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Optical bistable behavior for a system of inhomogeneously broadened two sorts of two-
level atoms in a ring cavity is investigated outside the rotating wave approximation (RWA). The
model Maxwell-Bloch equations are treated with Fourier decomposition up to first harmonic.
The first harmonic output field component exhibits reversed or mushroom bistability simulta-

neously with bi- and double-bistability in the fundamental field component. Inhomogeneous broad-
ening and transverse field effects are also considered.
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1. Introduction

Optical bistability (OB) phenomenon has potential applica-
tions in optical communication and quantum processing of
information. This phenomenon has been investigated for a
homogeneously broadened two-level atomic medium placed
inside an optical cavity in the plane wave approximation
[1-16]. Investigation of OB systems within the plane wave
approximation, where the homogeneously broadened atomic
system is in interaction with a squeezed vacuum input field
has been studied in [17-27]. Further, transverse effect of the
radiation field in OB systems with homogeneously and inho-
mogeneously broadened two-level atoms has been examined
[28-34].
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On the other hand, optical tristability arise when the ring
cavity contains a homogeneously mixed atomic species in the
plane wave approximation [35,36]. Also, the steady state
behavior of a bistable system of a homogeneously or inhomo-
geneously broadened mixed atomic species has been analyzed,
where the transverse effect of radiation field is taken into
account [37].

In all previous works [1-37], rotating wave approximation
(RWA) has been used, where rapidly oscillating terms (terms
which oscillate at twice the driving field frequency) are ne-
glected. Optical bistability for a homogeneously two-level
atomic system in a ring cavity in the plane wave approximation
has been investigated recently outside the RWA [38] where the
non-autonomous model Maxwell-Bloch equations are treated
with Fourier decomposition up to first harmonic (cf. [39]).

In the present work, we investigate the OB outside the
RWA for a system of inhomogeneously broadened two sorts
of two-level atoms placed in a ring cavity (Fig. 1), where the
transverse profile of the incident coherent field is considered.
A realistic model can be a mixture of two metal vapors like
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Fig. 1 The ring cavity configuration.

Potassium has an 8d level lying 1.67 cm ™! below the 16d level
of rubidium at around 33,180 cm™! (cf. [35]).

The paper is presented as follows: The non autonomous
model of Maxwell-Bloch equations outside the RWA are gi-
ven in Section 2. The Fourier decomposition series to solve
the non-autonomous model equations for the output field up
to first harmonic and to O(A)(4 is the ratio of the Einstein
A-coefficient to the input field circular frequency) is presented
in Section 3. Computational results are discussed in Section 4
followed by a summary in Section 5.

2. Model equations

Consider a coherent beam E; of frequency w; that is injected
into a ring cavity of length L, (Fig. 1) with E7 is the transmit-
ted field. A large number N of two sorts of two level atoms
with central transitional frequencies w,, ®/, dipole moments
1, /', weights wy, w, and longitudinal and transverse decay ra-
tios y,,, 7}, and y,, 7, is contained in a cylindrical sample of
length L and radius ry (Fig. 1). The reduced Maxwell-Bloch
equations with the one-transverse mode and mean field
approximations [8,9] within the RWA [37] now takes the
following form outside RWA,

dx v wm
dt—k{}—(1+10)x+2c }}“m

x'/h.la’%da[: {r ()da +?—?%s Gl /)dw/H (1a)

81‘, . * i

2 = Tt +id(@))r- + Ve (x + x"e™) (1b)

%) LT 1 .

