
Journal of the Egyptian Mathematical Society (2012) 20, 211–214
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Characterization through distributional properties

of dual generalized order statistics
A.H. Khan a,*, Imtiyaz A. Shah a, M. Ahsanullah b
a Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh 202 002, India
b Department of Management Sciences, Rider University, Lawrenceville, NJ 08648-3099, USA
Received 25 June 2011; revised 30 June 2012
Available online 6 December 2012
*

E-

Pe

11

ht
KEYWORDS

Order statistics;

Lower record statistics;

Upper record statistics;

Generalized order statistics;

Dual generalized order sta-

tistics;

Contraction;

Dilation;

Characterization of distribu-

tions;

Generalized exponential;

Generalized Pareto;

Generalized power function;

Gumbel;

Weibull;

Inverse Weibull;

Exponential;

Power function;

Pareto;

Distributions
Corresponding author.

mail address: ahamidkhan@

er review under responsibilit

Production an

10-256X ª 2012 Egyptian M

tp://dx.doi.org/10.1016/j.joem
rediffmai

y of Egyp

d hostin

athemat

s.2012.1
Abstract Distributional properties of two non-adjacent dual generalized order statistics have been

used to characterize distributions. Further, one sided contraction and dilation for the dual general-

ized order statistics are discussed and then the results are deduced for generalized order statistics,

order statistics, lower record statistics, upper record statistics and adjacent dual generalized order

statistics.
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1. Introduction

Kamps [6] introduced the concept of generalized order statis-
tics (gos) as follows:

Let X1, X2, . . . , Xn be a sequence of independent and iden-
tically distributed (iid) random variables (rv) with the abso-
lutely continuous distribution function (df) F(x) and the

probability density function (pdf) f(x), x 2 (a,b). Let n 2 N;
n P 2; k > 0; ~m ¼ ðm1;m2; . . . ;mn�1Þ 2 Rn�1;Mr ¼

Pn�1
j¼r mj,
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such that cr = k+ (n � r) +Mr > 0 for all r 2 {1, 2, . . . ,
n � 1}. If m1 = m2 = � � �= mn�1 = m, then X(r,n,m,k) is
called the rth m-gos and its pdf is given as:

fXðr;n;m;kÞðxÞ ¼
cr�1
ðr� 1Þ! ½FðxÞ�

cr�1 1� ½FðxÞ�mþ1

mþ 1

" #r�1
fðxÞ;

a < x < b; ð1:1Þ

where cr = k+ (n � r)(m + 1) and cr�1 ¼
Qr

i¼1ci.
Based on the generalized order statistics (gos), Burkschat et

al. [4] introduced the concept of the dual generalized order statis-

tics (dgos) where the pdf of the rthm-dgos X*(r,n,m,k) is given as

fX�ðr;n;m;kÞðxÞ ¼
cr�1
ðr� 1Þ! ½FðxÞ�

cr�1 1� ½FðxÞ�mþ1

mþ 1

" #r�1
fðxÞ;

a < x < b;

which is obtained just by replacing FðxÞ ¼ 1� FðxÞ by F(x).
Ahsanullah [1] has characterized uniform distribution under

random contraction for adjacent dgos. Khan and Shah [7] have

characterized distributions using distributional properties of
non-adjacent lower records, upper records and order statistics.
In this paper, distributional properties of the dgos have been

used to characterize a general form of distributions for
non- adjacent dgos under random translation, dilation and
contraction, thus generalizing the results of Ahsanullah [1].

Further, results in terms of lower records, upper records and
order statistics are deduced. One may also refer to Alzaid and
Ahsanullah [2], Beutner and Kamps [3], Wesolowski and
Ahsanullah [8] and Castaño-Martı́nez et al. [5] for the related

results.

