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1. Introduction

The notion of pseudo-complements was introduced in semi-
lattices and distributive lattices by O. Frink [1] and G. Birkhoff
[2]. The pseudo-complements in Stone algebras were studied
and discussed by O. Frink [1], R. Balbes [3] and G. Gratzer
[4] etc. Recently, the concept of Boolean filter of bounded
pseudo-complemented distributive lattices was introduced by
M. Sambasiva Rao and K. P. Shum in [5]. A. Badawy and
K. P. Shum [6] introduced and characterized the congru-
ences and Boolean filters of quasi-modular p-algebras. Also
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A. Badawy and M. Sambasiva Rao [7] studied o-ideals of dis-
tributive p-algebras. A. Badawy and M. Atallah [8] introduced
the notion of Boolean filters of principal p-algebras

In this paper, we further study the d-filters in a p-algebra L
and many properties of d-filters are also given. We will give a
characterization theorem of d-filters of a principal p-algebra L.
We also notice that the set FY(L) of all d-filters of a p-algebra
forms a complete lattice. The relationship between the d-filters
and the congruences in [®, V] of a principal p-algebra L is in-
troduced. We also prove that the Boolean algebras B(L) and
Cong(L) = {6, : a € B(L)} are isomorphic, where 6, is the con-
gruence on L induced by a d-filter [a)? for a closed element a of
L. Moreover, we show that the Boolean algebra Cong(L) can be
embedded into the interval [®, V] of Con(L). It is proved that
the lattice of all d-filters of a finite principal p-algebra L is iso-
morphic to the sublattice [®, V] of Con(L).
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2. Preliminaries

In this section, we cite some known definitions and basic results
which can be found in the papers [1,9-13].

A p-algebra is a universal algebra (L, v, A, *, 0, 1), where
(L, v, A, 0, 1) is a bounded lattice and the unary operation * is
defined by x Aa =0 & x < a*.

It is known that the class of all p-algebras is equational. A
quasi-modular p-algebra is a p-algebra satisfying the identity

(XAPIVIZ)AX=(XAY)V (T AX).

An element a of a p-algebra L is called closed if ¢** = a.
Then B(L) = {a € L : a= a*} is the set of all closed elements
of L. It is known that (B(L), v, A, 0, 1), where a v b = (a* A
b*)*, forms a Boolean algebra. The set D(L) = {x € L: x* =
0} = {x v x* : x € L} of all dense elements of L is a filter of L.

For an arbitrary lattice L, the set F(L) of all filters of L or-
dered by the set inclusion forms a lattice. It is known that F(L) is
modular (distributive) if and only if L is a modular (distributive)
lattice. Let @ € L and [a) be the principal filter of L generated by
a:lay={xeL:x=>a}

An equivalent relation 6 on a p-algebra (L; v, A, *) is called
a congruence relation if

(1) 6 is a lattice congruence, i.e., for all (x, y), (x;, y1) € 0
implies (x A x1, y A y1), (X V X1, p V1) €0,
(2) (x,y) € 6 implies (x*, y*) € 6.

Through what follows, for a p-algebra L we shall denote by
V the universal congruence on L. The Cokernel of the lattice
congruence 6 on a lattice L is defined as

Coker ={xe L: (x,1) €6}.

The relation @ of a p-algebra L is defined by (x,y) € ® &
x** = y* and is called the Glivenko congruence relation. It is
known that the Glivenko congruence is indeed a congruence on
L such that L/® = B(L) holds.

We frequently use the following rules in the computations of
p-algebras (see [10,13]):

(1) 0 =0and 1*™* =1,

2)ana =0

(3) a < b implies b* < a*,

4) a<a™,

(5) a*** f— a*’

(6) (av b)* =a* Ab*,

(7) (a A b)* > a*Vvb*,

&) (a A b)*™ =a** Ab*,

) (avVv b)* = (a* AD*)* = (@™ v b™)*™.

Haviar [14] introduced the class of principal p-algebras
which contains all quasi-modular p-algebras having a smallest
dense element.

