

Original Article

Congruences and *d***-filters of principal** *p***-algebras**

Abd El-Mohsen Badawy[∗]

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 27 May 2014; revised 28 October 2014; accepted 25 April 2015 Available online 9 July 2015

Keywords

p-Algebras; principal *p*-algebras; Filters; Congruences

Abstract The concept of *d*-filters is introduced in *p*-algebras. Some properties of *d*-filters are studied. It is proved that the class $F^d(L)$ of all *d*-filters of a *p*-algebra *L* is a bounded complete lattice. A characterization of *d*-filters of a principal *p*-algebra is given. Also many properties of congruences induced by the *d*-filters are derived. A relationship between the *d*-filters of a principal *p*-algebra *L* and the congruences in $[\Phi, \nabla]$ is established.

2010 Mathematics Subject Classification: 06A06; 06A20; 06A30; 06D15

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The notion of pseudo-complements was introduced in semilattices and distributive lattices by O. Frink [\[1\]](#page-4-0) and G. Birkhoff [\[2\].](#page-4-0) The pseudo-complements in Stone algebras were studied and discussed by O. Frink [\[1\],](#page-4-0) R. Balbes [\[3\]](#page-4-0) and G. Gratzer [\[4\]](#page-4-0) etc. Recently, the concept of Boolean filter of bounded pseudo-complemented distributive lattices was introduced by M. Sambasiva Rao and K. P. Shum in [\[5\].](#page-4-0) A. Badawy and K. P. Shum [\[6\]](#page-4-0) introduced and characterized the congruences and Boolean filters of quasi-modular *p*-algebras. Also

[∗] Tel.: +21 158538877; fax: +20 403302785.

E-mail address: abdel-mohsen.mohamed@science.tanta.edu.eg[,](mailto:abdelmohsen.badawy@yahoo.com) abdelmohsen.badawy@yahoo.com, mohamedmohsen994@yahoo.cm Peer review under responsibility of Egyptian Mathematical Society.

A. Badawy and M. Sambasiva Rao [\[7\]](#page-4-0) studied σ -ideals of distributive *p*-algebras. A. Badawy and M. Atallah [\[8\]](#page-4-0) introduced the notion of Boolean filters of principal *p*-algebras

In this paper, we further study the *d*-filters in a *p*-algebra *L* and many properties of *d*-filters are also given. We will give a characterization theorem of *d*-filters of a principal *p*-algebra *L*. We also notice that the set $F^d(L)$ of all *d*-filters of a *p*-algebra forms a complete lattice. The relationship between the *d*-filters and the congruences in $[\Phi, \nabla]$ of a principal *p*-algebra *L* is introduced. We also prove that the Boolean algebras *B*(*L*) and $Con_B(L) = \{\theta_a : a \in B(L)\}\$ are isomorphic, where θ_a is the congruence on *L* induced by a *d*-filter $[a]^d$ for a closed element a of *L*. Moreover, we show that the Boolean algebra $Con_B(L)$ can be embedded into the interval $[\Phi, \nabla]$ of *Con(L)*. It is proved that the lattice of all *d*-filters of a finite principal *p*-algebra *L* is isomorphic to the sublattice $[\Phi, \nabla]$ of *Con*(*L*).

S1110-256X(15)00037-1 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/). <http://dx.doi.org/10.1016/j.joems.2015.04.003>

2. Preliminaries

In this section, we cite some known definitions and basic results which can be found in the papers [\[1,9–13\].](#page-4-0)

A *p*-algebra is a universal algebra $(L, \vee, \wedge, *, 0, 1)$, where $(L, \vee, \wedge, 0, 1)$ is a bounded lattice and the unary operation $*$ is defined by $x \wedge a = 0 \Leftrightarrow x \leq a^*$.

It is known that the class of all *p*-algebras is equational. A quasi-modular p-algebra is a *p*-algebra satisfying the identity

 $((x \land y) ∨ z^{**}) ∧ x = (x ∧ y) ∨ (z^{**} ∧ x).$

An element *a* of a *p*-algebra *L* is called closed if $a^{**} = a$. Then $B(L) = \{a \in L : a = a^{**}\}\$ is the set of all closed elements of *L*. It is known that $(B(L), \nabla, \wedge, 0, 1)$, where $a \nabla b = (a^* \wedge$ b^* ^{*}, forms a Boolean algebra. The set $D(L) = \{x \in L : x^* =$ 0 } = {*x* \vee *x*^{*} : *x* \in *L*} of all dense elements of *L* is a filter of *L*.

