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. Introduction 

he notion of pseudo-complements was introduced in semi- 
attices and distributive lattices by O. Frink [1] and G. Birkhoff
2] . The pseudo-complements in Stone algebras were studied 

nd discussed by O. Frink [1] , R. Balbes [3] and G. Gratzer
4] etc. Recently, the concept of Boolean filter of bounded 

seudo-complemented distributive lattices was introduced by 
. Sambasiva Rao and K. P. Shum in [5] . A. Badawy and
. P. Shum [6] introduced and characterized the congru- 

nces and Boolean filters of quasi-modular p -algebras. Also 
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he notion of Boolean filters of principal p -algebras 
In this paper, we further study the d -filters in a p -algebra L

nd many properties of d -filters are also given. We will give a
haracterization theorem of d -filters of a principal p -algebra L .
e also notice that the set F 

d ( L ) of all d -filters of a p -algebra
orms a complete lattice. The relationship between the d -filters 
nd the congruences in [ �, ∇] of a principal p -algebra L is in-
roduced. We also prove that the Boolean algebras B ( L ) and
on B (L ) = { θa : a ∈ B(L ) } are isomorphic, where θa is the con-
ruence on L induced by a d -filter [ a ) d for a closed element a of
 . Moreover, we show that the Boolean algebra Con B ( L ) can be
mbedded into the interval [ �, ∇] of Con ( L ). It is proved that
he lattice of all d -filters of a finite principal p -algebra L is iso-
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2. Preliminaries 

In this section, we cite some known definitions and basic results
which can be found in the papers [1,9–13] . 

A p -algebra is a universal algebra ( L , ∨ , ∧ , ∗, 0, 1), where
( L , ∨ , ∧ , 0, 1) is a bounded lattice and the unary operation 

∗ is
defined by x ∧ a = 0 ⇔ x ≤ a ∗. 

It is known that the class of all p -algebras is equational. A
quasi-modular p-algebra is a p -algebra satisfying the identity 

((x ∧ y ) ∨ z ∗∗) ∧ x = (x ∧ y ) ∨ (z ∗∗ ∧ x ) . 

An element a of a p -algebra L is called closed if a ∗∗ = a .
Then B(L ) = { a ∈ L : a = a ∗∗} is the set of all closed elements
of L . It is known that ( B ( L ), 	 , ∧ , 0, 1), where a 	 b = (a ∗ ∧
b ∗) ∗, forms a Boolean algebra. The set D (L ) = { x ∈ L : x 

∗ =
0 } = { x ∨ x 

∗ : x ∈ L } of all dense elements of L is a filter of L . 
For an arbitrary lattice L , the set F ( L ) of all filters of L or-

dered by the set inclusion forms a lattice. It is known that F ( L ) is
modular (distributive) if and only if L is a modular (distributive)
lattice. Let a ∈ L and [ a ) be the principal filter of L generated by
a : [ a ) = { x ∈ L : x ≥ a } . 

An equivalent relation θ on a p -algebra ( L ; ∨ , ∧ , ∗) is called
a congruence relation if 

(1) θ is a lattice congruence, i.e., for all ( x , y ), ( x 1 , y 1 ) ∈ θ

implies ( x ∧ x 1 , y ∧ y 1 ), ( x ∨ x 1 , y ∨ y 1 ) ∈ θ , 
(2) (x, y ) ∈ θ implies (x 

∗, y ∗) ∈ θ. 

Through what follows, for a p -algebra L we shall denote by
∇ the universal congruence on L . The Cokernel of the lattice
congruence θ on a lattice L is defined as 

okerθ = { x ∈ L : (x, 1) ∈ θ} . 

