

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Nadeem ur Rehman*, Mohd Arif Raza, Tarannum Bano

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Received 22 May 2014; revised 20 June 2014; accepted 23 December 2014 Available online 14 February 2015

Keywords

Prime and semiprime rings; Generalized derivations; Martindale ring of quotients; Generalized polynomial identity (GPI); Ideal **Abstract** Let *R* be a prime ring, extended centroid *C*, Utumi quotient ring *U*, and $m, n \ge 1$ are fixed positive integers, *F* a generalized derivation associated with a nonzero derivation *d* of *R*. We study the case when one of the following holds: (i) $F(x) \circ_m d(y) = (x \circ y)^n$ and (ii) $(F(x) \circ d(y))^m = (x \circ y)^n$, for all *x*, *y* in some appropriate subset of *R*. We also examine the case where *R* is a semiprime ring.

2010 Mathematics Subject Classification: 16W25; 16N60; 16U80

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In all that follows, unless specifically stated otherwise, R will be an associative ring, Z(R) the center of R, Q its Martindale quotient ring and U its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [1], for the definitions and related properties of these objects). For any $x, y \in R$, the symbol [x, y] and $x \circ y$ stands for the commutator xy - yx and anti-commutator xy + yx, respec-

Peer review under responsibility of Egyptian Mathematical Society.

tively. Given $x, y \in R$, we set $x_{00}y = x, x_{01}y = x \circ y = xy + yx$, and inductively $x_{0m}y = (x_{0m-1}y) \circ y$ for m > 1. Recall that a ring *R* is prime if $xRy = \{0\}$ implies either x = 0 or y = 0, and *R* is semiprime if $xRx = \{0\}$ implies x = 0. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + yd(x)holds for all $x, y \in R$. In particular *d* is an inner derivation induced by an element $q \in R$, if d(x) = [q, x] holds for all $x \in R$. If *R* is a ring and $S \subseteq R$, a mapping $f : R \to R$ is called strong commutativity-preserving (scp) on *S* if [f(x), f(y)] = [x, y] for all $x, y \in S$.

Many results in the literature indicate that the global structure of a ring R is often tightly connected to the behavior of additive mappings defined on R. Derivations with certain properties investigated in various papers (see for Refs. [2–4]). Starting from these results, many authors studied generalized derivations in the context of prime and semiprime rings. By a generalized inner derivation on R, one usually means an additive mapping $F : R \rightarrow R$ if F(x) = ax + xb for fixed $a, b \in R$. For such a mapping F, it is easy to see that F(xy) = F(x)y +

S1110-256X(15)00009-7 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2014.12.011

^{*} Corresponding author.

E-mail addresses: rehman100@gmail.com (N.u. Rehman), arifraza03@gmail.com (M. Arif Raza), tarannumdlw@gmail.com (T. Bano).

 $x[y, b] = F(x)y + xI_b(y)$. This observation leads to the definition given in [5]: an additive mapping $F : R \to R$ is called generalized derivation associated with a derivation d if F(xy) = F(x)y + xd(y) for all $x, y \in R$. Familiar examples of generalized derivations are derivations and generalized inner derivations, and the latter includes left multipliers (i.e., an additive mapping f(xy) = f(x)y for all $x, y \in R$). Since the sum of two generalized derivations is a generalized derivation, every map of the form F(x) = cx + d(x) is a generalized derivation, where c is a fixed element of R and d is a derivation of R.

In [6], Lee extended the definition of a generalized derivation as follows: by a generalized derivation we mean an additive mapping $F: I \to U$ such that F(xy) = F(x)y + xd(y) holds for all $x, y \in I$, where I is a dense right ideal of R and d is a derivation from I into U. Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation on U, and thus all generalized derivations of R will be implicitly assumed to be defined on the derivation F on dense right ideal of R can be uniquely extended to U and assumes the form F(x) = ax + d(x) for some $a \in U$ and a derivation d on U (see Theorem 3, in [6]). More related results about generalized derivations can be found [7,8].

During the past few decades, there has been an ongoing interest concerning the relationship between the commutativity of a ring and the existence of certain specific types of derivations (see [9], where further references can be found). In [9], Ashraf and Rehman prove that if R is a prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d(x \circ y) = x \circ y$ for all $x, y \in I$, then *R* is commutative. In [10], Argaç and Inceboz generalized the above result as following: Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer, if R admits a nonzero derivation d with the property $(d(x \circ y))^n = x \circ y$ for all $x, y \in I$, then R is commutative. In [8, Theorem 2.3], Quadri et al., discussed the commutativity of prime rings with generalized derivations. More precisely, Quadri et al., prove that if R is a prime ring, I a nonzero ideal of R and F a generalized derivation associated with a nonzero derivation d such that $F(x \circ y) = x \circ y$ for all $x, y \in I$, then R is commutative. In 2012 Huang [11], generalized the result obtained by Quadri et al., and he proved that if R is a prime ring, I a nonzero ideal of R, n a fixed positive integer and F a generalized derivation associated with a nonzero derivation d such that $(F(x \circ y))^n = x \circ y$ for all $x, y \in I$, then R is commutative.