For an arbitrary lattice *L*, the set *F*(*L*) of all filters of *L* ordered by the set inclusion forms a lattice. It is known that *F*(*L*) is modular (distributive) if and only if *L* is a modular (distributive) lattice. Let $a \in L$ and [*a*) be the principal filter of *L* generated by $a: [a] = \{x \in L : x \ge a\}.$

An equivalent relation θ on a *p*-algebra $(L; \vee, \wedge, *)$ is called a congruence relation if

(1) θ is a lattice congruence, i.e., for all (x, y) , $(x_1, y_1) \in \theta$ implies $(x \wedge x_1, y \wedge y_1), (x \vee x_1, y \vee y_1) \in \theta$, (2) $(x, y) \in \theta$ implies $(x^*, y^*) \in \theta$.

Through what follows, for a *p*-algebra *L* we shall denote by ∇ the universal congruence on *L*. The Cokernel of the lattice congruence θ on a lattice *L* is defined as

 $Coker \theta = \{x \in L : (x, 1) \in \theta\}.$

The relation Φ of a *p*-algebra *L* is defined by $(x, y) \in \Phi \Leftrightarrow$ x ^{∗∗} = y ^{∗∗} and is called the Glivenko congruence relation. It is known that the Glivenko congruence is indeed a congruence on *L* such that $L/\Phi \cong B(L)$ holds.

We frequently use the following rules in the computations of *p*-algebras (see [\[10,13\]\)](#page-4-0):

(1) $0^{**} = 0$ and $1^{**} = 1$, (2) $a \wedge a^* = 0$; (3) $a \leq b$ implies $b^* \leq a^*$, (4) $a \leq a^{**}$, (5) $a^{***} = a^*$, (6) $(a \vee b)^* = a^* \wedge b^*$, (7) $(a \land b)^* \ge a^* \lor b^*$, (8) $(a \wedge b)^{**} = a^{**} \wedge b^{**}$, (9) $(a \vee b)^{**} = (a^* \wedge b^*)^* = (a^{**} \vee b^{**})^{**}.$

Haviar [\[14\]](#page-4-0) introduced the class of principal p-algebras which contains all quasi-modular p-algebras having a smallest dense element.

Definition 2.1 [\(\[14\]\)](#page-4-0). A p-algebra $(L; \vee, \wedge, *, 0, 1)$ is called a principal p-algebra, if it satisfies the following conditions:

- (i) The filter *D*(*L*) is principal, i.e., there exists an element *d* $\in L$ such that $D(L) = [d]$,
- (ii) The element *d* is distributive, i.e., $(x \wedge y) \vee d = (x \vee d) \wedge$ $(y \vee d)$ for all $x, y \in L$,

(iii)
$$
x = x^{**} \wedge (x \vee d)
$$
 for any $x \in L$.

Throughout this paper, *d* stands for a smallest dense element of a principal *p*-algebra *L*, unless otherwise mentioned.

3. Properties of *d***-filters**

In this section, we introduce the concept of *d*-filter of a *p*algebra. Some properties of *d*-filters in a *p*-algebra are derived. A characterization theorem of *d*-filters of a principal *p*-algebra will be given.

Definition 3.1. For any filter *F* of a *p*-algebra *L*, define an extension of *F* as the set

F^{*d*} = {*x* ∈ *L* : *x*^{∗∗} ≥ *f* for some *f* ∈ *F*}

The following two Lemmas represent some basic properties of the set *F^d*.

Lemma 3.2. *The set F^d is a filter of a p-algebra L containing F.*

Proof. Clearly $1 \in F^d$. Let $x, y \in F^d$. Then $x^{**} \ge f$ and $y^{**} \ge g$ for some *f*, *g* of *F*. Hence $(x \wedge y)^{**} = x^{**} \wedge y^{**} \ge f \wedge g$. It follows that $x \land y \in F^d$ as $f \land g \in F$. Now, let $z \in L$ be such that $z \ge x \in$ *F^d*. Then $z^{**} \ge x^{**} \ge f$ for some $f \in F$. Hence $z \in F^d$. Therefore *F^d* is a filter of *L*. Since $x^{**} \ge x$ for any $x \in F$, we have that $x \in F$ *F^{<i>d*} and *F* ⊆ *F^{<i>d*}. \Box

Lemma 3.3. *For any two filters F*, *G of a p-algebra L*, *we have the following:*

(1) $F ⊆ G$ *implies* $F^d ⊆ G^d$, (2) $(F ∩ G)^d = F^d ∩ G^d$, (3) $(F^d)^d = F^d$.

