] . The proof of Lemma 1 is completed. �

Lemma 2 (Barb ̆alat’s Lemma) . If f : [0 , ∞ ) → R is both uni-
formly continuous and Riemann integrable on [0 , ∞ ) , then
f (t) → 0 as t → ∞ (see [ 20 ] ). 

Lemma 3. If f : [0 , ∞ ) → R is uniformly continuous on [0 , ∞ )

and if f 2 is Riemann integrable on [0 , ∞ ) , then f (t) → 0 as t →
∞ (see [ 1 ] ). 

Theorem 1. If 1 ≤ h 1 (x ) ≤ α, σ ≤ g 1 (x ) ≤ 1 , where α and
σ, σ ∈ (0 , 1) , are positive constants, 

a (t) −
∫ t 

0 
| b(t, s ) | ds ≥ 0 

for all t ≥ 0 , 

a (s ) −
∫ t 

s 
| b(u, s ) | du ≥ 0 

for all t ≥ s ≥ 0 , and if for some t 1 ≥ 0 there are positive con-
stants k and K such that either 

k + 

∫ t 

0 
| b(t, s ) | ds ≤ a (t) ≤ Kα−1 

for all t ≥ t 1 or 

k + 

∫ t 

s 
| b(u, s ) | du ≤ a (s ) ≤ Kα−1 

for all t ≥ s ≥ t 1 , then all solutions of Eq. ( 2 ) are uniformly con-
tinuous on [0 , ∞ ) and belong to L 

2 [0 , ∞ ) . Furthermore, the zero
solution of Eq. ( 2 ) is globally asymptotically stable, (see also
[ 15 ] ). 

Proof. We only need to show that all solutions of Eq. (2) tend
to zero since the stability has already been established in
Lemma 1 . To this end, for any t 0 ≥ 0 and ϕ ∈ C[0 , t 0 ] , consider
the corresponding solution x (t) = x (t, t 0 , ϕ) . By (7) , we have 

‖ x (t) | ≤ | ϕ| t 0 
√ 

M(t 0 ) 

for all t ≥ t 0 . 
Consequently, since a (t) ≤ Kα−1 for t ≥ t 1 , 1 ≤ h 1 (x ) ≤

α σ ≤ g 1 (x ) ≤ 1 , it follows that 
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 x 

′ (t) | ≤ a (t) h 1 (x (t)) | x (t) | + 

∫ t 0 

0 
| b(t, s ) || g 1 (ϕ(s )) || ϕ(s ) | ds 

+ 

∫ t 

t 0 

| b(t, s ) || g 1 (x (s )) || x (s ) | ds 

≤ 2 K| ϕ | t 0 
√ 

M (t 0 ) + K| ϕ | t 0 
or t ≥ τ , where τ = max { t 0 , t 1 } . Since x 

′ (t) is bounded on
 τ, ∞ ) , x (t) satisfies a Lipschitz condition on [ τ, ∞ ) . Conse-
uently, it is uniformly continuous on [ τ, ∞ ) . This and the con-
inuity of x (t) on [0 , ∞ ) imply x (t) is uniformly continuous
n the entire interval [0 , ∞ ) . By Lemma 1 , x 

2 (t) ∈ L 

1 [0 , ∞ ) .
herefore, by Lemma 3 , it follows that x (t) → 0 as t → ∞ . 

The proof of Theorem 1 is completed. �

xample 1. Consider the non-linear Volterra integro- 
ifferential equation of the form 

 

′ (t) = −
(

k + 

1 
1 + t 

)(
x (t) + 

x (t) 
1 + x 

2 (t) 

)

+ 

∫ t 

0 

cos s 

(1 + t) 3 

(
x (s ) 

2 
+ 

x 

3 (s ) 
1 + 2 x 

2 (s ) 

)
ds 

or t ≥ 0 , where k is a positive real number. 
When we compare this equation with Eq. (2) , it follows that 

 (t) = k + 

1 
1 + t 

, 

 (x ) = x + 

x 

1 + x 

2 
, h 1 (x ) = 1 + 

1 
1 + x 

2 
, (x � = 0) , 

 1 ≤ h 1 (x ) = 1 + 

1 
1 + x 

2 
≤ 2 = α, 

(t, s ) = 

cos s 

(1 + t) 3 
, 

(x ) = 

x 

2 
+ 

x 

3 

2 x 

2 + 1 
, 

 1 (x ) = 

1 
2 

+ 

x 

2 

2 x 

2 + 1 
, (x � = 0) . 

