

Congruences and *d*-filters of principal *p*-algebras

Abd El-Mohsen Badawy*

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 27 May 2014; revised 28 October 2014; accepted 25 April 2015 Available online 9 July 2015

Keywords

p-Algebras; principal *p*-algebras; Filters; Congruences Abstract The concept of *d*-filters is introduced in *p*-algebras. Some properties of *d*-filters are studied. It is proved that the class $F^d(L)$ of all *d*-filters of a *p*-algebra *L* is a bounded complete lattice. A characterization of *d*-filters of a principal *p*-algebra is given. Also many properties of congruences induced by the *d*-filters are derived. A relationship between the *d*-filters of a principal *p*-algebra *L* and the congruences in $[\Phi, \nabla]$ is established.

2010 Mathematics Subject Classification: 06A06; 06A20; 06A30; 06D15

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The notion of pseudo-complements was introduced in semilattices and distributive lattices by O. Frink [1] and G. Birkhoff [2]. The pseudo-complements in Stone algebras were studied and discussed by O. Frink [1], R. Balbes [3] and G. Gratzer [4] etc. Recently, the concept of Boolean filter of bounded pseudo-complemented distributive lattices was introduced by M. Sambasiva Rao and K. P. Shum in [5]. A. Badawy and K. P. Shum [6] introduced and characterized the congruences and Boolean filters of quasi-modular *p*-algebras. Also

* Tel.: +21 158538877; fax: +20 403302785.

E-mail address: abdel-mohsen.mohamed@science.tanta.edu.eg, abdelmohsen.badawy@yahoo.com, mohamedmohsen994@yahoo.cm Peer review under responsibility of Egyptian Mathematical Society.

A. Badawy and M. Sambasiva Rao [7] studied σ -ideals of distributive *p*-algebras. A. Badawy and M. Atallah [8] introduced the notion of Boolean filters of principal *p*-algebras

In this paper, we further study the *d*-filters in a *p*-algebra *L* and many properties of *d*-filters are also given. We will give a characterization theorem of *d*-filters of a principal *p*-algebra *L*. We also notice that the set $F^d(L)$ of all *d*-filters of a *p*-algebra *f* forms a complete lattice. The relationship between the *d*-filters and the congruences in $[\Phi, \nabla]$ of a principal *p*-algebra *L* is introduced. We also prove that the Boolean algebras B(L) and $Con_B(L) = \{\theta_a : a \in B(L)\}$ are isomorphic, where θ_a is the congruence on *L* induced by a *d*-filter $[a]^d$ for a closed element a of *L*. Moreover, we show that the Boolean algebra $Con_B(L)$ can be embedded into the interval $[\Phi, \nabla]$ of Con(L). It is proved that the lattice of all *d*-filters of a finite principal *p*-algebra *L* is isomorphic to the sublattice $[\Phi, \nabla]$ of Con(L).

S1110-256X(15)00037-1 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2015.04.003

2. Preliminaries

In this section, we cite some known definitions and basic results which can be found in the papers [1,9-13].

A *p*-algebra is a universal algebra $(L, \lor, \land, *, 0, 1)$, where $(L, \lor, \land, 0, 1)$ is a bounded lattice and the unary operation * is defined by $x \land a = 0 \Leftrightarrow x \le a^*$.

It is known that the class of all *p*-algebras is equational. A quasi-modular p-algebra is a *p*-algebra satisfying the identity

 $((x \land y) \lor z^{**}) \land x = (x \land y) \lor (z^{**} \land x).$

An element *a* of a *p*-algebra *L* is called closed if $a^{**} = a$. Then $B(L) = \{a \in L : a = a^{**}\}$ is the set of all closed elements of *L*. It is known that $(B(L), \bigtriangledown, \land, 0, 1)$, where $a \bigtriangledown b = (a^* \land b^*)^*$, forms a Boolean algebra. The set $D(L) = \{x \in L : x^* = 0\} = \{x \lor x^* : x \in L\}$ of all dense elements of *L* is a filter of *L*.