The relation � of a p -algebra L is defined by (x, y ) ∈ � ⇔
x 

∗∗ = y ∗∗ and is called the Glivenko congruence relation. It is
known that the Glivenko congruence is indeed a congruence on
L such that L / � ∼= 

B ( L ) holds. 
We frequently use the following rules in the computations of

p -algebras (see [10,13] ): 

(1) 0 ∗∗ = 0 and 1 ∗∗ = 1 , 
(2) a ∧ a ∗ = 0 ; 
(3) a ≤ b implies b ∗ ≤ a ∗, 
(4) a ≤ a ∗∗, 
(5) a ∗∗∗ = a ∗, 
(6) (a ∨ b) ∗ = a ∗ ∧ b ∗, 
(7) ( a ∧ b ) ∗ ≥ a ∗∨ b ∗, 
(8) (a ∧ b) ∗∗ = a ∗∗ ∧ b ∗∗, 
(9) (a ∨ b) ∗∗ = (a ∗ ∧ b ∗) ∗ = (a ∗∗ ∨ b ∗∗) ∗∗. 

Haviar [14] introduced the class of principal p-algebras
which contains all quasi-modular p-algebras having a smallest
dense element. 

Definition 2.1 ( [14] ) . A p-algebra ( L ; ∨ , ∧ , ∗, 0, 1) is called a
principal p-algebra, if it satisfies the following conditions: 

(i) The filter D ( L ) is principal, i.e., there exists an element d
∈ L such that D (L ) = [ d ) , 

(ii) The element d is distributive, i.e., (x ∧ y ) ∨ d = (x ∨ d ) ∧
(y ∨ d ) for all x , y ∈ L , 

(iii) x = x 

∗∗ ∧ (x ∨ d ) for any x ∈ L . 
Throughout this paper, d stands for a smallest dense element
of a principal p -algebra L , unless otherwise mentioned. 

3. Properties of d -filters 

In this section, we introduce the concept of d -filter of a p -
algebra. Some properties of d -filters in a p -algebra are derived.
A characterization theorem of d -filters of a principal p -algebra
will be given. 

Definition 3.1. For any filter F of a p -algebra L , define an exten-
sion of F as the set 

F d = { x ∈ L : x 

∗∗ ≥ f for some f ∈ F } 

The following two Lemmas represent some basic properties
of the set F 

d . 

Lemma 3.2. The set F 

d is a filter of a p-algebra L containing F. 

Proof. Clearly 1 ∈ F 

d . Let x , y ∈ F 

d . Then x 

∗∗ ≥ f and y ∗∗ ≥ g for
some f , g of F . Hence (x ∧ y ) ∗∗ = x 

∗∗ ∧ y ∗∗ ≥ f ∧ g. It follows
that x ∧ y ∈ F 

d as f ∧ g ∈ F . Now, let z ∈ L be such that z ≥ x ∈
F 

d . Then z ∗∗ ≥ x 

∗∗ ≥ f for some f ∈ F . Hence z ∈ F 

d . Therefore
F 

d is a filter of L . Since x 

∗∗ ≥ x for any x ∈ F , we have that x ∈
F 

d and F ⊆ F 

d . �

Lemma 3.3. For any two filters F , G of a p-algebra L , we have the
following: 

(1) F ⊆ G implies F 

d ⊆ G 

d , 
(2) (F ∩ G ) d = F d ∩ G 

d , 

(3) (F d ) d = F d . 

Proof. 

(1) Suppose that F ⊆G . Let x ∈ F 

d . Then, x 

∗∗ ≥ f for some f
∈ F . It follows that x ∈ G 

d as f ∈ G . 
(2) Obviously ( F ∩ G ) d ⊆ F 

d ∩ G 

d . Conversely, let x ∈ F 

d ∩
G 

d . Then x 

∗∗ ≥ f and x 

∗∗ ≥ g for some f , g ∈ F . Hence x 

∗∗

≥ f ∨ g . It yields that x ∈ ( F ∩ G ) d , where f ∨ g ∈ F ∩ G .
Consequently F 

d ∩ G 

d ⊆ ( F ∩ G ) d . 
(3) By (1) above, F 

d ⊆( F 

d ) d . Conversely, let x ∈ ( F 

d ) d . Then
x 

∗∗ ≥ f for some f ∈ F 

d . Since f ∈ F 

d , we have f ∗∗ ≥ f 1 for
some f 1 ∈ F . Hence x 

∗∗ ≥ f ∗∗ ≥ f 1 . Then x ∈ F 

d as f 1 ∈ F . 