Remark 1.1. It may be seen that if Y is a measureable function
of X with the relation Y= h(X), then Y*(r,n,m,k) =

h(X*(r,n,m,k)) and Y(r,n,m,k) = h(X(r,n,m,k)), if h is
increasing function (e.g., Yr:n = h(Xr:n) and YL(r) = h(XL(r)),
where Xr:n and XL(r) are the r

th order statistic and lower record,
respectively). Moreover, Y(r,n,m,k) = h(X*(r,n,m,k)) and

Y*(r,n,m,k) = h(X(r,n,m,k)), if h is decreasing function
(e.g., Yn�r+1:n = h(Xr:n) and YU(r) = h(XL(r)), where YU(r) is
the rth upper record).

Remark 1.2. The following elementary facts will be needed in
the next section:

(i) if Y= log X � Gum(a) (i.e., F Y ðyÞ ¼ e�
e�ay

;�1 < y <
1; a > 0), then X � in W(a) (i.e., F X ðxÞ ¼ e�x�a

;
0 < x <1; a > 0).

(ii) if -log X� Gum(a), then X �Wei(a), (i.e., F X ðxÞ ¼
1� e�xa

; 0 < x <1; a > 0).
(iii) if Y= log X � exp(a) (i.e., F Y ðyÞ ¼ 1� e�

ay
; 0 < y <

1; a > 0), then X � Par(a), (i.e., FX(x) = 1 � x�a,

1 < x <1, a > 0).
(iv) if -log X � exp(a),then X � pow(a), (i.e., FX(x) = xa,

0 < x < 1, a > 0).

(v) if Y = logX � genexp(a) (i.e.,F Y ðyÞ ¼ ½1� ðmþ 1Þ
e�ay �

1
mþ1; 1a logðmþ 1Þ < y <1; a > 0), then X � gen-

Par(a) (i.e., F X ðxÞ ¼ ½1� ðmþ 1Þx�a�
1

mþ1; ðmþ 1Þ
1
a <

x <1; a > 0).
(vi) if -log X � genexp(a), then X � genpow(a) (i.e.,

F X ðxÞ ¼ 1� ½1� ðmþ 1Þxa�
1

mþ1; 0 < x < ðmþ 1Þ
1
a; a > 0).
2. Characterizing results
Theorem 2.1. Let X*(s,n,m,k) be the sth m-dgos from a sample
of size n drawn from a continuous population with the pdf f(x)

and the df F(x), then for 1 6 r< s 6 n,

X�ðrþ j; n;m; kÞ¼d X�ðs; n;m; kÞ þ Ys�r�j:s�1; j ¼ 0; 1; ð2:1Þ

where Ys�r�j:s�1 is the (s � r � j)th order statistic from a sam-
ple of size (s � 1) drawn from exp(a) distribution and is inde-

pendent of X* (s,n,m,k) if and only if X1 � genexp(a) and

X¼d Y denotes that X and Y have the same df.

Proof. To prove the necessary part, let the moment generating

function (mgf) of X*(r,n,m,k) be MX�ðrÞ
ðtÞ, then

X�ðr; n;m; kÞ¼d X�ðs; n;m; kÞ þ Y, implies that
MX�ðrÞ

ðtÞ ¼MX�ðsÞ
ðtÞ �MYðtÞ.

Since for the genexp(a) distribution, we have

MX�ðrÞ
ðtÞ ¼ Cr�1

ðr� 1Þ!
1

ðmþ 1Þr�
t
a

Cðr� t
aÞCð

cr
mþ1Þ

Cðr� t
aþ

cr
mþ1Þ

:

Therefore,

MYðtÞ ¼
MX�ðrÞ

ðtÞ
MX�ðsÞ

ðtÞ ¼
CðsÞ
CðrÞ

Cðr� t
aÞ

C s� t
a

� � :
But this is the mgf of Ys�r:s�1, which is the (s � r)th order sta-
tistic from a sample of size (s � 1) drawn from exp(a).