For an arbitrary lattice *L*, the set *F*(*L*) of all filters of *L* ordered by the set inclusion forms a lattice. It is known that *F*(*L*) is modular (distributive) if and only if *L* is a modular (distributive) lattice. Let $a \in L$ and [*a*) be the principal filter of *L* generated by $a : [a] = \{x \in L : x \ge a\}.$

An equivalent relation θ on a *p*-algebra $(L; \lor, \land, *)$ is called a congruence relation if

(1) θ is a lattice congruence, i.e., for all (x, y), (x₁, y₁) ∈ θ implies (x ∧ x₁, y ∧ y₁), (x ∨ x₁, y ∨ y₁) ∈ θ,
(2) (x, y) ∈ θ implies (x*, y*) ∈ θ.

Through what follows, for a *p*-algebra *L* we shall denote by ∇ the universal congruence on *L*. The Cokernel of the lattice congruence θ on a lattice *L* is defined as

 $Coker\theta = \{x \in L : (x, 1) \in \theta\}.$

The relation Φ of a *p*-algebra *L* is defined by $(x, y) \in \Phi \Leftrightarrow x^{**} = y^{**}$ and is called the Glivenko congruence relation. It is known that the Glivenko congruence is indeed a congruence on *L* such that $L/\Phi \cong B(L)$ holds.

We frequently use the following rules in the computations of p-algebras (see [10,13]):

(1) $0^{**} = 0$ and $1^{**} = 1$, (2) $a \land a^* = 0$; (3) $a \le b$ implies $b^* \le a^*$, (4) $a \le a^{**}$, (5) $a^{***} = a^*$, (6) $(a \lor b)^* = a^* \land b^*$, (7) $(a \land b)^* \ge a^* \lor b^*$, (8) $(a \land b)^{**} = a^{**} \land b^{**}$, (9) $(a \lor b)^{**} = (a^* \land b^*)^* = (a^{**} \lor b^{**})^{**}$.

Haviar [14] introduced the class of principal p-algebras which contains all quasi-modular p-algebras having a smallest dense element.

Definition 2.1 ([14]). A p-algebra $(L; \lor, \land, *, 0, 1)$ is called a principal p-algebra, if it satisfies the following conditions:

- (i) The filter D(L) is principal, i.e., there exists an element $d \in L$ such that D(L) = [d),
- (ii) The element *d* is distributive, i.e., $(x \land y) \lor d = (x \lor d) \land (y \lor d)$ for all $x, y \in L$,

(iii)
$$x = x^{**} \land (x \lor d)$$
 for any $x \in L$.

Throughout this paper, *d* stands for a smallest dense element of a principal *p*-algebra *L*, unless otherwise mentioned.

3. Properties of *d*-filters

In this section, we introduce the concept of *d*-filter of a *p*-algebra. Some properties of *d*-filters in a *p*-algebra are derived. A characterization theorem of *d*-filters of a principal *p*-algebra will be given.

Definition 3.1. For any filter F of a p-algebra L, define an extension of F as the set

 $F^{d} = \{x \in L : x^{**} \ge f \text{ for some } f \in F\}$

The following two Lemmas represent some basic properties of the set F^d .

Lemma 3.2. The set F^d is a filter of a p-algebra L containing F.

Proof. Clearly $1 \in F^d$. Let $x, y \in F^d$. Then $x^{**} \ge f$ and $y^{**} \ge g$ for some f, g of F. Hence $(x \land y)^{**} = x^{**} \land y^{**} \ge f \land g$. It follows that $x \land y \in F^d$ as $f \land g \in F$. Now, let $z \in L$ be such that $z \ge x \in F^d$. Then $z^{**} \ge x^{**} \ge f$ for some $f \in F$. Hence $z \in F^d$. Therefore F^d is a filter of L. Since $x^{**} \ge x$ for any $x \in F$, we have that $x \in F^d$ and $F \subseteq F^d$. \Box

Lemma 3.3. For any two filters F, G of a p-algebra L, we have the following:

(1) $F \subseteq G$ implies $F^d \subseteq G^d$, (2) $(F \cap G)^d = F^d \cap G^d$, (3) $(F^d)^d = F^d$.