�

We now introduce the concept of d -filters in a p -algebra. 

Definition 3.4. A filter F of a p -algebra L is called an d -filter of
L if it satisfies the condition, F = F d . 

From Lemma 3.3 (2), we can observe that the intersection of
two d -filters of a p -algebra is again a d -filter. But, in general, the
supremum of two d -filters need not be a d -filter. However, in the
following, we obtain the class F 

d ( L ) of all d -filters of L that is a
bounded lattice. 

Theorem 3.5. For any p-algebra L , the class F 

d ( L ) forms a com-
plete lattice on its own. 

Proof. For any two d -filters F , G of L , define the ordering ≤
on F 

d ( L ) such that F ≤ G ⇔ F ⊆G . Then clearly ( F 

d ( L ), ≤) is a
partially ordered set. Now, consider the following: 

F ∩ G = (F ∩ G ) d and F � G = (F ∨ G ) d . 
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learly by Lemma 3.3 (2), ( F ∩ g ) d is the infimum of both F an G
n F 

d ( L ). Clearly ( F ∨ G ) d is an upper bound for F an G in F 

d ( L ).
uppose that K is a d -filter of L such that F ⊆K and G ⊆K . Let
 ∈ ( F ∨ G ) d . Then x 

∗∗ ≥ f ∧ g for some f ∈ F ⊆K and x ∈ G ⊆K .
ence x ∈ K 

d = K. Therefore, ( F ∨ G ) d is the supremum of both
 and G in F 

d ( L ). Then ( F 

d ( L ), ∩ , �, [ d ), L ) is a bounded lat-
ice, where [1) d = [ d ) and L 

d = [0) d = L are the smallest and
reatest members of F d (L ) , respectively. By the extension of the
roperties F ∩ G = (F ∩ G ) d and F � G = (F ∨ G ) d , the lattice
 F 

d ( L ), ∩ , �, [ d ), L ) is a complete. �

In the following theorem, we characterize the d -filters of a 
rincipal p -algebra. 

heorem 3.6. Let F be a filter of a principal p-algebra L with
he smallest dense element d. Then the following conditions are 
quivalent: 

(1) F is a d-filter, 
(2) x 

∗∗ ∈ F implies x ∈ F , 
(3) For x, y ∈ L, x 

∗ = y ∗ and x ∈ F imply y ∈ F , 
(4) d ∈ F. 

roof. 

1) ⇒ (2): Let F be a d -filter of L . Suppose x 

∗∗ ∈ F . Since (x ∨
d ) ∗∗ = 1 ∈ F (as x ∨ d ∈ D ( L )), we have x ∨ d ∈ F d =
F . Then x 

∗∗∧ ( x ∨ d ) ∈ F . By Definition 2.1 (iii), we get
x ∈ F . 

2) ⇒ (3): Assume the condition (2). Let x, y ∈ L, x 

∗ = y ∗ and x
∈ F . Then, y ∗∗ = x 

∗∗ ∈ F . Thus by condition (2), we
obtain y ∈ F . 

3) ⇒ (4): Assume the condition (3). Since d ∗ = 0 = 1 ∗, we get
by (3) that d ∈ F . 

4) ⇒ (1): Assume d ∈ F . We always have F ⊆F 

d . Conversely, let
x ∈ F 

d . Then x 

∗∗ ≥ f for some f ∈ F . Hence x 

∗∗ ∈
F . Since x ∨ d ≥ d ∈ F , we obtain x ∨ d ∈ F . Thus, by
Definition 2.1 (iii), x = x 

∗∗ ∧ (x ∨ d ) ∈ F and F 

d ⊆F .
Then F is a d -filter of L . �

. Congruences on a principal p -algebra 

n this section we investigate the relationships between the set 
f all d -filters and congruences of a principal p -algebra. 

efinition 4.1. A congruence θ of a p -algebra L is called a
losed congruence if ( x , x 

∗∗) ∈ θ for all x ∈ L . 