Proof.

 \Box

- (1) Suppose that *F*⊆*G*. Let $x \in F^d$. Then, $x^{**} \ge f$ for some *f* $∈$ *F*. It follows that $x ∈ G^d$ as $f ∈ G$.
- (2) Obviously $(F \cap G)^d \subseteq F^d \cap G^d$. Conversely, let $x \in F^d \cap G^d$ G^d . Then $x^{**} \ge f$ and $x^{**} \ge g$ for some $f, g \in F$. Hence x^{**} $≥ f ∨ g$. It yields that $x ∈ (F ∩ G)^d$, where $f ∨ g ∈ F ∩ G$. Consequently $F^d \cap G^d \subseteq (F \cap G)^d$.
- (3) By (1) above, $F^d \subseteq (F^d)^d$. Conversely, let $x \in (F^d)^d$. Then *x*^{∗∗} ≥ *f* for some *f* ∈ *F^d*. Since *f* ∈ *F^d*, we have *f*^{**} ≥ *f*₁ for some *f*₁ ∈ *F*. Hence $x^{**} \ge f^{**} \ge f_1$. Then $x \in F^d$ as $f_1 \in F$.

We now introduce the concept of *d*-filters in a *p*-algebra.

Definition 3.4. A filter *F* of a *p*-algebra *L* is called an *d*-filter of *L* if it satisfies the condition, $F = F^d$.

From Lemma 3.3(2), we can observe that the intersection of two *d*-filters of a *p*-algebra is again a *d*-filter. But, in general, the supremum of two *d*-filters need not be a *d*-filter. However, in the following, we obtain the class $F^d(L)$ of all *d*-filters of *L* that is a bounded lattice.

Theorem 3.5. For any p-algebra L, the class $F^d(L)$ forms a com*plete lattice on its own.*

Proof. For any two *d*-filters *F*, *G* of *L*, define the ordering \leq on $F^d(L)$ such that $F \leq G \Leftrightarrow F \subseteq G$. Then clearly $(F^d(L), \leq)$ is a partially ordered set. Now, consider the following:

 $F \cap G = (F \cap G)^d$ and $F \sqcup G = (F \vee G)^d$.

Clearly by [Lemma](#page-1-0) 3.3(2), $(F \cap g)^d$ is the infimum of both *F* an *G* in $F^d(L)$. Clearly $(F \vee G)^d$ is an upper bound for *F* an *G* in $F^d(L)$. Suppose that *K* is a *d*-filter of *L* such that *F*⊆*K* and *G*⊆*K*. Let *x* ∈ $(F \lor G)^d$. Then $x^{**} \ge f \land g$ for some $f \in F \subseteq K$ and $x \in G \subseteq K$. Hence $x \in K^d = K$. Therefore, $(F \vee G)^d$ is the supremum of both *H* and *G* in $F^d(L)$. Then $(F^d(L), \cap, \sqcup, [d], L)$ is a bounded lattice, where $[1]^d = [d]$ and $L^d = [0]^d = L$ are the smallest and greatest members of $F^d(L)$, respectively. By the extension of the properties $F \cap G = (F \cap G)^d$ and $F \sqcup G = (F \vee G)^d$, the lattice $(F^d(L), ∩, ∪, [d), L)$ is a complete. $□$

In the following theorem, we characterize the *d*-filters of a principal *p*-algebra.

Theorem 3.6. *Let F be a filter of a principal p-algebra L with the smallest dense element d. Then the following conditions are equivalent:*

(1) *F is a d-filter,* (2) x^{**} ∈ *F implies* $x \in F$, (3) *For* $x, y \in L$, $x^* = y^*$ *and* $x \in F$ *imply* $y \in F$, (4) d ∈ F .

Proof.