To prove the sufficiency part, we have for s P r + 1,

fX�ðr;n;m;kÞðxÞ ¼
Z x

0

fX�ðs;n;m;kÞðyÞ � fYs�r:s�1ðx� yÞdy

¼ aðs� 1Þ!
ðr� 1Þ!ðs� r� 1Þ!

Z x

0

½e�aðx�yÞ�r½1

� e�aðx�yÞ�s�r�1 � fX�ðs;n;m;kÞðyÞdy: ð2:2Þ

Differentiate both the sides of (2.2) w.r.t. x, to get

d

dx
fX�ðr;n;m;kÞðxÞ ¼ ar fX�ðrþ1;n;m;kÞðxÞ � fX�ðr;n;m;kÞðxÞ

� �
or, fX�ðr;n;m;kÞðxÞ ¼ ar FX�ðrþ1;n;m;kÞðxÞ � FX�ðr;n;m;kÞðxÞ

� �
Now, since (Ahsanullah [1])

FX�ðrþ1;n;m;kÞðxÞ � FX�ðr;n;m;kÞðxÞ
� �

¼ FðxÞ
crþ1fðxÞ

fX�ðrþ1;n;m;kÞðxÞ:

Therefore, we have ðmþ1Þ½FðxÞ�mfðxÞ
½1�ðFðxÞÞmþ1 � ¼ a, which implies that

FðxÞ ¼ ½1� ðmþ 1Þe�ax�
1

mþ1. Hence the proof. h

Remark 2.1. Let Xr:n be the rth order statistic from a sample of
size n drawn from a continuous population with the pdf f(x)
and the df F(x), then for 1 6 r< s 6 n,

Xs�j:n¼d Xr:n þ Xs�r�j:n�r; j ¼ 0; 1; ð2:3Þ

where Xs�r�j:n�r is independent of Xr:n if and only if
X1 � exp(a).
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This can be established by noting that order statistic appear

in the generalized order statistics (gos) model as well as in dual
generalized order statistics (dgos) model. Therefore at m= 0,
(2.1) may be written as

Xn�r�jþ1:n¼d Xn�sþ1:n þ Xs�r�j:s�1; j ¼ 0; 1; 1 6 r < s 6 n;

which implies

Xs�j:n¼d Xr:n þ Xs�r�j:n�r; j ¼ 0; 1; 1 6 r < s 6 n;

obtained by replacing (n � s+ 1) by r and (n � r + 1) by s as
given by Khan and Shah [7].

Remark 2.2. Alzaid and Ahsanullah [2] have proved that

Xr:n¼d Xr�1:n þ V

where V � exp(n � r+ 1) if and only if X1 � exp (1).

Remark 2.3. Castaño-Martı́nez et al. [5] have shown that

Xs:n¼d Xr:n þ V

where V¼d � logW with W � Be(n � s+ 1,s � r) if and only if
X1 � exp(1).

Remark 2.4. As m fi � 1, genexp(a) tends to the Gum(a) and
X*(r,n,m,k) to XL(r), the rth lower records. Therefore, we have

XLðrþjÞ ¼d XLðsÞ þ Ys�r�j:s�1; j ¼ 0; 1; 1 6 r < s;

where Ys�r�j:s�1 is the (s � r � j)th order statistic from a sam-
ple of size (s � 1) drawn from exp(a) distribution and is inde-
pendent of XL(s) if and only if X1 � Gum(a), as obtained by
Khan and Shah [7].

Remark 2.5. Alzaid and Ahsanullah [2] have shown that

XLðrÞ ¼d XLðrþ1Þ þ V

where V � exp(r) if and only if X1 � Gum(1).

Corollary 2.1. Let X*(s,n,m,k) be the sthm-dgos from a sample
of size n drawn from a continuous population with the pdf f(x)
and the df F(x), then for 1 6 r < s 6 n,

X�ðrþ j; n;m; kÞ¼d X�ðs; n;m; kÞ � Ys�r�j:s�1; j ¼ 0; 1; ð2:4Þ

where Ys�r�j:s�1 is the (s � r � j)th order statistic from a sam-
ple of size (s � 1) drawn from Par(a) distribution and is inde-
pendent of X*(s,n,m,k) if and only if X1 � genPar(a).