= 

1 
2 

≤ 1 
2 

+ 

x 

2 

2 x 

2 + 1 
= g 1 (x ) ≤ 1 , 

 + 

∫ t 

0 
| b(t, s ) | ds = k + 

∫ t 

0 

| cos s | 
(1 + t) 3 

ds 

k + 

t 

(1 + t) 3 
< k + 

t 
1 + t 

= a (t) , 

or all t ≥ 0 . Hence, the estimate 

 + 

∫ t 

0 
| b(t, s ) | ds ≤ a (t) ≤ Kα−1 

olds with K = 2(k + 1) . Further, it is clear that 
 t 

s 
| b(u, s ) | du ≤

∫ t 

s 

1 

(1 + u ) 3 
du 

< 

1 

2 (1 + s ) 2 
< 

1 
1 + s 

< k + 

1 
1 + s 

= a (s ) 

or all (t, s ) ∈ �. 
Thus, all the assumptions of Theorem 1 hold. Hence, we can 

onclude that all solutions of the equation given are uniformly 
ontinuous on [0 , ∞ ) and belong to L 

2 [0 , ∞ ) . Furthermore, the
ero solution of the equation given is globally asymptotically 

table. 
emma 4. If 
 t 

s 
| b(u, s ) | du ≤ α−1 a (s ) (11) 

or all t ≥ s ≥ 0 , then the zero solution of Eq. ( 2 ) is stable. Fur-
hermore, if for some t 1 ≥ 0 there is a constant k > 0 such that 

 (t) ≥ k (12) 

or all t ≥ t 1 and a constant λ ∈ (0 , 1) such that 
 t 

s 
| b(u, s ) | du ≤ λαa (s ) (13) 

or all t ≥ s ≥ t 1 , then every solution x (t) of Eq. ( 2 ) belongs to
 

1 [0 , ∞ ) . 

roof. Define the Lyapunov functional 

 : [0 , ∞ ) × C[0 , ∞ ) → [0 , ∞ ) 

y 

 (t, ψ(. )) := | ψ(t) | + 

∫ t 

0 
{ a (s ) h 1 (ψ(s )) 

−
∫ t 

s 
| b(u, s ) g 1 (ψ(s )) | du }| ψ(s ) | ds . (14) 

t is clear from the assumptions of Lemma 4 that V (t, 0) = 0
nd V (t, ψ(. )) ≥ | ψ(t) | for all t ≥ 0 . 

For any t 0 ≥ 0 and initial function ϕ ∈ C[0 , t 0 ] , let
 (t) = x (t, t 0 , ϕ) denote the solution of Eq. (2) on [0 , ∞ ) with
 (t) = ϕ(t) for 0 ≤ t ≤ t 0 . Then consider V (t) := V (t, x (. )) ,
hat is, the value of the functional V along the solution x (t)
t t and the derivative of V with respect to t . Since x (t) is con-
inuously differentiable on [ t 0 , ∞ ) , x (t) has a right derivative
 r | x (t) | given by 

 r | x (t) | = 

{ 

x 

′ (t ) sgn x (t ) , if x (t) � = 0 

| x 

′ (t) | , if x (t) = 0 

or all t ≥ t 0 . Thus, the right derivative of V for t ≥ t 0 is 

 r V (t) = D r | x (t) | + 

d 
dt 

∫ t 

0 
[ a (s ) h 1 (x (s )) 