- (1)⇒(2): Let *F* be a *d*-filter of *L*. Suppose $x^{**} \in F$. Since $(x \vee$ *d*)^{∗∗} = 1 ∈ *F* (as *x*∨*d* ∈ *D*(*L*)), we have *x* ∨ *d* ∈ *F^d* = *F*. Then $x^{**} \land (x \lor d) \in F$. By [Definition](#page-1-0) 2.1(iii), we get *x* ∈ *F*.
- (2)⇒(3): Assume the condition (2). Let *x*, $y \in L$, $x^* = y^*$ and *x* \in *F*. Then, $y^{**} = x^{**} \in F$. Thus by condition (2), we obtain $y \in F$.
- (3)⇒(4): Assume the condition (3). Since $d^* = 0 = 1^*$, we get by (3) that $d \in F$.
- (4)⇒(1): Assume $d \in F$. We always have $F ⊂ F^d$. Conversely, let *x* ∈ F^d . Then $x^{**} \geq f$ for some $f \in F$. Hence $x^{**} \in$ *F*. Since $x \lor d > d \in F$, we obtain $x \lor d \in F$. Thus, by [Definition](#page-1-0) 2.1(iii), $x = x^{**} \wedge (x \vee d) \in F$ and $F^d \subseteq F$. Then *F* is a *d*-filter of *L*. \Box

4. Congruences on a principal *p***-algebra**

In this section we investigate the relationships between the set of all *d*-filters and congruences of a principal *p*-algebra.

Definition 4.1. A congruence θ of a *p*-algebra *L* is called a closed congruence if $(x, x^{**}) \in \theta$ for all $x \in L$.

We first state the following proposition.

Proposition 4.2. *Let L be a principal p-algebra L with the smallest dense element d. Define the relation* θ_d *on L such that*

 $(x, y) \in \theta_d$ if and only if $x \wedge d = y \wedge d$

Then we have the following:

(1) θ_d *is a closed congruence on L and* $Coker \theta_d = [d]$,

(2) *The quotient set* L/θ_d *is a Boolean lattice*

Proof.

(1) It is clear that θ_d is a lattice congruence on *L*. Let (x, y) θ _{*d*}. Then *x* ∧ *d* = *y* ∧ *d*. Hence *x*^{**} = *x*^{**} ∧ *d*^{**} = (*x* ∧ d)^{**} = $(y \wedge d)^{**} = y^{**} \wedge d^{**} = y^{**}$ as $d_d^{**} = 1$. It follows that $x^* = y^*$. Hence $x^* \wedge d = y^* \wedge d$ and $(x^*, y^*) \in \theta_d$.

Therefore θ_d is a congruence on *L*. By [Definition](#page-1-0) 2.1(iii), we have

$$
x \wedge d = x^{**} \wedge (x \vee d) \wedge d = x^{**} \wedge d.
$$

Then we deduce that $(x, x^{**}) \in \theta_d$. Now

$$
Coker \theta_d = \{x \in L : (x, 1) \in \theta_d\}
$$

= $\{x \in L : x \land d = 1 \land d = d\}$
= $\{x \in L : x \ge d\}$
= $[d].$

(2) It is known that $(L/\theta_d, \vee, \wedge, [0]\theta_d, [1]\theta_d)$ is a bounded lattice, where $L/\theta_d = \{ [x] \theta_d : x \in L \}$, $[x] \theta_d \vee [y] \theta_d = [x \vee$ $y \mid \theta_d$ and $[x] \theta_d \wedge [y] \theta_d = [x \wedge y] \theta_d$. By (1), θ_d is a closed congruence. Hence $[x]\theta_d = [x^{**}]\theta_d$ for every $x \in L$. This deduces immediately that L/θ_d is distributive. Since $x \wedge$ $x^* = 0$ and $(x \vee x^*, 1) \in \theta_d$ (as $(x \vee x^*) \wedge d = d =$ $1 \wedge d$ for all $x \in L$), we get $[x]\theta_d \wedge [x^*]\theta_d = [x \wedge x^*]\theta_d =$ $[0]\theta_d$ and $[x]\theta_d \vee [x^*]\theta_d = [x \vee x^*]\theta_d = [1]\theta_d$, respectively. It follows that the congruence class $[x^*]\theta_d$ is the complement of $[x]\theta_d$ in L/θ_d . Therefore L/θ_d is a Boolean lattice. \Box

Lemma 4.3. *Let* θ *be a closed congruence on a principal p-algebra L with the smallest dense element d. Then Coker*θ *is a d-filter of L.*