In 1994 Bell and Daif [12], initiated the study of strong commutativity-preserving maps and prove that a nonzero right ideal *I* of a semiprime ring is central if *R* admits a derivation which is scp on *I*. In 2002 Ashraf and Rehman [9], prove that if *R* is a 2-torsion free prime ring, *I* is a nonzero ideal of *R* and *d* is a nonzero derivation of *R* such that $d(x) \circ d(y) = x \circ y$ for all $x, y \in I$, then *R* is commutative. The present paper is motivated by the previous results and we here generalized the result obtained in [9,11]. Moreover, we continue this line of investigation by examining what happens if a ring *R* satisfies the identity.

(i)
$$(F(x) \circ d(y))^m = (x \circ y)^n$$
 for all $x, y \in I$.

(ii)
$$F(x) \circ_m d(y) = (x \circ y)^n$$
 for all $x, y \in I$.

We obtain some analogous results for semiprime rings in the case I = R.

Explicitly we shall prove the following theorems:

Theorem 1.1. Let *R* be a prime ring, *I* a nonzero ideal of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation *d* such that $(F(x) \circ d(y))^m = (x \circ y)^n$ for all $x, y \in I$, then *R* is commutative.

Theorem 1.2. Let *R* be a prime ring, *I* a nonzero ideal of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation d such that $F(x)\circ_m d(y) = (x \circ y)^n$ for all $x, y \in I$, then *R* is commutative.

Theorem 1.3. Let *R* be a semiprime ring, *U* the left Utumi quotient ring of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation d such that $(F(x) \circ d(y))^m = (x \circ y)^n$ for all $x, y \in R$, then *R* is commutative.

Theorem 1.4. Let *R* be a semiprime ring, *U* the left Utumi quotient ring of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation *d* such that $F(x) \circ_m d(y) = (x \circ y)^n$ for all $x, y \in R$, then *R* is commutative.

2. The results in prime rings

We will make frequent use of the following result due to Kharchenko [13] (see also [14]):

Let *R* be a prime ring, *d* a nonzero derivation of *R* and *I* a nonzero two sided ideal of *R*. Let $f(x_1, \ldots x_n, d(x_1, \ldots x_n))$ be a differential identity in *I*, that is

$$f(r_1, \ldots, r_n, d(r_1), \ldots, d(r_n)) = 0$$
 for all $r_1, \ldots, r_n \in I$.

One of the following holds:

(1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists q ∈ Q such that d = ad(q) and d(x) = ad(q)(x) = [q, x], for all x ∈ R, and I satisfies the generalized polynomial identity

 $f(r_1, \ldots, r_n, [q, r_1], \ldots, [q, r_n]) = 0;$

(2) or, *I* satisfies the generalized polynomial identity

 $f(x_1,\ldots,x_n,y_1,\ldots,y_n)=0.$

Theorem 1.1. Let *R* be a prime ring, *I* a nonzero ideal of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation d such that $(F(x) \circ d(y))^m = (x \circ y)^n$ for all $x, y \in I$, then *R* is commutative.

Proof. If F = 0, then $(x \circ y)^n = 0$ for all $x, y \in I$, which can be rewritten as $(xy + yx)^n = 0$. If $char(R) \neq 2$, then $(2x^2)^n = 0$ for all $x \in I$. This is a contradiction by Xu [15]. If char(R) = 2, then $(xy + yx)^n = 0 = [x, y]^n$ for all $s, y \in I$. Thus by Herstein [16, Theorem 2], we have $I \subseteq Z(R)$, and so R is commutative by Mayne [17]. Hence, onward we will assume that $F \neq 0$ and $(F(x) \circ d(y))^m = (x \circ y)^n$ for all $x, y \in I$. By Lee [6, Theorem 3], every generalized derivation of R will be implicitly assumed to be defined on dense right ideal of R can be uniquely extended to U and assumes the form F(x) = ax + d(x) for some $a \in U$ and a derivation d on U. Therefore, I satisfies the polynomial identity

$$((ax + d(x)) \circ d(y))^m = (x \circ y)^n$$
 for all $x, y \in I$

Which is rewritten as, for all $x, y \in I$

 $((ax \circ d(y)) + (d(x) \circ d(y)))^m = (x \circ y)^n.$

In light of Kharchenko's theory [13], we divide the proof into two cases:

Case 1. If d is Q-outer, then I satisfies the polynomial identity

 $((ax \circ t) + (s \circ t))^m = (x \circ y)^n$, for all $x, y, s, t \in I$.