−
∫ t 

s 
| b(u, s ) g 1 (x (s )) | du ] | x (s ) | ds ≤ −a (t) h 1 (x (t)) | x (t) | 

+ 

∫ t 

0 
| b(t, s ) || g 1 (x (s )) || x (s ) | ds + a (t) h 1 (x (t)) | x (t) | 

−
∫ t 

0 
| b(t, s ) || g 1 (x (s )) || x (s ) | ds = 0 (15) 

o that 

 r V (t) ≤ 0 

ence, 
 x (t) | ≤ V (t) ≤ V (t 0 ) (16) 

or all t ≥ t 0 , where 

 (t 0 ) = | ϕ(t 0 ) | + 

∫ t 0 

0 
{ a (s ) h 1 (ϕ(s )) 

−
∫ t 0 

s 
| b(u, s ) g 1 (ϕ(s )) | du }| ϕ(s ) | ds ≤ | ϕ(t 0 ) | 

+ 

∫ t 0 
{ αa (s ) − σ

∫ t 0 
| b(u, s ) | du }| ϕ (s ) | ds ≤ M (t 0 ) | ϕ | t 0 
0 s 
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and 

M(t 0 ) := 1 + 

∫ t 0 

0 
{ αa (s ) − σ

∫ t 0 

s 
| b(u, s ) | du } ds . 

For a given ε > 0 , let δ = 

ε 

M(t 0 ) 
. Then, for ϕ ∈ C[0 , t 0 ] with

| ϕ| t 0 < δ, we have 

| x (t) | ≤ V (t 0 ) ≤ M (t 0 ) | ϕ | t 0 < δM (t 0 ) = ε 

for all t ≥ t 0 , which proves the stability. 
Now suppose (12) and (13) also holds. In that case, let

γ := 

√ 

λ and 

 γ (t) := | x (t) | + 

∫ t 

0 
[ γ a (s ) h 1 (x (s )) − 1 

γ

∫ t 

s 
| b(u, s ) g 1 (x (s )) | du ] | x (s ) | ds .

By (13) , 

 γ (t) ≥ | x (t) | 

for all t ≥ t 1 . And 

D r V γ (t) ≤ −a (t) h 1 (x (t)) | x (t) | + 

∫ t 

0 
| b(t, s ) g(x (s )) || x (s ) | ds 

+ γ a (t) h 1 (x (t)) | x (t) | − 1 
γ

∫ t 

0 
| b(t, s ) g 1 (x (s )) || x (s ) | d

≤ −(1 − γ ) a (t ) h 1 (x (t )) | x (t ) | 

for all t ≥ τ , where τ = max { t 0 , t 1 } . Then, because of (12) , we
have 

D r V γ (t) ≤ −k (1 − γ ) | x (t) | . 

Integration along with V γ (t) ≥ | x (t) | yields 

| x (t) | ≤ V γ (t) ≤ V γ (τ ) − k (1 − γ ) 

∫ t 

τ

| x (s ) | ds 

for all t ≥ τ . Therefore, the improper integral ∫ ∞ 

0 
| x (t) | dt 

converges. The proof of Lemma 4 is completed. �

Theorem 2. If 

1 ≤ h 1 (x ) ≤ α, σ ≤ g 1 (x ) ≤ 1 , 

where α and σ, σ ∈ (0 , 1) , are positive constants, ∫ t 

0 
| b(t, s ) | ds ≤ αa (t) 

for all t ≥ 0 , ∫ t 

s 
| b(u, s ) | du ≤ αa (s ) 

for all t ≥ s ≥ 0 , and if for some t 1 ≥ 0 there are positive con-
stants k and K such that 

k ≤ a (t) ≤ αK 

for all t ≥ t 1 and a constant λ ∈ (0 , 1) such that 

∫ t 

| b(u, s ) | du ≤ λαa (s ) 

s 
 ≥ s ≥ t 1 , then all solutions of ( 2 ) are uniformly continuous on
[0 , ∞ ) and belong to L 

1 [0 , ∞ ) . Moreover, the zero solution of 
( 2 ) is globally asymptotically stable. 