Proof. Obviously $Coker \theta = \{x \in L : (x, 1) \in \theta\}$ is a filter of *L*. Since θ is a closed congruence, we get $(d, 1) = (d, d^{**}) \in \theta$. Hence $d \in Coker\theta$. By Theorem 3.6(4), $Coker\theta$ is a *d*-filter of $L. \square$

From Proposition 4.2(1) and Lemma 4.3, we have the following Corollary

Corollary 4.4. *The filter* [*d*) *is a d-filter of L.*

For a *d*-filter *F* of a principal *p*-algebra *L*, define a relation θ_F on *L* as follows:

 $(x, y) \in \theta_F$ ⇔ $x^{**} \wedge a = y^{**} \wedge a$ for some $a \in F \cap B(L)$.

We now establish the following theorem for a *d*-filter of *L*.

Theorem 4.5. *Let F be a d-filter of a principal p-algebra L with the smallest dense element d. Then the following statements hold:*

- (1) θ_F *is a congruence on L such that* $\Phi \subseteq \theta_F$,
- (2) θ_F *is a closed congruence on L*,
- (3) $Coker \theta_F = F$,
- (4) $\theta_{[1]} = \Phi$ *and* $\theta_{[0]} = \nabla$ *whenever F is identical with* [1], *respectively,* [0),
- (5) L/θ_F *is a Boolean lattice.*

Proof.

(1) Clearly, θ_F is an equivalence relation on *L*. Now we prove that θ_F is a lattice congruence on *L*. Let (x, y) , $(c, d) \in \theta_F$. Then $x^{**} \wedge a = y^{**} \wedge a$ and $c^{**} \wedge b = d^{**} \wedge b$ for some *a*, $b \in F \cap B(L)$. Now we have the following equalities.

$$
(x \wedge c)^{**} \wedge (a \wedge b) = x^{**} \wedge c^{**} \wedge a \wedge b
$$

= $y^{**} \wedge d^{**} \wedge a \wedge b$
= $(y \wedge d)^{**} \wedge (a \wedge b)$

$$
(x \lor c)^{**} \land (a \land b) = (x^* \land c^*)^* \land (a \land b)
$$

= $(x^{***} \land c^{***})^* \land (a \land b)$
= $(x^{**} \lor c^{**}) \land (a \land b)$
= $(x^{**} \land a \land b) \lor (c^{**} \land a \land b)$
= $(y^{**} \land a \land b) \lor (d^{**} \land a \land b)$
= $(y^{**} \lor d^{**}) \land (a \land b)$
= $(y \lor d)^{**} \land (a \land b)$

Then $(x \lor c, y \lor d) \in \theta_F$ as $a \land b \in F \cap B(L)$. Now we show that θ_F preserves the operation ^{*}. Let $(x, y) \in \theta_F$. Then *x*^{∗∗} ∧ *a* = y ^{∗∗} ∧ *a* for some *a* ∈ *F*∩*B*(*L*). Now by the distributivity of $B(L)$ we have the following set of implications.

$$
x^{**} \wedge a = y^{**} \wedge a \Rightarrow (x^{**} \wedge a) \nabla a^* = (y^{**} \wedge a) \nabla a^*
$$

\n
$$
\Rightarrow (x^{**} \nabla a^*) \wedge (a \nabla a^*)
$$

\n
$$
= (y^{**} \nabla a^*) \wedge (a \nabla a^*)
$$

\n
$$
\Rightarrow x^{**} \nabla a^* = y^{**} \nabla a^*
$$

\n
$$
\Rightarrow (x^{***} \wedge a^{**})^* = (y^{***} \wedge a^{**})^*
$$

\n
$$
\Rightarrow (x^{***} \wedge a)^{**} = (y^{***} \wedge a)^{**}
$$

\n
$$
\Rightarrow x^{***} \wedge a = y^{***} \wedge a
$$

\n
$$
\Rightarrow (x^*, y^*) \in \theta_F
$$

It is immediate that θ_F is a congruence on *L*. Let $(x, y) \in$ $Φ$. Then *x*^{∗∗} = *y*^{∗∗}. Hence, *x*^{∗∗} ∧ *a* = *y*^{∗∗} ∧ *a*, for some *a* \in *F* \cap *B*(*L*). Thus $(x, y) \in \theta_F$ and $\Phi \subseteq \theta_F$.