Definition 2.1 ([14]). A p-algebra (L; v, A, *, 0, 1) is called a
principal p-algebra, if it satisfies the following conditions:

(1) The filter D(L) is principal, i.e., there exists an element d
€ L such that D(L) = [d),
(ii) The element dis distributive, i.e., (x Ay) Vd = (x Vd) A
(yvd)forallx,yelL,
(iii)) x = x™ A (x v d) for any x € L.

Throughout this paper, d stands for a smallest dense element
of a principal p-algebra L, unless otherwise mentioned.

3. Properties of d-filters

In this section, we introduce the concept of d-filter of a p-
algebra. Some properties of d-filters in a p-algebra are derived.
A characterization theorem of d-filters of a principal p-algebra
will be given.

Definition 3.1. For any filter F of a p-algebra L, define an exten-
sion of F as the set

Fl={xeL:x" > fforsome f € F}

The following two Lemmas represent some basic properties
of the set F.

Lemma 3.2. The set F? is a filter of a p-algebra L containing F.

Proof. Clearly 1 € F'. Let x, y € F'. Then x** > fand y** > g for
some f, g of F. Hence (x A y)*™ = x™ A y*™ > f A g. It follows
that xAy € F¥ as f A g € F. Now, let z € L be such that z > x €
FY. Then z** > x** > ffor some f € F. Hence z € F. Therefore
F?is a filter of L. Since x** > x for any x € F, we have that x €
Fland FCF. O

Lemma 3.3. For any two filters F, G of a p-algebra L, we have the
following:

(1) FC G implies F € G,
2 (FNGY=r'ng?,
(3) (Fd)d — Fd.

Proof.

(1) Suppose that FCG. Let x € F!. Then, x** > f for some /'
€ F. It follows that x € G as f € G.

(2) Obviously (FN G)! € F N G?. Conversely, let x € F' N
G“. Then x** > fand x** > g for some f, g € F. Hence x**
> fv g. It yields that x € (F N G)¢, where fv g € FN G.
Consequently 7/ N G¢ € (FN G)“.

(3) By (1) above, F'C(F¥)?. Conversely, let x e (F¥)?. Then
x** > ffor some f € F. Since f € F¥, we have f* > f; for
some f; € F. Hence x** > f** > f;. Then x € F'as f; € F.

O
We now introduce the concept of d-filters in a p-algebra.

Definition 3.4. A filter F of a p-algebra L is called an d-filter of
L if it satisfies the condition, F = F?.

From Lemma 3.3(2), we can observe that the intersection of
two d-filters of a p-algebra is again a d-filter. But, in general, the
supremum of two d-filters need not be a d-filter. However, in the
following, we obtain the class FY(L) of all d-filters of L that is a
bounded lattice.

Theorem 3.5. For any p-algebra L, the class F'(L) forms a com-
plete lattice on its own.

Proof. For any two d-filters F, G of L, define the ordering <
on F'(L) such that F < G&FCG. Then clearly (FY(L), <) is a
partially ordered set. Now, consider the following:

FNG=FnG'and FUG = (F Vv G)’.
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Clearly by Lemma 3.3(2), (FNg)? is the infimum of both Fan G
in FY(L). Clearly (FvG)? is an upper bound for Fan G in F/(L).
Suppose that K is a d-filter of L such that FCK and GCK. Let
x € (FvG)!. Then x** > fAg for some f € FCK and x € GCK.
Hence x € K’ = K. Therefore, (F\vG)? is the supremum of both
H and G in FY(L). Then (FY(L), N, U, [d), L) is a bounded lat-
tice, where [1)? =[d) and L? =[0)¢ = L are the smallest and
greatest members of F9(L), respectively. By the extension of the
properties FNG = (FNG)Y and F UG = (F v G)?, the lattice
(FY(L), N, U, [d), L) is a complete. [

In the following theorem, we characterize the d-filters of a
principal p-algebra.