Proof. Here the product X*(s,n,m,k) Æ Ys�r�j:s�1 in (2.4) is

called random dilation of X*(s,n,m,k) (Beutner and Kamps
[3]). Note that if

logX�ðr; n;m; kÞ¼d logX�ðs; n;m; kÞ þ logYs�r:s�1

then

X�ðr; n;m; kÞ¼d X�ðs; n;m; kÞ � Ys�r:s�1

in view of Remarks 1.1 and 1.2 and the result follows. h
Remark 2.6. In case of ordinary order statistics, i.e., at m = 0,

we have

Xs�j:n¼d Xr:n � Xs�r�j:n�r; j ¼ 0; 1; 1 6 r < s 6 n;

where Xs�r�j:n�r is independent of Xr:n if and only if
X1 � Par(a), as obtained by Castaño-Martı́nez et al. [5] and

Khan and Shah Imtiyaz [7].

Remark 2.7. As m fi � 1, we get

XLðrþjÞ ¼d XLðsÞ � Ys�r�j:s�1; j ¼ 0; 1; 1 6 r < s;

where Ys�r�j:s�1 is the (s � r � j)th order statistic from a sam-
ple of size (s � 1) drawn from the Par(a) distribution and is
independent of XL(s), the sth lower records if and only if
X1 � inW(a).

Corollary 2.2. Let X(s,n,m,k) be the sth m-gos from a sample
of size n drawn from a continuous population with the pdf f(x)
and the df F(x), then for 1 6 r < s 6 n,

Xðrþ j; n;m; kÞ¼d Xðs; n;m; kÞ � Yrþj:s�1; j ¼ 0; 1; ð2:5Þ

where Yr+j:s�1 is the (r + j)th order statistic from a sample of
size (s � 1) drawn from pow(a) distribution and is independent
of X(s,n,m,k) if and only if X1 � genpow(a).

Proof. Here the product X(s,n,m,k) Æ Yr+j:s�1 in (2.5) is called

random contraction of X(s � j,n,m,k) (Beutner and Kamps
[3]). Since

� logX�ðr; n;m; kÞ¼d � logX�ðs; n;m; kÞ � logYs�r:s�1

implies

Xðr; n;m; kÞ¼d Xðs; n;m; kÞ � Yr:s�1

in view of Remarks 1.1 and 1.2 and the result follows. h

Remark 2.8. Beutner and Kamps [3] have shown that for adja-
cent generalized order statistics

Xðr; n;m; kÞ¼d Xðrþ 1; n;m; kÞ � V

where V � pow(ra) if and only if X1 � genpow(a).

Remark 2.9. We can get the corresponding characterizing
results for the order statistics at m = 0 as:

Let Xr:n be the rth order statistic from a sample of size n
drawn from continuous population with the pdf f(x) and the df

F(x), then for 1 6 r < s 6 n,

Xrþj:n¼d Xs:n � Xrþj:s�1; j ¼ 0; 1;

where Xr+j:s�1 is independent of Xs:n if and only if
X1 � pow(a), as given by Khan and Shah [7].

For adjacent order statistics one may also refer to Ahsa-
nullah [1] and Wesolowski and Ahsanullah [8].

Remark 2.10. The corresponding result for the lower records
as m fi � 1 is:
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Let XU(s) be the sth upper record from a continuous

population with the pdf f(x) and the df F(x), then

XUðrþjÞ ¼d XUðsÞ � Yrþj:s�1; j ¼ 0; 1; 1 6 r < s;

where Yr+j:s�1 is the (r+ j)th order statistic from a sample of

size (s � 1) drawn from pow(a) distribution and is independent
of XU(s) if and only if X1 �Wei(a), as obtained by Khan and
Shah [7].
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