- (2) Since $x^{***} \wedge a = x^{**} \wedge a$ for some $a \in F \cap B(L)$, $(x^{**}, x) \in$ θ_F , and thereby θ_F is closed congruence.
- (3) It is known that $Coker \theta_F = [1] \theta_F$. Let $x \in Coker \theta_F$. Then we get the following implications:

$$
x \in Coker \theta_F \Rightarrow (x, 1) \in \theta_F
$$

\n
$$
\Rightarrow x^{**} \land a = 1^{**} \land a \text{ for some } a \in F \cap B(L)
$$

\n
$$
\Rightarrow x^{**} \land a = a \text{ as } 1^{**} = 1
$$

\n
$$
\Rightarrow x^{**} \ge a \in F
$$

\n
$$
\Rightarrow x^{**} \in F
$$

\n
$$
\Rightarrow x \in F \text{ as } F \text{ is a } d\text{-filter of } L.
$$

Then $Coker \theta_F \subseteq F$. Conversely, let $y \in F$. Then

$$
y \in F \Rightarrow y^{**} \land y^{**} = y^{**} = 1^{**} \land y^{**}
$$

\n
$$
\Rightarrow (y, 1) \in \theta_F \text{ as } y^{**} \in F \cap B(L)
$$

\n
$$
\Rightarrow y \in Coker \theta_F
$$

Then $F \subseteq Coker \theta_F$.

(4) Since $[1) \cap B(L) = \{1\}$ and $[0) \cap B(L) = B(L)$, we deduce the following equalities:

$$
\theta_{[1)} = \{(x, y) \in L \times L : x^{**} \wedge 1 = y^{**} \wedge 1\}
$$

= \{(x, y) \in L \times L : x^{**} = y^{**}\}
= \Phi,

$$
\theta_{[0)} = \{(x, y) \in L \times L : x^{**} \wedge 0 = y^{**} \wedge 0\}
$$

= \{(x, y) \in L \times L : x, y \in L\}
= \nabla.

(5) From (2) we have, $L/\theta_F = \{ [x] \theta_F : x \in L \} = \{ [x^*] \theta_F : x \in L \}$ *L*}. Let $[x]\theta_F$, $[y]\theta_F$, $[z]\theta_F \in L/\theta_F$. Then $[x]\theta_F \wedge (\lbrack y]\theta_F \vee \lbrack z]\theta_F$) = $[x \wedge (y \vee z)]\theta_F$

$$
= [(x \wedge (y \vee z))^{**}] \theta_F
$$

\n
$$
= [x^{**} \wedge (y \vee z)^{**}] \theta_F
$$

\n
$$
= [x^{**} \wedge (y^{**} \nabla z^{**})] \theta_F
$$

\n
$$
= [(x^{**} \wedge y^{**}) \nabla (x^{**} \wedge z^{**})] \theta_F
$$

\n
$$
= [(x \wedge y)^{**} \nabla (x \wedge z)^{**}] \theta_F
$$

\n
$$
= [(x \wedge y) \vee (x \wedge z)] \theta_F
$$

\n
$$
= [x \wedge y] \theta_F \vee [x \wedge z] \theta_F
$$

\n
$$
= ([x] \theta_F \wedge [y] \theta_F) \vee ([x] \theta_F \wedge [z] \theta_F)
$$

This shows that L/θ_F is a distributive lattice. Clearly, $[0]\theta_F$ and $[1]\theta_F = F$ are the zero and the unit elements of L/θ_F . This shows that L/θ_F is a bounded distributive lattice. Now we proceed to show that every $[x]\theta_F$ of L/θ_F has a complement. Since $x \wedge x^* = 0$, $[x]\theta_F \wedge$ $[x^*]\theta_F = [x \wedge x^*]\theta_F = [0]\theta_F$. Since *F* is a *d*-filter, $x \vee x^* \in$ *F*. Hence, we have $[x]\theta_F \vee [x^*]\theta_F = [x \vee x^*]\theta_F = F$. Thus we have proved that L/θ_F is a Boolean lattice. \Box

Now, let $F = [a]^d$ for some $a \in B(L)$. Then $a \in F \cap B(L)$. For brevity, we write θ_a instead of $\theta_{[a]^d}$.

In the following Corollary, we state some congruence properties of a principal *p*-algebra.