Theorem 3.6. Let F be a filter of a principal p-algebra L with
the smallest dense element d. Then the following conditions are
equivalent:

(1) Fis ad-filter,

(2) x** € Fimplies x € F,

(3) Forx,ye L,x* =y*and x € Fimply y € F,
(4) deF.

Proof.

(1)=(2): Let F be a d-filter of L. Suppose x** € F. Since (x Vv
d)* =1¢€F (as xvd € D(L)), wehave x vVd € F! =
F. Then x*A(xVvd) € F. By Definition 2.1(iii), we get
xelkF.

(2)=(3): Assume the condition (2). Let x, y € L, x* = y* and x
€ F. Then, y** = x** € F. Thus by condition (2), we
obtain y € F.

(3)=(4): Assume the condition (3). Since d* = 0 = 1*, we get
by (3) that d € F.

(4)=(1): Assume d € F. We always have FCF. Conversely, let
x € F'. Then x** > f for some f € F. Hence x** €
F. Since xvd > d € F, we obtain xvd € F. Thus, by
Definition 2.1(iii), x = x* A (x Vd) € F and F/CF.
Then Fis a d-filter of L. [

4. Congruences on a principal p-algebra

In this section we investigate the relationships between the set
of all d-filters and congruences of a principal p-algebra.

Definition 4.1. A congruence 6 of a p-algebra L is called a
closed congruence if (x, x**) € 6 for all x € L.

We first state the following proposition.
Proposition 4.2. Let L be a principal p-algebra L with the small-
est dense element d. Define the relation 6, on L such that

(x,y) € ifandonlyif xAd =y Ad

Then we have the following:

(1) 04 is a closed congruence on L and Coker6,; = [d),
(2) The quotient set L/0, is a Boolean lattice

Proof.

(1) It is clear that 6, is a lattice congruence on L. Let (x, y)
€ 64 Then x Ad =y Ad. Hence x** = x™ Ad™ = (x A
d)y* =y Ad)™ =y* Ad* =y as dj* = 1. It follows
that x* = y*. Hence x* Ad = y* Ad and (x*, y*) € 0,.

Therefore 6, is a congruence on L. By Definition 2.1(iii),
we have

XxAd=x"ANxVvd)yAnd=x"Nd.

Then we deduce that (x, x**) € 6,. Now

Cokerfy = {xe L:(x,1) €6y}
={xel:xAd=1And=4d)}
={xelL:x>d)}
= [d).

(2) It is known that (L/64, Vv, A, [0]64, [1]0,4) is a bounded
lattice, where L/6; = {[x]6; : x € L}, [x]6s V V10 = [x v
y]6s and [x]604 A [¥]64 = [x A y]64. By (1), 0, is a closed
congruence. Hence [x]0; = [x**]6, for every x € L. This
deduces immediately that /6, is distributive. Since x A
x*=0and (x v x*, 1) € 04 (as (xvVx")Ad=d =
1 Ad for all x € L), we get [x]0; A [x*]0, = [x A X*]0; =
[0]6; and [x]6; V [x*]0; = [x Vv x*]6; = [1]64, respectively.
It follows that the congruence class [x*]0, is the com-
plement of [x]6, in L/6,. Therefore L/6, is a Boolean
lattice. O

Lemma 4.3. Let 6 be a closed congruence on a principal p-algebra
L with the smallest dense element d. Then Coker is a d-filter of
L.

Proof. Obviously Cokerf = {x € L: (x,1) € 6} is a filter of L.
Since 6 is a closed congruence, we get (d, 1) = (d, d*™) € 6.
Hence d € Cokerf. By Theorem 3.6(4), Cokerf is a d-filter of
L 0O

From Proposition 4.2(1) and Lemma 4.3, we have the follow-
ing Corollary

Corollary 4.4. The filter [d) is a d-filter of L.

For a d-filter F of a principal p-algebra L, define a relation
6y on L as follows:

(x,y) €0 & x*Na=y" Aaforsomea € F N B(L).

We now establish the following theorem for a d-filter of L.