Proof.

- (1) Suppose that $F \subseteq G$. Let $x \in F^d$. Then, $x^{**} \ge f$ for some $f \in F$. It follows that $x \in G^d$ as $f \in G$.
- (2) Obviously $(F \cap G)^d \subseteq F^d \cap G^d$. Conversely, let $x \in F^d \cap G^d$. Then $x^{**} \ge f$ and $x^{**} \ge g$ for some $f, g \in F$. Hence $x^{**} \ge f \lor g$. It yields that $x \in (F \cap G)^d$, where $f \lor g \in F \cap G$. Consequently $F^d \cap G^d \subseteq (F \cap G)^d$.
- (3) By (1) above, F^d⊆(F^d)^d. Conversely, let x ∈ (F^d)^d. Then x^{**} ≥ f for some f ∈ F^d. Since f ∈ F^d, we have f^{**} ≥ f₁ for some f₁ ∈ F. Hence x^{**} ≥ f^{**} ≥ f₁. Then x ∈ F^d as f₁ ∈ F.

We now introduce the concept of *d*-filters in a *p*-algebra.

Definition 3.4. A filter *F* of a *p*-algebra *L* is called an *d*-filter of *L* if it satisfies the condition, $F = F^d$.

From Lemma 3.3(2), we can observe that the intersection of two *d*-filters of a *p*-algebra is again a *d*-filter. But, in general, the supremum of two *d*-filters need not be a *d*-filter. However, in the following, we obtain the class $F^d(L)$ of all *d*-filters of *L* that is a bounded lattice.

Theorem 3.5. For any p-algebra L, the class $F^{d}(L)$ forms a complete lattice on its own.

Proof. For any two *d*-filters *F*, *G* of *L*, define the ordering \leq on $F^{d}(L)$ such that $F \leq G \Leftrightarrow F \subseteq G$. Then clearly $(F^{d}(L), \leq)$ is a partially ordered set. Now, consider the following:

 $F \cap G = (F \cap G)^d$ and $F \sqcup G = (F \lor G)^d$.

Clearly by Lemma 3.3(2), $(F \cap g)^d$ is the infimum of both F an G in $F^d(L)$. Clearly $(F \vee G)^d$ is an upper bound for F an G in $F^d(L)$. Suppose that K is a *d*-filter of L such that $F \subseteq K$ and $G \subseteq K$. Let $x \in (F \vee G)^d$. Then $x^{**} \ge f \wedge g$ for some $f \in F \subseteq K$ and $x \in G \subseteq K$. Hence $x \in K^d = K$. Therefore, $(F \vee G)^d$ is the supremum of both H and G in $F^d(L)$. Then $(F^d(L), \cap, \sqcup, [d), L)$ is a bounded lattice, where $[1)^d = [d)$ and $L^d = [0)^d = L$ are the smallest and greatest members of $F^d(L)$, respectively. By the extension of the properties $F \cap G = (F \cap G)^d$ and $F \sqcup G = (F \vee G)^d$, the lattice $(F^d(L), \cap, \sqcup, [d), L)$ is a complete. \Box

In the following theorem, we characterize the *d*-filters of a principal *p*-algebra.

Theorem 3.6. Let *F* be a filter of a principal *p*-algebra *L* with the smallest dense element *d*. Then the following conditions are equivalent:

(1) *F* is a *d*-filter,
 (2) *x*^{**} ∈ *F* implies *x* ∈ *F*,
 (3) For *x*, *y* ∈ *L*, *x*^{*} = *y*^{*} and *x* ∈ *F* imply *y* ∈ *F*,
 (4) *d* ∈ *F*.

Proof.