Proof. By Lemma 4 , the zero solution of (2) is sta-
ble. For any ϕ ∈ [0 , t 0 ] , consider the corresponding solution
x (t) = x (t, t 0 , ϕ) . By (16) , we have 

| x (t) | ≤ V (t 0 ) 

for all t ≥ t 0 . 
This, together with 

∫ t 
0 | b(t, s ) | ds ≤ αa (t) and k ≤ a (t) ≤

αK, applied to Eq. (2) gives 

| x ′ (t) | ≤ a (t) h 1 (x (t)) | x (t) | + 

∫ t 0 

0 
| b(t, s ) || g 1 (ϕ(s )) || ϕ(s ) | ds 

+ 

∫ t 

t 0 
| b(t, s ) || g 1 (x (s )) || x (s ) | ds 

≤ αa (t) | x (t) | + 

∫ t 0 

0 
| b(t, s ) || ϕ(s ) | ds + 

∫ t 

t 0 
| b(t, s ) || x (s ) | ds 

≤ 2 KV (t 0 ) + αa (t 0 ) | ϕ| t 0 
for all t ≥ τ , where as before τ = max { t 0 , t 1 } . In short, x ′ (t) is
bounded on [ τ, ∞ ) . Consequently, by the uniform continuity ar-
gument in the proof of Theorem 1 , x (t) is uniformly continu-
ous on [0 , ∞ ) . Also, by Lemma 1 , x (t) ∈ L 

1 [0 , ∞ ) . Therefore, by
Barb ̆alat’s Lemma, it follows that x (t) → 0 as t → ∞ . The proof
of Theorem 2 is completed. �

Example 2. Consider the non-linear Volterra integro-
differential equation of the form 

x 

′ (t) = −
(

k + 

1 + β

1 + t 

)(
x (t) + 

x (t) 
1 + x 

2 (t) 

)

+ 

∫ t 

0 

cos s 

(1 + t) 2 

(
x (s ) 

2 
+ 

x 

3 (s ) 
1 + 2 x 

2 (s ) 

)
ds 

for t ≥ 0 , where k and β are any positive constants. 
It is obvious that the assumption 

k ≤ a (t) ≤ αK 

holds, where a (t) = k + 

1+ β
1+ t and a (t) is bounded by positive

constants. Besides, the assumption 

∫ t 

0 
| b(t, s ) | ds ≤ αa (t) 

holds since ∫ t 

0 
| b(t, s ) | ds = 

∫ t 

0 

| cos s | 
(1 + t) 2 

ds ≤ t 

( 1 + t) 2 
< 

2 
1 + t 

= αa ( t) 

for all t ≥ 0 . Finally, we have ∫ t 

s 
| b(u, s ) | du ≤

∫ t 

s 

1 

(1 + u ) 2 
du < 

1 
1 + s 

< 

1 
1 + β

(
k + 

1 + β

1 + s 

)

= 

1 
1 + β

a (s ) < 

2 
1 + β

a ( s ) 

for all t ≥ s ≥ 0 . Thus, all the assumptions of Theorem 2 hold.
Hence, we can conclude that all solutions of the equation given
are uniformly continuous on [0 , ∞ ) and belong to L 

1 [0 , ∞ ) .
Moreover, the zero solution of the equation given is globally
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. Conclusion 

 kind of non-linear Volterra integro-differential equations 
as been considered. The stability/global asymptotic stabil- 

ty/uniformly continuity of the solutions on [0 , ∞ ) , bounded-
ess of the first order derivative of solutions and absolutely 
iemann integrability of the solutions on [0 , ∞ ) have been dis-

ussed by using the Lyapunov’s second approach. The obtained 

esults extend and improve some recent results in the literature 
rom linear case to the non-linear case. Examples are also given 

o illustrate the importance of our results. The results of this 
aper are also new and complement previously known results. 
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