Theorem 4.5. Let F be a d-filter of a principal p-algebra L with
the smallest dense element d. Then the following statements hold:

(1) 6F is a congruence on L such that 6,

(2) Oris a closed congruence on L,

(3) Cokerfr = F,

(4) 6n) = @ and 6y = V whenever F is identical with [1), re-
spectively, [0),

(5) L/6r is a Boolean lattice.

Proof.

(1) Clearly, 6 is an equivalence relation on L. Now we prove
that 6 is a lattice congruence on L. Let (x, ), (¢, d) € OF.
Then x* Aa = y** Aaand ¢** A b= d* A b for some q,
b € FN B(L). Now we have the following equalities.

XA A@Ab) =X A ANanb
=y*Ad* Nanb
=WAd)™ AN(anb)
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Then (xAc, yAd) € 6. Now by distributivity of B(L) we
have
(xVvVe*Aanb) = x"A)"A(@anb)
= (X" A A (anb)
= X"y ™) A (anb)
=X*"ANanb)v (™ Aanb)
=" Aanb)v (@ Nanb)
=" vd™)A(anb)
=Vvd)y*A(anb)
Then (xVve, yvd) € 0 as anb € FNB(L). Now we show
that 6 preserves the operation *. Let (x, y) € 6. Then
xX* ANa=y* Aafor some a e FNB(L). Now by the dis-

tributivity of B(L) we have the following set of implica-
tions.
X*Na=y"ANa= X Aa)vad =0T Na)va

= M vd)A(ava)

= (" vd)nava)

o Xy =yt v dt

= (X /\a**)* — (y*** /\a**)*
Aa)y™ = (y

sokok

ook skokok

= (x Aa)™

ook

= x
= (x*,y") € 0r

ANa=y""ANa

It is immediate that 6 is a congruence on L. Let (x, y) €
®. Then x™* = y**. Hence, x** A a = y** A a, for some a
€ FN B(L). Thus (x, y) € 0 and ®COp.

(2) Since x*** A a = x** A a for some a € FNB(L), (x**, x) €
0, and thereby 6 is closed congruence.

(3) It is known that Cokerfr = [1]0r. Let x € Coker6 . Then
we get the following implications:

x € Cokerfr = (x,1) € Op
= X" ANa=1" Aaforsomea € FNB(L)
= x*Aa=aas 1™ =1
= x*>aeF
= x"eF
= x € F as F is a d-filter of L.
Then Coker6 rCF. Conversely, let y € F. Then
Y EF = y™ Ay = p = " A
= (), 1)€ebrasy™ e FNB(L)
= y € Cokerfr

Then FC Cokerfr.
(4) Since [1) N B(L) = {1} and [0) N B(L) = B(L), we de-
duce the following equalities:
Oy ={(x,») e LxL:x"*" ANl =y" A1}
={(x,y) € L x L:x" =y}
= O,
Oy = {(x,y) e Lx L :x"™ A0 =y" A0}
={(x,y)eLxL:x,yel}
= V.
(5) From (2) we have, L/6r = {[x]0F : x € L} = {[x**]0F : x €
L}. Let [X]GF, LV]QF, [Z]QF € L/6r. Then

[x10F A (10F V [210F) =[x A (¥ Vv 2)]0F

=[(xA Vv 2)“lor

=" AV )Tor

=[X" A O™ v Z)oF

= [ AYT) v (X AZ)]0F

=[(x AP v (xA2)"]0F

=[((xAY)V (X A2)"]0F

=[(xAp)V (xA2)OF

=[x AYOF V [x A Z]OF

= ([x]0r A DV1OF) v ([x]0F A [2]0F)
This shows that L/6r is a distributive lattice. Clearly,
[0]6F and [1]6r = F are the zero and the unit elements
of L/6r. This shows that L/0r is a bounded distribu-
tive lattice. Now we proceed to show that every [x]0r
of L/6F has a complement. Since x A x* =0, [x]6p A
[x*]0F = [x A x*]0r = [0]0f. Since F is a d-filter, xVx* €
F. Hence, we have [x]0r V [x*]0F = [x V x*]0F = F. Thus
we have proved that L/6 is a Boolean lattice. O

Now, let F = [a)? for some a € B(L). Then a € FNB(L). For
brevity, we write 6, instead of 6,4

In the following Corollary, we state some congruence prop-
erties of a principal p-algebra.