- (1) \Rightarrow (2): Let *F* be a *d*-filter of *L*. Suppose $x^{**} \in F$. Since $(x \lor d)^{**} = 1 \in F$ (as $x \lor d \in D(L)$), we have $x \lor d \in F^d = F$. Then $x^{**} \land (x \lor d) \in F$. By Definition 2.1(iii), we get $x \in F$.
- (2)⇒(3): Assume the condition (2). Let x, y ∈ L, x* = y* and x ∈ F. Then, y** = x** ∈ F. Thus by condition (2), we obtain y ∈ F.
- (3) \Rightarrow (4): Assume the condition (3). Since $d^* = 0 = 1^*$, we get by (3) that $d \in F$.
- (4) \Rightarrow (1): Assume $d \in F$. We always have $F \subseteq F^d$. Conversely, let $x \in F^d$. Then $x^{**} \ge f$ for some $f \in F$. Hence $x^{**} \in F$. Since $x \lor d \ge d \in F$, we obtain $x \lor d \in F$. Thus, by Definition 2.1(iii), $x = x^{**} \land (x \lor d) \in F$ and $F^d \subseteq F$. Then *F* is a *d*-filter of *L*. \Box

4. Congruences on a principal *p*-algebra

In this section we investigate the relationships between the set of all *d*-filters and congruences of a principal *p*-algebra.

Definition 4.1. A congruence θ of a *p*-algebra *L* is called a closed congruence if $(x, x^{**}) \in \theta$ for all $x \in L$.

We first state the following proposition.

Proposition 4.2. Let *L* be a principal *p*-algebra *L* with the smallest dense element *d*. Define the relation θ_d on *L* such that

 $(x, y) \in \theta_d$ if and only if $x \wedge d = y \wedge d$

Then we have the following:

- (1) θ_d is a closed congruence on L and Coker $\theta_d = [d)$,
- (2) The quotient set L/θ_d is a Boolean lattice

Proof.

(1) It is clear that θ_d is a lattice congruence on *L*. Let $(x, y) \in \theta_d$. Then $x \wedge d = y \wedge d$. Hence $x^{**} = x^{**} \wedge d^{**} = (x \wedge d)^{**} = (y \wedge d)^{**} = y^{**} \wedge d^{**} = y^{**}$ as $d_d^{**} = 1$. It follows that $x^* = y^*$. Hence $x^* \wedge d = y^* \wedge d$ and $(x^*, y^*) \in \theta_d$.

Therefore θ_d is a congruence on *L*. By Definition 2.1(iii), we have

$$x \wedge d = x^{**} \wedge (x \vee d) \wedge d = x^{**} \wedge d.$$

Then we deduce that $(x, x^{**}) \in \theta_d$. Now

$$Coker \theta_d = \{x \in L : (x, 1) \in \theta_d\}$$
$$= \{x \in L : x \land d = 1 \land d = d)\}$$
$$= \{x \in L : x \ge d\}$$
$$= [d].$$

(2) It is known that (L/θ_d, ∨, ∧, [0]θ_d, [1]θ_d) is a bounded lattice, where L/θ_d = {[x]θ_d : x ∈ L}, [x]θ_d ∨ [y]θ_d = [x ∨ y]θ_d and [x]θ_d ∧ [y]θ_d = [x ∧ y]θ_d. By (1), θ_d is a closed congruence. Hence [x]θ_d = [x**]θ_d for every x ∈ L. This deduces immediately that L/θ_d is distributive. Since x ∧ x* = 0 and (x ∨ x*, 1) ∈ θ_d (as (x ∨ x*) ∧ d = d = 1 ∧ d for all x ∈ L), we get [x]θ_d ∧ [x*]θ_d = [1 ∧ x*]θ_d = [0]θ_d and [x]θ_d ∨ [x*]θ_d = [x ∨ x*]θ_d = [1]θ_d, respectively. It follows that the congruence class [x*]θ_d is a Boolean lattice. □

Lemma 4.3. Let θ be a closed congruence on a principal p-algebra L with the smallest dense element d. Then Coker θ is a d-filter of L.