Corollary 4.6. *Let L be a principal p-algebra. Then the following statements hold:*

- (1) $(x, y) \in \theta_a \Leftrightarrow x^{**} \wedge a = y^{**} \wedge a$,
- (2) $Coker \theta_a = [a]^d$ *and* $Ker \theta_a = (a^*]$,

(3) $\theta_1 = \Phi$ and $\theta_0 = \nabla$ *.*

Proof.

(1) Let $(x, y) \in \theta_a$. Then

$$
(x, y) \in \theta_a \Rightarrow x^{**} \land b = y^{**} \land b \text{ for some } b \in [a) \cap B(L)
$$

$$
\Rightarrow x^{**} \land b \land a = y^{**} \land b \land a
$$

$$
\Rightarrow x^{**} \land a = y^{**} \land a \text{ as } b = b^{**} \ge a.
$$

Conversely, let $x^{**} \wedge a = y^{**} \wedge a$. Then $(x, y) \in \theta_a$ as $a \in$ $[a] \cap B(L)$.

(2) By [Theorem](#page-2-0) 4.5(3), we have $Coker \theta_a = [a]^d$. Now we prove the second equality in (2) as follows:

$$
Ker \theta_a = \{x \in L : (x, 0) \in \theta_a\}
$$

= $\{x \in L : x^{**} \wedge a = 0^{**} \wedge a\}$
= $\{x \in L : x^{**} \wedge a = 0\}$ as $0^{**} = 0$
= $\{x \in L : x \le x^{**} \le a^*\}$
= $(a^*]$.

(3) Using [Theorem](#page-2-0) 4.5 (4), we get $\theta_1 = \theta_{[d]^d} = \Phi$ and $\theta_0 =$ $\theta_{[0]^d} = \theta_L = \nabla.$ \Box

By combining [Lemma](#page-2-0) 4.3 and [Theorem](#page-2-0) 4.5(1), (3) we establish the following characterization theorem of a *d*-filter of *L*.

Theorem 4.7. *A filter F of a principal p-algebra L is a cokernel of* a *congruence* $\theta \in [\Phi, \nabla]$ *if and only if* F *is* a *d-filter.*

Consider $Con_B(L) = \{\theta_a : a \in B(L)\}\)$, we observe that $Con_B(L)$ is a partially ordered set under set inclusion. We now study properties of the elements in the set $Con_B(L)$.

Theorem 4.8. *Let L be a principal p-algebra. Then for every a*, *b* $\in B(L)$, the following statement hold in $Con_B(L)$:

- (1) $a < b$ *if and only if* $\theta_b \subset \theta_a$,
- (2) *The set* $Con_B(L)$ *is a Boolean algebra on its own. Moreover* $Con_R(L) \cong B(L)$,
- (3) $\theta_a \sqcup \theta_b = \theta_{a \wedge b}$ and $\theta_a \sqcap \theta_b = \theta_{a \vee b}$,
- (4) $\theta_a \sqcap \theta_{a^*} = \Phi$ and $\theta_a \sqcup \theta_{a^*} = \nabla$.

Proof.

- (1) Let $a < b$ and $(x, y) \in \theta_b$. Then $x^{**} \wedge b = y^{**} \wedge b$. Hence *x*^{∗∗} ∧ *b* ∧ *a* = *y*^{∗∗} ∧ *b* ∧ *a*. This leads to *x*^{∗∗} ∧ *a* = *y*^{∗∗} ∧ *a*. Thus $(x, y) \in \theta_a$ and $\theta_b \subset \theta_a$. Conversely, let $\theta_b \subset \theta_a$. Then we have $(b, 1) \in \theta_b \subseteq \theta_a$. This implies that $b \wedge a = 1 \wedge a =$ *a*. Thus $a < b$.
- (2) Define the mapping Ψ : $B(L) \rightarrow Con_B(L)$ as follows:

 $\Psi(a) = \theta_a$ for all $a \in B(L)$.

By (1) above, Ψ is an order anti-isomorphism between $B(L)$ and $Con_B(L)$. This immediately implies that $Con_B(L)$ is a Boolean algebra. Now if we define the mapping *f*: $B(L) \rightarrow Con_B(L)$ by $f(a) = \theta_{a^*}$, then *f* is an isomorphism between Boolean algebras $B(L)$ and $Con_B(L)$.