We first state the following proposition. 

roposition 4.2. Let L be a principal p-algebra L with the small-
st dense element d. Define the relation θd on L such that 

x, y ) ∈ θd if and only if x ∧ d = y ∧ d 

hen we have the following: 

(1) θ d is a closed congruence on L and Cokerθd = [ d ) , 

(2) The quotient set L / θd is a Boolean lattice 

roof. 

(1) It is clear that θd is a lattice congruence on L . Let ( x , y )
∈ θ d . Then x ∧ d = y ∧ d . Hence x 

∗∗ = x 

∗∗ ∧ d ∗∗ = (x ∧
d ) ∗∗ = (y ∧ d ) ∗∗ = y ∗∗ ∧ d ∗∗ = y ∗∗ as d ∗∗

d = 1 . It follows
that x 

∗ = y ∗. Hence x 

∗ ∧ d = y ∗ ∧ d and ( x 

∗, y ∗) ∈ θ d .
Therefore θd is a congruence on L . By Definition 2.1 (iii),
we have 

x ∧ d = x 

∗∗ ∧ (x ∨ d ) ∧ d = x 

∗∗ ∧ d . 

Then we deduce that ( x , x 

∗∗) ∈ θ d . Now 

Coker θd = { x ∈ L : (x, 1) ∈ θd } 
= { x ∈ L : x ∧ d = 1 ∧ d = d ) } 
= { x ∈ L : x ≥ d ) } 
= [ d ) . 

(2) It is known that ( L / θd , ∨ , ∧ , [0] θ d , [1] θ d ) is a bounded
lattice, where L/θd = { [ x ] θd : x ∈ L } , [ x ] θd ∨ [ y ] θd = [ x ∨
y ] θd and [ x ] θd ∧ [ y ] θd = [ x ∧ y ] θd . By (1), θd is a closed
congruence. Hence [ x ] θd = [ x 

∗∗] θd for every x ∈ L . This
deduces immediately that L / θd is distributive. Since x ∧ 

x 

∗ = 0 and ( x ∨ x 

∗, 1) ∈ θ d (as (x ∨ x 

∗) ∧ d = d =
1 ∧ d for all x ∈ L ), we get [ x ] θd ∧ [ x 

∗] θd = [ x ∧ x 

∗] θd =
[0] θd and [ x ] θd ∨ [ x 

∗] θd = [ x ∨ x 

∗] θd = [1] θd , respectively.
It follows that the congruence class [ x 

∗] θ d is the com-
plement of [ x ] θd in L / θ d . Therefore L / θd is a Boolean
lattice. �

emma 4.3. Let θ be a closed congruence on a principal p-algebra
 with the smallest dense element d. Then Coker θ is a d-filter of
. 

roof. Obviously Cokerθ = { x ∈ L : (x, 1) ∈ θ} is a filter of L .
ince θ is a closed congruence, we get (d, 1) = (d , d ∗∗) ∈ θ .
ence d ∈ Coker θ . By Theorem 3.6 (4), Coker θ is a d -filter of
 . �

From Proposition 4.2 (1) and Lemma 4.3 , we have the follow-
ng Corollary 

orollary 4.4. The filter [ d ) is a d-filter of L. 

For a d -filter F of a principal p -algebra L , define a relation
F on L as follows: 

x, y ) ∈ θF ⇔ x 

∗∗ ∧ a = y ∗∗ ∧ a for some a ∈ F ∩ B(L ) . 

We now establish the following theorem for a d -filter of L . 

heorem 4.5. Let F be a d-filter of a principal p-algebra L with
he smallest dense element d. Then the following statements hold: 

(1) θF is a congruence on L such that �⊆θF , 
(2) θF is a closed congruence on L , 
(3) CokerθF = F , 
(4) θ[1) = � and θ[0) = ∇ whenever F is identical with [1), re-

spectively, [0), 
(5) L / θF is a Boolean lattice. 

roof. 