Proof. Obviously $Coker\theta = \{x \in L : (x, 1) \in \theta\}$ is a filter of *L*. Since θ is a closed congruence, we get $(d, 1) = (d, d^{**}) \in \theta$. Hence $d \in Coker\theta$. By Theorem 3.6(4), $Coker\theta$ is a *d*-filter of *L*. \Box

From Proposition 4.2(1) and Lemma 4.3, we have the following Corollary

Corollary 4.4. *The filter* [*d*) *is a d-filter of L.*

For a *d*-filter *F* of a principal *p*-algebra *L*, define a relation θ_F on *L* as follows:

 $(x, y) \in \theta_F \Leftrightarrow x^{**} \land a = y^{**} \land a \text{ for some } a \in F \cap B(L).$

We now establish the following theorem for a *d*-filter of *L*.

Theorem 4.5. *Let F be a d-filter of a principal p-algebra L with the smallest dense element d. Then the following statements hold:*

- (1) θ_F is a congruence on L such that $\Phi \subseteq \theta_F$,
- (2) θ_F is a closed congruence on L,
- (3) $Coker\theta_F = F$,
- (4) $\theta_{[1]} = \Phi$ and $\theta_{[0]} = \nabla$ whenever *F* is identical with [1), respectively, [0),
- (5) L/θ_F is a Boolean lattice.

Proof.

(1) Clearly, θ_F is an equivalence relation on *L*. Now we prove that θ_F is a lattice congruence on *L*. Let (*x*, *y*), (*c*, *d*) ∈ θ_F. Then *x*^{**} ∧ *a* = *y*^{**} ∧ *a* and *c*^{**} ∧ *b* = *d*^{**} ∧ *b* for some *a*, *b* ∈ *F* ∩ *B*(*L*). Now we have the following equalities.

$$(x \wedge c)^{**} \wedge (a \wedge b) = x^{**} \wedge c^{**} \wedge a \wedge b$$
$$= y^{**} \wedge d^{**} \wedge a \wedge b$$
$$= (y \wedge d)^{**} \wedge (a \wedge b)$$

$$(x \lor c)^{**} \land (a \land b) = (x^* \land c^*)^* \land (a \land b)$$

= $(x^{***} \land c^{***})^* \land (a \land b)$
= $(x^{**} \bigtriangledown c^*) \land (a \land b)$
= $(x^{**} \land a \land b) \bigtriangledown (c^{**} \land a \land b)$
= $(y^{**} \land a \land b) \bigtriangledown (d^{**} \land a \land b)$
= $(y^{**} \bigtriangledown d^{**}) \land (a \land b)$
= $(y \lor d)^{**} \land (a \land b)$

Then $(x \lor c, y \lor d) \in \theta_F$ as $a \land b \in F \cap B(L)$. Now we show that θ_F preserves the operation *. Let $(x, y) \in \theta_F$. Then $x^{**} \land a = y^{**} \land a$ for some $a \in F \cap B(L)$. Now by the distributivity of B(L) we have the following set of implications.

$$\begin{aligned} x^{**} \wedge a &= y^{**} \wedge a \Rightarrow (x^{**} \wedge a) \bigtriangledown a^{*} = (y^{**} \wedge a) \bigtriangledown a^{*} \\ &\Rightarrow (x^{**} \bigtriangledown a^{*}) \wedge (a \bigtriangledown a^{*}) \\ &= (y^{**} \bigtriangledown a^{*}) \wedge (a \bigtriangledown a^{*}) \\ &\Rightarrow x^{**} \bigtriangledown a^{*} = y^{**} \bigtriangledown a^{*} \\ &\Rightarrow (x^{***} \wedge a^{**})^{*} = (y^{***} \wedge a^{**})^{*} \\ &\Rightarrow (x^{***} \wedge a)^{**} = (y^{***} \wedge a)^{**} \\ &\Rightarrow x^{***} \wedge a = y^{***} \wedge a \\ &\Rightarrow (x^{*}, y^{*}) \in \theta_{F} \end{aligned}$$

It is immediate that θ_F is a congruence on *L*. Let $(x, y) \in \Phi$. Then $x^{**} = y^{**}$. Hence, $x^{**} \wedge a = y^{**} \wedge a$, for some $a \in F \cap B(L)$. Thus $(x, y) \in \theta_F$ and $\Phi \subseteq \theta_F$.