% \//121/L i[ (x+x* "”)+r,(x*+xe"”’)] *V11(1’3+1)
(Ic)

Os_ ; YN * n]r

5 = +id ())s- \/y“yla2s3(x+ x"e™) (1d)

% W V;;/l '[s+ x4 x5 (x4 xe )| =9 (55 + 1)

(le)

The notations are: r_=r_(w,r,z 1), s_=s_(o',r,z,t) and
r3=ri(w,r,z,t),s3 = s3(w',r,z,t) are the mean atomic polariza-
tion components and the mean atomic population for the
two types of atoms. The quantities x and y are the normalized

rate.The Gaussian function a(r) = 2 /g measures the trans-

verse effect, i = a(ry) and G(w), Gz(a)’) are the distribution
functions of the atomic frequencies for both types of
atoms.The terms containing e*™"" in Eqgs. (1b)~(le) represent
the effect of interaction of the cavity field with the atoms out-
side the RWA . Within the RWA these terms are discarded and
Eq. (1) give the input-output field steady state equation [37],

2

_ 2C W1
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where X =|x 2 and Y =1)|? are the fundamental output
and input field intensities and the distribution functions of
the atomic frequencies are taken Lorentzian of peak frequen-

cies w,, o/, i.e.,
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w/,) and the normalized widths
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Next, we analyze the non-autonomous system (1) to reach a
formula for the additional first harmonic component of the
output field outside the RWA.

3. Analytical solution outside the RWA

The solution of Eq. (1) for the atomic Bloch components and
the cavity field x contains all harmonics of frequency 2w;n,
where 7 is an integer, due to the presence of the time dependent
coefficients ¢, We assume, up to first harmonic (n = +1),
the following Fourier decomposition formula [38—40],

Fez = rig + 1';36"'7’ + 1’;7367"’“, (3a)
Sz3 = voﬂ + 516" 45 50, (3b)
x(2) = xo(t) + x4 ()™ + x_(t)e™™, (3¢)

where 10 (w,r,z,1), s%(«',r,2,1), xo(t) are the fundamental
atomic and field components respectively within the RWA,
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Fig. 2 The first harmonic component | x| of the output field
against the input field y for one sort of atom: C =20, 4, =4,
A =4 0=2, 4 =7=05%x10"° k=100y,.

(o, 2,0, (o, 1,2, 1), st(a',r,z,0)s (o, r,2,1) and xz(f)
are the additional first harmonic components outside the
RWA.

Substituting Eq. (3) into (1) and comparing the different
coefficients of e* ™" (n = 0,1), we get in the steady state the
following system of equations for the fundamental and first
harmonic components,
PR T
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Fig. 3 (a) The fundamental field component | xg against y for

Cc=100, 4, = A;:O:a’l =0,=0, =4 =10"° k=100y,,
%: 1, b =1, ﬁ: 1.1, %22 =2. (b) The first harmonic compo-

nent | x| againét y for the same data as (a).
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where Ay = 1+i(0+1), 4 1= = %,v—k

Eq. (6a) with Lorent21an frequency distributions reduce to
the input-output field state equation (within RWA), Eq. (2).
Substituting Eq. (6b) for x. into Eqgs. (4b) and (5b) and solv-
ing the resulting equation with Egs. (4¢) and (5¢) up to O(4);
i = 1,2 [40], the steady state values of ™ and s are,

,,+,\/E rx; (1 —id(w))r, ()
- Vo [+ i(4(w) +

/)] D +id(w)+1/i)]  V*
(7a)
o VT 9%
o Vioop LA () 4 1/24)]
(=il () .
T A () + 1/ )] (s2) (70)

The components r‘L ai as solved by the system of Egs. (4,5,6)
up to O(4,;) ; i = 1,2 are actually the quadrature polarization
components within the RWA [37], i.e.,

o [ <1+m<w>>a%xa]:(,,g)* s

V1 [1 + A () + alxo|*

N R U {20 VS
VITTE I [b(w, @) (1 + 42(@)) + alxo[’|
(8b)
From Egs. (6b), (7), and (8), we get the expression for the field
component x .,
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Fig. 4 (a) The fundamental field component | x against y for

€ =1000, 4,=10, A= —20, 0= —12, Jy=7,=10", k = 100y, ,
6y =02, ;=05 %=1 8 =7 =11 %=2 (b) The first

harmonic component | x | against y for the same data as (a).
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Up to (4,); i = 1,2, we have x_ = 0.