(1) Clearly, θF is an equivalence relation on L . Now we prove
that θF is a lattice congruence on L . Let ( x , y ), ( c , d ) ∈ θF .
Then x 

∗∗ ∧ a = y ∗∗ ∧ a and c ∗∗ ∧ b = d ∗∗ ∧ b for some a ,
b ∈ F ∩ B ( L ). Now we have the following equalities. 

(x ∧ c ) ∗∗ ∧ (a ∧ b) = x 

∗∗ ∧ c ∗∗ ∧ a ∧ b 

= y ∗∗ ∧ d ∗∗ ∧ a ∧ b 

= (y ∧ d ) ∗∗ ∧ (a ∧ b) 
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Then ( x ∧ c , y ∧ d ) ∈ θF . Now by distributivity of B ( L ) we
have 

(x ∨ c ) ∗∗ ∧ (a ∧ b) = (x 

∗ ∧ c ∗) ∗ ∧ (a ∧ b) 

= (x 

∗∗∗ ∧ c ∗∗∗) ∗ ∧ (a ∧ b) 

= (x 

∗∗ 	 c ∗∗) ∧ (a ∧ b) 

= (x 

∗∗ ∧ a ∧ b) 	 (c ∗∗ ∧ a ∧ b) 

= (y ∗∗ ∧ a ∧ b) 	 (d ∗∗ ∧ a ∧ b) 

= (y ∗∗ 	 d ∗∗) ∧ (a ∧ b) 

= (y ∨ d ) ∗∗ ∧ (a ∧ b) 

Then ( x ∨ c , y ∨ d ) ∈ θF as a ∧ b ∈ F ∩ B ( L ). Now we show
that θF preserves the operation 

∗. Let ( x , y ) ∈ θF . Then
x 

∗∗ ∧ a = y ∗∗ ∧ a for some a ∈ F ∩ B ( L ). Now by the dis-
tributivity of B ( L ) we have the following set of implica-
tions. 

x 

∗∗ ∧ a = y ∗∗ ∧ a ⇒ (x 

∗∗ ∧ a ) 	 a ∗ = (y ∗∗ ∧ a ) 	 a ∗

⇒ (x 

∗∗ 	 a ∗) ∧ (a 	 a ∗) 

= (y ∗∗ 	 a ∗) ∧ (a 	 a ∗) 

⇒ x 

∗∗ 	 a ∗ = y ∗∗ 	 a ∗

⇒ (x 

∗∗∗ ∧ a ∗∗) ∗ = (y ∗∗∗ ∧ a ∗∗) ∗

⇒ (x 

∗∗∗ ∧ a ) ∗∗ = (y ∗∗∗ ∧ a ) ∗∗

⇒ x 

∗∗∗ ∧ a = y ∗∗∗ ∧ a 

⇒ (x 

∗, y ∗) ∈ θF 

It is immediate that θF is a congruence on L . Let ( x , y ) ∈
�. Then x 

∗∗ = y ∗∗. Hence, x 

∗∗ ∧ a = y ∗∗ ∧ a, for some a
∈ F ∩ B ( L ). Thus ( x , y ) ∈ θF and �⊆θF . 

(2) Since x 

∗∗∗∗ ∧ a = x 

∗∗ ∧ a for some a ∈ F ∩ B ( L ), ( x 

∗∗, x ) ∈
θF , and thereby θF is closed congruence. 

(3) It is known that CokerθF = [1] θF . Let x ∈ Coker θF . Then
we get the following implications: 

x ∈ CokerθF ⇒ (x, 1) ∈ θF 

⇒ x 

∗∗ ∧ a = 1 ∗∗ ∧ a for some a ∈ F ∩ B(L )

⇒ x 

∗∗ ∧ a = a as 1 ∗∗ = 1 

⇒ x 

∗∗ ≥ a ∈ F 

⇒ x 

∗∗ ∈ F 

⇒ x ∈ F as F is a d-filter of L. 