- (2) Since $x^{****} \wedge a = x^{**} \wedge a$ for some $a \in F \cap B(L)$, $(x^{**}, x) \in \theta_F$, and thereby θ_F is closed congruence.
- (3) It is known that $Coker\theta_F = [1]\theta_F$. Let $x \in Coker\theta_F$. Then we get the following implications:

$$x \in Coker\theta_F \Rightarrow (x, 1) \in \theta_F$$

$$\Rightarrow x^{**} \land a = 1^{**} \land a \text{ for some } a \in F \cap B(L)$$

$$\Rightarrow x^{**} \land a = a \text{ as } 1^{**} = 1$$

$$\Rightarrow x^{**} \ge a \in F$$

$$\Rightarrow x^{**} \in F$$

$$\Rightarrow x \in F \text{ as } F \text{ is a } d\text{-filter of } L.$$

Then $Coker\theta_F \subseteq F$. Conversely, let $y \in F$. Then

$$y \in F \Rightarrow y^{**} \land y^{**} = y^{**} = 1^{**} \land y^{**}$$
$$\Rightarrow (y, 1) \in \theta_F \text{ as } y^{**} \in F \cap B(L)$$
$$\Rightarrow y \in Coker\theta_F$$

Then $F \subseteq Coker\theta_F$.

(4) Since $[1) \cap B(L) = \{1\}$ and $[0) \cap B(L) = B(L)$, we deduce the following equalities:

$$\begin{aligned} \theta_{[1]} &= \{(x, y) \in L \times L : x^{**} \land 1 = y^{**} \land 1\} \\ &= \{(x, y) \in L \times L : x^{**} = y^{**}\} \\ &= \Phi, \\ \theta_{[0]} &= \{(x, y) \in L \times L : x^{**} \land 0 = y^{**} \land 0\} \\ &= \{(x, y) \in L \times L : x, y \in L\} \\ &= \nabla. \end{aligned}$$

(5) From (2) we have, $L/\theta_F = \{[x]\theta_F : x \in L\} = \{[x^{**}]\theta_F : x \in L\}$. Let $[x]\theta_F, [y]\theta_F, [z]\theta_F \in L/\theta_F$. Then

$$[x]\theta_F \wedge ([y]\theta_F \vee [z]\theta_F) = [x \wedge (y \vee z)]\theta_F$$

$$= [(x \land (y \lor z))^{**}]\theta_F$$

$$= [x^{**} \land (y \lor z)^{**}]\theta_F$$

$$= [x^{**} \land (y^{**} \bigtriangledown z^{**})]\theta_F$$

$$= [(x^{**} \land y^{**}) \bigtriangledown (x^{**} \land z^{**})]\theta_F$$

$$= [(x \land y)^{**} \bigtriangledown (x \land z)^{**}]\theta_F$$

$$= [((x \land y) \lor (x \land z))^{**}]\theta_F$$

$$= [(x \land y) \lor (x \land z)]\theta_F$$

$$= [x \land y]\theta_F \lor [x \land z]\theta_F$$

$$= ([x]\theta_F \land [y]\theta_F) \lor ([x]\theta_F \land [z]\theta_F)$$

This shows that L/θ_F is a distributive lattice. Clearly, $[0]\theta_F$ and $[1]\theta_F = F$ are the zero and the unit elements of L/θ_F . This shows that L/θ_F is a bounded distributive lattice. Now we proceed to show that every $[x]\theta_F$ of L/θ_F has a complement. Since $x \wedge x^* = 0$, $[x]\theta_F \wedge [x^*]\theta_F = [x \wedge x^*]\theta_F = [0]\theta_F$. Since *F* is a *d*-filter, $x \lor x^* \in$ *F*. Hence, we have $[x]\theta_F \lor [x^*]\theta_F = [x \lor x^*]\theta_F = F$. Thus we have proved that L/θ_F is a Boolean lattice. \Box

Now, let $F = [a)^d$ for some $a \in B(L)$. Then $a \in F \cap B(L)$. For brevity, we write θ_a instead of $\theta_{[a)^d}$.