In particular for x = 0, I satisfies the blended component $(st + ts)^n = 0$ for all $s, t \in I$, then R is commutative, by using the argument presented above.

Case 2. Let *d* is *Q*-inner induced by an element $q \in Q$, that is, d(x) = [q, x] for all $x \in R$. Then for any $x, y \in I$,

$$((ax \circ [q, y]) + ([q, x] \circ [q, y]))^m = (x \circ y)^n.$$

By Chuang [18, Theorem 1], *I* and *Q* satisfy same generalized polynomial identities (GPIs), we have

$$((ax \circ [q, y]) + ([q, x] \circ [q, y]))^m = (x \circ y)^n$$
, for all $x, y \in Q$.

In case the center C of Q is infinite, we have

 $((ax \circ [q, y]) + ([q, x] \circ [q, y]))^m = (x \circ y)^n,$

for all $x, y \in Q \otimes_C \overline{C}$, where \overline{C} is algebraic closure of C. Since both Q and $Q \otimes_C \overline{C}$ are prime and centrally closed [19, Theorems 2.5 and 3.5], we may replace R by Q or $Q \otimes_C \overline{C}$ according to C is finite or infinite. Thus we may assume that R is centrally closed over C (i.e., RC = R) which is either finite or algebraically closed and

$$((ax \circ [q, y]) + ([q, x] \circ [q, y]))^m = (x \circ y)^n$$
 for all $x, y \in R$, (1)

By Martindale [20, Theorem 3], *RC* (and so *R*) is a primitive ring having nonzero socle *H* with \mathcal{D} as the associated division ring. Hence by Jacobson's theorem [21, p.75], *R* is isomorphic to a dense ring of linear transformations of some vector space \mathcal{V} over \mathcal{D} and *H* consists of the finite rank linear transformations in *R*. If \mathcal{V} is a finite dimensional over \mathcal{D} . Then the density of *R* on \mathcal{V} implies that $R \cong \mathcal{M}_k(\mathcal{D})$, where $k = \dim_{\mathcal{D}} \mathcal{V}$. Suppose that $\dim_{\mathcal{D}} \mathcal{V} \ge 2$, otherwise we are done.

Step 1. We want to show that v and qv are linearly \mathcal{D} -dependent for all $v \in \mathcal{V}$. If qv = 0 then $\{v, qv\}$ is linearly \mathcal{D} -dependent. Suppose on contrary that v and qv are linearly \mathcal{D} -independent for some $v \in \mathcal{D}$.

If $q^2v \notin Span_{\mathcal{D}}\{v, qv\}$ then $\{v, qv, q^2v\}$ are linearly \mathcal{D} independent. By the density of *R* there exist $x_0, y_0 \in R$ such that

$$x_0v = 0, \quad x_0qv = qv, \quad x_0q^2v = 0$$

 $y_0v = 0, \quad y_0qv = v, \quad y_0q^2v = v.$

The application of (1) implies that

 $v = ((ax_0 \circ [q, y_0]) + [q, x_0] \circ [q, y_0])^m v = (x_0y_0 + y_0x_0)^n$ v = 0, a contradiction.

If $q^2v \in Span_{\mathcal{D}}\{v, qv\}$ then $q^2v = v\alpha + qv\gamma$ for some $\alpha, 0 \neq \gamma \in \mathcal{D}$. In view of the density of *R*, there exist $x_0, y_0 \in R$ such that

$$x_0 v = 0, \quad x_0 q v = q v$$
$$y_0 v = 0, \quad y_0 q v = v.$$

It follows from the relation (1) that

$$0 = ((ax_0 \circ [q, y_0]) + [q, x_0] \circ [q, y_0])^m v = (x_0y_0 + y_0x_0)^n v$$

= $v\gamma^m \neq 0$,

and we arrive at a contradiction. So we conclude that *v* and *qv* are linearly \mathcal{D} -dependent for all $v \in \mathcal{V}$.