Then Coker θF ⊆F . Conversely, let y ∈ F . Then 

y ∈ F ⇒ y ∗∗ ∧ y ∗∗ = y ∗∗ = 1 ∗∗ ∧ y ∗∗

⇒ (y, 1) ∈ θF as y ∗∗ ∈ F ∩ B(L ) 

⇒ y ∈ CokerθF 

Then F ⊆Coker θF . 
(4) Since [1) ∩ B(L ) = { 1 } and [0) ∩ B(L ) = B(L ) , we de-

duce the following equalities: 

θ[1) = { (x, y ) ∈ L × L : x 

∗∗ ∧ 1 = y ∗∗ ∧ 1 } 
= { (x, y ) ∈ L × L : x 

∗∗ = y ∗∗} 
= �, 

θ[0) = { (x, y ) ∈ L × L : x 

∗∗ ∧ 0 = y ∗∗ ∧ 0 } 
= { (x, y ) ∈ L × L : x, y ∈ L } 
= ∇. 

(5) From (2) we have, L/θF = { [ x ] θF : x ∈ L } = { [ x 

∗∗] θF : x ∈
L } . Let [ x ] θF , [ y ] θF , [ z ] θF ∈ L / θF . Then 

[ x ] θF ∧ ([ y ] θF ∨ [ z ] θF ) = [ x ∧ (y ∨ z )] θF 
= [(x ∧ (y ∨ z )) ∗∗] θF 

= [ x 

∗∗ ∧ (y ∨ z ) ∗∗] θF 

= [ x 

∗∗ ∧ (y ∗∗ 	 z ∗∗)] θF 

= [(x 

∗∗ ∧ y ∗∗) 	 (x 

∗∗ ∧ z ∗∗)] θF 

= [(x ∧ y ) ∗∗ 	 (x ∧ z ) ∗∗] θF 

= [((x ∧ y ) ∨ (x ∧ z )) ∗∗] θF 

= [(x ∧ y ) ∨ (x ∧ z )] θF 

= [ x ∧ y ] θF ∨ [ x ∧ z ] θF 

= ([ x ] θF ∧ [ y ] θF ) ∨ ([ x ] θF ∧ [ z ] θF ) 

This shows that L / θF is a distributive lattice. Clearly,
[0] θF and [1] θF = F are the zero and the unit elements
of L / θF . This shows that L / θF is a bounded distribu-
tive lattice. Now we proceed to show that every [ x ] θF

of L / θF has a complement. Since x ∧ x 

∗ = 0 , [ x ] θF ∧
[ x 

∗] θF = [ x ∧ x 

∗] θF = [0] θF . Since F is a d -filter, x ∨ x 

∗ ∈
F . Hence, we have [ x ] θF ∨ [ x 

∗] θF = [ x ∨ x 

∗] θF = F . Thus
we have proved that L / θF is a Boolean lattice. �

Now, let F = [ a ) d for some a ∈ B ( L ). Then a ∈ F ∩ B ( L ). For
brevity, we write θa instead of θ[ a ) d . 

In the following Corollary, we state some congruence prop-
erties of a principal p -algebra. 

Corollary 4.6. Let L be a principal p-algebra. Then the following
statements hold: 

(1) (x, y ) ∈ θa ⇔ x 

∗∗ ∧ a = y ∗∗ ∧ a, 

(2) Cokerθa = [ a ) d and Kerθa = (a ∗] , 
(3) θ1 = � and θ0 = ∇. 

Proof. 

(1) Let ( x , y ) ∈ θ a . Then 

(x, y ) ∈ θa ⇒ x 

∗∗ ∧ b = y ∗∗ ∧ b for some b ∈ [ a ) ∩ B(L ) 

⇒ x 

∗∗ ∧ b ∧ a = y ∗∗ ∧ b ∧ a 

⇒ x 

∗∗ ∧ a = y ∗∗ ∧ a as b = b ∗∗ ≥ a. 

Conversely, let x 

∗∗ ∧ a = y ∗∗ ∧ a . Then ( x , y ) ∈ θ a as a ∈
[ a ) ∩ B ( L ). 