In the following Corollary, we state some congruence properties of a principal *p*-algebra.

Corollary 4.6. Let *L* be a principal *p*-algebra. Then the following statements hold:

- (1) $(x, y) \in \theta_a \Leftrightarrow x^{**} \land a = y^{**} \land a$,
- (2) $Coker\theta_a = [a)^d$ and $Ker\theta_a = (a^*]$,

(3) $\theta_1 = \Phi$ and $\theta_0 = \nabla$.

K

Proof.

(1) Let $(x, y) \in \theta_a$. Then

$$(x, y) \in \theta_a \Rightarrow x^{**} \land b = y^{**} \land b \text{ for some } b \in [a) \cap B(L)$$

$$\Rightarrow x^{**} \land b \land a = y^{**} \land b \land a$$

$$\Rightarrow x^{**} \land a = y^{**} \land a \text{ as } b = b^{**} \ge a.$$

Conversely, let $x^{**} \wedge a = y^{**} \wedge a$. Then $(x, y) \in \theta_a$ as $a \in [a) \cap B(L)$.

(2) By Theorem 4.5(3), we have $Coker\theta_a = [a)^d$. Now we prove the second equality in (2) as follows:

$$er\theta_a = \{x \in L : (x, 0) \in \theta_a\}$$

= $\{x \in L : x^{**} \land a = 0^{**} \land a\}$
= $\{x \in L : x^{**} \land a = 0\}$ as $0^{**} = 0$
= $\{x \in L : x \le x^{**} \le a^*\}$
= $(a^*].$

(3) Using Theorem 4.5 (4), we get $\theta_1 = \theta_{[d)^d} = \Phi$ and $\theta_0 = \theta_{[0)^d} = \theta_L = \nabla$. \Box

By combining Lemma 4.3 and Theorem 4.5(1), (3) we establish the following characterization theorem of a *d*-filter of *L*.

Theorem 4.7. A filter F of a principal p-algebra L is a cokernel of a congruence $\theta \in [\Phi, \nabla]$ if and only if F is a d-filter.

Consider $Con_B(L) = \{\theta_a : a \in B(L)\}$, we observe that $Con_B(L)$ is a partially ordered set under set inclusion. We now study properties of the elements in the set $Con_B(L)$.

Theorem 4.8. Let *L* be a principal *p*-algebra. Then for every *a*, $b \in B(L)$, the following statement hold in $Con_B(L)$:

- (1) $a \leq b$ if and only if $\theta_b \subseteq \theta_a$,
- (2) The set $Con_B(L)$ is a Boolean algebra on its own. Moreover $Con_B(L) \cong B(L)$,
- (3) $\theta_a \sqcup \theta_b = \theta_{a \land b}$ and $\theta_a \sqcap \theta_b = \theta_{a \bigtriangledown b}$,
- (4) $\theta_a \sqcap \theta_{a^*} = \Phi$ and $\theta_a \sqcup \theta_{a^*} = \nabla$.

Proof.

- Let a ≤ b and (x, y) ∈ θ_b. Then x** ∧ b = y** ∧ b. Hence x** ∧ b ∧ a = y** ∧ b ∧ a. This leads to x** ∧ a = y** ∧ a. Thus (x, y) ∈ θ_a and θ_b⊆θ_a. Conversely, let θ_b⊆θ_a. Then we have (b, 1) ∈ θ_b⊆θ_a. This implies that b ∧ a = 1 ∧ a = a. Thus a ≤ b.
- (2) Define the mapping $\Psi: B(L) \to Con_B(L)$ as follows:

 $\Psi(a) = \theta_a$ for all $a \in B(L)$.