(3) Since by (2) above Ψ is a anti-isomorphism, we have $\Psi(a \wedge b) = \Psi(a) \sqcup \Psi(b)$ and $\Psi(a \nabla b) = \Psi(a) \sqcap \Psi(b)$, where \sqcup and \sqcap are the join and meet operations on $Con_B(L)$. Now

$$
\theta_a \sqcup \theta_b = \Psi(a) \sqcup \Psi(b) = \Psi(a \wedge b) = \theta_{a \wedge b}
$$

and

$$
\theta_a \sqcap \theta_b = \Psi(a) \sqcap \Psi(b) = \Psi(a \bigtriangledown b) = \theta_{a \bigtriangledown b}.
$$

(4) From (3) above we have

$$
\theta_a \sqcap \theta_{a^*} = \theta_{a\bigtriangledown a^*} = \theta_1 = \Phi
$$

and

$$
\theta_a \sqcup \theta_{a^*} = \theta_{a \wedge a^*} = \theta_0 = \nabla.
$$

Therefore $Con_B(L) = (Con_B(L), \sqcup, \sqcap, ^-, \Phi, \nabla)$, where $\overline{\theta}_a = \theta_{a^*}$ is the complement of θ_a in $Con_B(L)$ and Φ , ∇ are the smallest and greatest elements of $Con_B(L)$, respectively. \Box

In the following Corollary an isomorphism between the sublattice $[\Phi, \nabla]$ of *Con*(*L*) and the lattice $F^d(L)$ of all *d*-filters of *L* is obtained.

Corollary 4.9. *Let L be a finite principal p-algebra. Then* $[\Phi, \nabla]$
 $\cong F^d(L)$ *.*

Proof. Since *L* is finite, the elements of $F^{d}(L)$ are principal filters and hence $Con_B(L) = [\Phi, \nabla]$. By the above [Theorem](#page-3-0) 4.8, we deduce that $F^d(L) \cong [\Phi, \nabla]$. \Box

Acknowledgments

The author would like to thank the referees for their useful comments and valuable suggestions given to this paper.

References

- [1] O. [Frink,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0001) [Pseudo-complments](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0001) in semi-lattices, Duke Math. J. 29 (1962) 505–514.
- [2] G. [Birkhoff,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0002) Lattice Theory, American [Mathematics](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0002) Society, Colloquium Publications, 25, New York, 1967.
- [3] R. [Balbes,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0003) A. [Horn,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0003) Stone [lattices,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0003) Duke Math. J. 37 (1970) 537– 543.
- [4] G. [Grätzer,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0004) A generalization on Stone's [representations](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0004) theorem for Boolean algebras, Duke Math. J. 30 (1963) 469–474.
- [5] [M.S.](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0005) Rao, K.P. [Shum,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0005) Boolean filters of [distributive](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0005) lattices, Int. J. Math. Soft Comput. 3 (2013) 41–48.
- [6] A. [Badawy,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0006) K.P. [Shum,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0006) [Congruences](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0006) and Boolean filters of quasimodular *p*-algebras, Discuss. Math. Gen. Algebra Appl. 34 (2014) 109–123.
- [7] A. [Badawy,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0007) [M.S.](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0007) Rao, σ-ideals of [distributive](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0007) *p*-algebras, Cham. J. Math. 6 (2014) 17–30.
- [8] A. [Badawy,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0008) M. [Atallah,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0008) Bollean filters of principal *p*[-algebras,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0008) Int. J. Math. Comput. 26 (1) (2015) 15–25.
- [9] R. [Balbes,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0009) P. [Dwinger,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0009) [Distributive](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0009) Lattices, Univ. Miss. Press, 1975.
- [10] G. [Grätzer,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0010) Lattice Theory, First Concepts and Distributive Lattice, W.H. Freeman and Co., [San-Francisko,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0010) 1971.
- [11] G. [Grätzer,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0011) General Lattice Theory, [Birkhäuser](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0011) Verlag, Basel and Stuttgart, 1978.
- [12] T. Katriňák, P. [Mederly,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0012) [Construction](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0012) of *p*-algebras, Algebra Universalis 4 (1983) 288–316.
- [13] P.V. [Venkatanarasimhan,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0013) Ideals in semi-lattices, J. Indian, Soc. (N.S.) 30 (1966) 47–53.
- [14] M. [Haviar,](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0014) [Construction](http://refhub.elsevier.com/S1110-256X(15)00037-1/sbref0014) and affine completeness of principal palgebras, Tatra Mountains Math. 5 (1995) 217–228.