(2) By Theorem 4.5 (3), we have Cokerθa = [ a ) d . Now we
prove the second equality in (2) as follows: 

Kerθa = { x ∈ L : (x, 0) ∈ θa } 
= { x ∈ L : x 

∗∗ ∧ a = 0 ∗∗ ∧ a } 
= { x ∈ L : x 

∗∗ ∧ a = 0 } as 0 ∗∗ = 0 

= { x ∈ L : x ≤ x 

∗∗ ≤ a ∗} 
= (a ∗] . 

(3) Using Theorem 4.5 (4), we get θ1 = θ[ d ) d = � and θ0 =
θ[0) d = θL = ∇. �

By combining Lemma 4.3 and Theorem 4.5 (1), (3) we estab-
lish the following characterization theorem of a d -filter of L . 

Theorem 4.7. A filter F of a principal p-algebra L is a cokernel of
a congruence θ ∈ [ �, ∇] if and only if F is a d-filter. 

Consider Con B (L ) = { θa : a ∈ B(L ) } , we observe that
Con B ( L ) is a partially ordered set under set inclusion. We now
study properties of the elements in the set Con B ( L ). 

Theorem 4.8. Let L be a principal p-algebra. Then for every a , b
∈ B ( L ), the following statement hold in Con B ( L ) : 
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(1) a ≤ b if and only if θb ⊆θ a , 
(2) The set Con B ( L ) is a Boolean algebra on its own. Moreover

Con B (L ) ∼= 

B(L ) , 

(3) θa � θb = θa ∧ b and θa � θb = θa 	 b , 

(4) θa � θa ∗ = � and θa � θa ∗ = ∇. 

roof. 

(1) Let a ≤ b and ( x , y ) ∈ θb . Then x 

∗∗ ∧ b = y ∗∗ ∧ b. Hence
x 

∗∗ ∧ b ∧ a = y ∗∗ ∧ b ∧ a . This leads to x 

∗∗ ∧ a = y ∗∗ ∧ a .
Thus ( x , y ) ∈ θ a and θb ⊆θ a . Conversely, let θb ⊆θ a . Then
we have ( b , 1) ∈ θb ⊆θ a . This implies that b ∧ a = 1 ∧ a =
a . Thus a ≤ b . 

(2) Define the mapping �: B ( L ) → Con B ( L ) as follows: 

�(a ) = θa for all a ∈ B(L ) . 

By (1) above, � is an order anti-isomorphism be- 
tween B ( L ) and Con B ( L ). This immediately implies that
Con B ( L ) is a Boolean algebra. Now if we define the map-
ping f : B ( L ) → Con B ( L ) by f (a ) = θa ∗ , then f is an iso-
morphism between Boolean algebras B ( L ) and Con B ( L ). 

(3) Since by (2) above � is a anti-isomorphism, we have 
�(a ∧ b) = �(a ) � �(b) and �(a 	 b) = �(a ) � �(b) ,

where � and � are the join and meet operations on 

Con B ( L ). Now 

θa � θb = �(a ) � �(b) = �(a ∧ b) = θa ∧ b 

and 

θa � θb = �(a ) � �(b) = �(a 	 b) = θa 	 b . 

(4) From (3) above we have 

θa � θa ∗ = θa 	 a ∗ = θ1 = �

and 

θa � θa ∗ = θa ∧ a ∗ = θ0 = ∇. 

Therefore Con B (L ) = (Con B (L ) , � , � , − , �, ∇) , where
θ a = θa ∗ is the complement of θa in Con B ( L ) and �,
∇ are the smallest and greatest elements of Con B (L ) ,

respectively. �
In the following Corollary an isomorphism between the sub- 
attice [ �, ∇] of Con ( L ) and the lattice F 

d ( L ) of all d -filters of L
s obtained. 

orollary 4.9. Let L be a finite principal p-algebra. Then [ �, ∇]
 

F 

d ( L ) . 

roof. Since L is finite, the elements of F 

d ( L ) are principal fil-
ers and hence Con B (L ) = [�, ∇] . By the above Theorem 4.8 ,
e deduce that F 

d ( L ) ∼= 

[ �, ∇]. �
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