By (1) above, Ψ is an order anti-isomorphism between B(L) and $Con_B(L)$. This immediately implies that $Con_B(L)$ is a Boolean algebra. Now if we define the mapping $f: B(L) \to Con_B(L)$ by $f(a) = \theta_{a^*}$, then f is an isomorphism between Boolean algebras B(L) and $Con_B(L)$.

(3) Since by (2) above Ψ is a anti-isomorphism, we have $\Psi(a \wedge b) = \Psi(a) \sqcup \Psi(b)$ and $\Psi(a \bigtriangledown b) = \Psi(a) \sqcap \Psi(b)$, where \sqcup and \sqcap are the join and meet operations on $Con_B(L)$. Now

$$\theta_a \sqcup \theta_b = \Psi(a) \sqcup \Psi(b) = \Psi(a \land b) = \theta_{a \land b}$$

and

$$\theta_a \sqcap \theta_b = \Psi(a) \sqcap \Psi(b) = \Psi(a \bigtriangledown b) = \theta_{a \lor b}.$$

(4) From (3) above we have

$$\theta_a \sqcap \theta_{a^*} = \theta_{a \bigtriangledown a^*} = \theta_1 = \Phi$$

and

$$\theta_a \sqcup \theta_{a^*} = \theta_{a \wedge a^*} = \theta_0 = \nabla.$$

Therefore $Con_B(L) = (Con_B(L), \sqcup, \sqcap, \neg, \Phi, \nabla)$, where $\overline{\theta}_a = \theta_{a^*}$ is the complement of θ_a in $Con_B(L)$ and Φ , ∇ are the smallest and greatest elements of $Con_B(L)$, respectively. \Box

In the following Corollary an isomorphism between the sublattice $[\Phi, \nabla]$ of Con(L) and the lattice $F^{d}(L)$ of all *d*-filters of *L* is obtained.

Corollary 4.9. Let *L* be a finite principal *p*-algebra. Then $[\Phi, \nabla] \cong F^d(L)$.

Proof. Since *L* is finite, the elements of $F^{d}(L)$ are principal filters and hence $Con_{B}(L) = [\Phi, \nabla]$. By the above Theorem 4.8, we deduce that $F^{d}(L) \cong [\Phi, \nabla]$. \Box

Acknowledgments

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- O. Frink, Pseudo-complments in semi-lattices, Duke Math. J. 29 (1962) 505–514.
- [2] G. Birkhoff, Lattice Theory, American Mathematics Society, Colloquium Publications, 25, New York, 1967.
- [3] R. Balbes, A. Horn, Stone lattices, Duke Math. J. 37 (1970) 537– 543.
- [4] G. Grätzer, A generalization on Stone's representations theorem for Boolean algebras, Duke Math. J. 30 (1963) 469–474.
- [5] M.S. Rao, K.P. Shum, Boolean filters of distributive lattices, Int. J. Math. Soft Comput. 3 (2013) 41–48.
- [6] A. Badawy, K.P. Shum, Congruences and Boolean filters of quasimodular *p*-algebras, Discuss. Math. Gen. Algebra Appl. 34 (2014) 109–123.
- [7] A. Badawy, M.S. Rao, σ -ideals of distributive *p*-algebras, Cham. J. Math. 6 (2014) 17–30.
- [8] A. Badawy, M. Atallah, Bollean filters of principal *p*-algebras, Int. J. Math. Comput. 26 (1) (2015) 15–25.
- [9] R. Balbes, P. Dwinger, Distributive Lattices, Univ. Miss. Press, 1975.
- [10] G. Grätzer, Lattice Theory, First Concepts and Distributive Lattice, W.H. Freeman and Co., San-Francisko, 1971.
- [11] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel and Stuttgart, 1978.
- [12] T. Katriňák, P. Mederly, Construction of *p*-algebras, Algebra Universalis 4 (1983) 288–316.
- [13] P.V. Venkatanarasimhan, Ideals in semi-lattices, J. Indian. Soc. (N.S.) 30 (1966) 47–53.
- [14] M. Haviar, Construction and affine completeness of principal palgebras, Tatra Mountains Math. 5 (1995) 217–228.