Corollary 4.6. Let L be a principal p-algebra. Then the following
statements hold:

1) (x,y) €6, & x* Na=y"* Aa,
(2) Cokert, = [a)! and Kerf, = (a*],
B3)6,=dand6y, = V.

Proof.
(1) Let(x, y) € 6,. Then

(x,y) €60, = X* Ab=y*" Abforsomeb € [a) N B(L)
> X AbANa=y" AbAa
= X"ANa=y" ANaash=D">a.

Conversely, let x** A a = y** Aa. Then (x, y) €0, asa €

[a) N B(L).

(2) By Theorem 4.5(3), we have Cokerf, =[a)?. Now we
prove the second equality in (2) as follows:

Kerb, ={xe L:(x,0)€6,}
={xel:x*Ana=0"Arda}
={xelL:x*Aa=0}as0™ =0
={xeLlL:x<x"<dy}
= (a'].

(3) Using Theorem 4.5 (4), we get 6, = ;¢ = ® and 6 =

9[0)(1 == QL = V D

By combining Lemma 4.3 and Theorem 4.5(1), (3) we estab-

lish the following characterization theorem of a d-filter of L.

Theorem 4.7. A filter F of a principal p-algebra L is a cokernel of
a congruence 0 € [®, V] if and only if F is a d-filter.

Consider Cong(L) =1{0,:a € B(L)}, we observe that
Conp(L) is a partially ordered set under set inclusion. We now
study properties of the elements in the set Cong(L).

Theorem 4.8. Let L be a principal p-algebra. Then for every a, b
€ B(L), the following statement hold in Cong(L):
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(1) a < bifandonly if 6,26,

(2) The set Cong(L) is a Boolean algebra on its own. Moreover
Cong(L) = B(L),

(3) 0, U6, =0, and 6,M6, = Gavh,

4) 0,MOp = DPand6, 16, =V.

Proof.

(1) Let @ < b and (x, y) € 0. Then x** A b = y** A b. Hence
X* AbAa=y* AbAa. Thisleads to x™ A a =y Aa.
Thus (x, y) € 6, and 6,20,. Conversely, let 6,26,. Then
we have (b, 1) € 0,C60,. This implies that bAa=1Aa =
a. Thusa <b.

(2) Define the mapping W: B(L) — Cong(L) as follows:

W(a) =6, foralla € B(L).

By (1) above, W is an order anti-isomorphism be-
tween B(L) and Cong(L). This immediately implies that
Conp(L) is a Boolean algebra. Now if we define the map-
ping f: B(L) — Cong(L) by f(a) = 6., then f'is an iso-
morphism between Boolean algebras B(L) and Cong(L).

(3) Since by (2) above W is a anti-isomorphism, we have
W(aAb)=W(@) uWpb) and V(avb) = V(a)nwb),
where U and M are the join and meet operations on
Cong(L). Now

O, U0, =W(@)uW(d) =V(aAb) =0,

and

0,6, =W(a)NW(b) =V(avb) =0,y
(4) From (3) above we have

04104 = Opqe =0, =

and

0, U0 =0Oypgx =60y = V.

Therefore Cong(L) = (Cong(L),u,n,~,®, V), where
0, = 0, is the complement of #, in Cong(L) and @,
V are the smallest and greatest elements of Cong(L),
respectively. [

In the following Corollary an isomorphism between the sub-
lattice [®, V] of Con(L) and the lattice F¥(L) of all d-filters of L
is obtained.

Corollary 4.9. Let L be a finite principal p-algebra. Then [®, V]
= F(L).

Proof. Since L is finite, the elements of FY(L) are principal fil-
ters and hence Cong(L) = [®, V]. By the above Theorem 4.8,
we deduce that F/(L)=[®, V]. O
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