In the case where the distribution functions of the atomic
frequencies Gi(w), G>(w') are Lorentzians, Eq. (9) takes the
form,
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(a) The fundamental field component | xJ against y for
C =700, 4,=10, 4= —20, 6= —3, Al—)z 0’6, k =100y,
o, =02, ¢,=0.5, ’—":1 b =1 ’1'—11 % = 2. (b) The first
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harmonic componentT x| against y for the same data as (a).
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where

Lo
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2
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In the case of homogeneous broadening (¢} = ¢, = 0) and in
the plane wave approximation limit, where %—> 0, C— o0
with C' = 2C<";—_‘3) fixed, Eq. (10) reduces to,

2Cx;  wy 1+ AZ

A it | 14 i1 /)] [0+ 424 f]

Xy =

W L+ 4
WU (14 i(4] 4 1/4)] [b'(1 +42) + Ixo|2]

The comparison between the behavior of the first harmonic
field component x, arise outside the RWA, Eq. (10), and
the fundamental field component x, (within the RWA, Eq.
(2)) against the input field y is presented next.

4. Results and discussion

First, for the case of one sort of atom, b = :‘7‘ = % =1, and
homogeneous broadening in the plane wave approximation
with C=20, 4, =4, =4, 0=2,.=)=05x10"° k=

100y, (Fig. 2), the first harmonic field component | x| shows
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Fig. 6 Same as Fig. 4b but for (a) k = 107%y,, (b) k = y,.

butterfly (knotted) OB shape which confirms the results ob-
tained in [38] for two-level atomic system.

At exact resonance (4, =4, =0=0) and for C = 100
with inhomogeneous broadening and transverse field effects,
the field component | x | exhibits reversed (clockwise) bistable
behavior compared with the usual (anti-clockwise) bistable
behavior for | xJ (Fig. 3). In Fig. 3a points 4, D represent
switch on and off for | xJ while in Fig. 3b points A, D repre-
sent the reverse order of switching for | x /.

In the dispersive case, where the atomic and cavity detuning
have opposite signs and for higher value of C = 1000, both
field components | x| and | x/| exhibit the usual (anti-clock-
wise) bistable behavior (Fig. 4) with | x| shows slow decrease
after the switch-up process (to the right of point D). For lesser
C = 700, the field component |xJ shows double bistable
(multi-stable) behavior (Fig. 5a) while the field component
| x.| shows asymmetric mushroom structure (Fig. 5b), with
two-way switching-up and -down processes.

Now, for other values of the damping constants k = y, and
k = 1072y, the field component| x¢ is independent of this ra-
tio, but the field component x4, Fig. 6, is smaller in the case
k=10"%y,.

Finally, the dependence of the field component| x| on the
parameter A(=4,,) shows a rapid increase in the dispersive
and inhomogeneous broadening case, Fig. 7a, compared with
slower increase in the absorptive homogeneous case, Fig. 7b.
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Fig. 7 The scaled first harmonic field component
|x+\/<\x+|' = %%) against the parameter A(=4,,) for fixed
value of | x0| = 100 and for
o ’
C=700, k=100y,, =1, 5 =7, li=11 m=2
@4, =10, A, =20, 0=-3, ¢, =02, ¢, =0.5. (b)

d,=4,=0=07,=7,=0.
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5. Summary

Optical bistable behavior for a system of inhomogeneously
broadened two sorts of two level atoms placed in a ring cavity
with the transverse effect of the radiation field is investigated
outside the RWA using Maxwell-Bloch equations with Fou-
rier decomposition up to first harmonic. The first harmonic
output field component exhibits reversed or mushroom bista-
bility simultaneously with bistability or double bistability in
the fundamental field component depending on the control
of the system parameters. In all cases, the additional first
harmonic field is small O(4;); i = 1,2, compared with the fun-
damental component. As stated in [39], the detection of this
weak first harmonic field can be achieved, for example, with
phase sensitive detection technique similar to that used in
detecting squeezed light [41].
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