Step 2. We show here that there exists $\beta \in \mathcal{D}$ such that $qv = v\beta$, for any $v \in \mathcal{V}$. Note that the arguments in [22] are still valid in the present situation. For the sake of completeness and clearness we prefer to present it. In fact, choose $v, w \in \mathcal{V}$ linearly independent. By Step 1, there exist $\beta_v, \beta_w, \beta_{v+w} \in \mathcal{D}$ such that

$$qv = v\beta_v, qw = w\beta_w, q(v+w) = (v+w)\beta_{v+w}$$

Moreover,

$$v\beta_v + w\beta = (v+w)\beta_{v+w}$$

Hence

$$w(\beta_v - \beta_{v+w}) + w(\beta_w - \beta_{v+w}) = 0,$$

and because *v*, *w* are linearly \mathcal{D} -independent, we have $\beta_v = \beta_w = \beta_{v+w}$, that is, β does not depend on the choice of *v*. This completes the proof of Step 2.

Let now for $r \in R$, $v \in V$. By Step 2, $qv = v\alpha$, $r(qv) = r(v\alpha)$, and also $q(rv) = (rv)\alpha$. Thus 0 = [q, r]v, for any $v \in V$, that is [q, r]V = 0. Since V is a left faithful irreducible *R*-module, hence [q, r] = 0, for all $r \in R$, i.e., $q \in Z(R)$ and d = 0, which contradicts our hypothesis. This completes the proof of theorem. \Box

Theorem 1.2. Let *R* be a prime ring, *I* a nonzero ideal of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation d such that $F(x) \circ_m d(y) = (x \circ y)^n$ for all $x, y \in I$, then *R* is commutative.

Proof. If F = 0, then $(x \circ y)^n = 0$. Using the same argument presenting in Theorem 1.1 we have done. Now suppose that $F \neq 0$ and $F(x) \circ_m d(y) = (x \circ y)^n$ for all $x, y \in I$. By Lee [6, Theorem 3], F(x) = ax + d(x) for some $a \in U$ and a derivation d on U. This condition is a differential identity and therefore I satisfies

 $(ax + d(x)) \circ_m d(y) = (x \circ y)^n$ for all $x, y \in I$.

Which is rewritten as, for all $x, y \in I$

 $(ax \circ_m d(y)) + (d(x) \circ_m d(y)) = (x \circ y)^n.$

In light of Kharchenko's theory [13], either d = ad(q) is the inner derivation induced by an element $a \in Q$, the Martindale quotient ring *R*, or *I* satisfies the polynomial identity

 $(ax \circ_m t) + (s \circ_m t) = (x \circ y)^n$, for all $x, y, s, t \in I$.

In the latter case set t = 0, to obtain the identity $(xy + yx)^n = 0$ for all $x, y \in I$, and *R* is commutative by Theorem 1.1. Assume now that d = ad(q). Then,

 $(ax \circ_m [q, y]) + ([q, x] \circ_m [q, y]) = (x \circ y)^n,$

for all $x, y \in I$. As in the proof Theorem 1.1, we see that

$$(ax \circ_m[q, y]) + ([q, x] \circ_m[q, y]) = (x \circ y)^n \text{ for all } x, y \in R,$$
 (2)

where *R* is a primitive ring with \mathcal{D} as the associated division ring. If \mathcal{V} is finite dimensional over \mathcal{D} , then the density of *R* implies that $R \cong \mathcal{M}_k(\mathcal{D})$, where $k = \dim_{\mathcal{D}} \mathcal{V}$.

Suppose that $\dim_{\mathcal{D}} \mathcal{V} \ge 2$, otherwise we are done. We want to show that v and qv are linearly \mathcal{D} -dependent for all $v \in \mathcal{V}$. If qv = 0 then $\{v, qv\}$ is linearly \mathcal{D} -dependent. Suppose on contrary that v and qv are linearly \mathcal{D} -independent for some $v \in \mathcal{D}$.

If $q^2v \notin Span_{\mathcal{D}}\{v, qv\}$ then $\{v, qv, q^2v\}$ are linearly \mathcal{D} -independent. By the density of *R* there exist *x*, $y \in R$ such that

$$xv = 0, \quad xqv = qv, \quad xq^2v = 0$$
$$yv = 0, \quad yqv = v, \quad yq^2v = v.$$

The application of (2) implies that $v = (ax \circ_m [q, y])v + ([q, x] \circ_m [q, y])v = (xy + yx)^n v = 0$, and we arrive at a contradiction.

If $q^2v \in Span_{\mathcal{D}}\{v, qv\}$ then $q^2v = v\alpha + qv\gamma$ for some $\alpha, 0 \neq \gamma \in \mathcal{D}$. In view of the density of *R*, there exist $x, y \in R$ such that

$$xv = 0, \quad xqv = qv$$
$$yv = 0, \quad yqv = v.$$

It follows from the relation (2) that

$$0 = (ax \circ_m[q, y]) + ([q, x] \circ_m[q, y])v = (xy + yx)^n v$$

= $(-1)^{m+1} 2^{m-1} vy \neq 0,$

and we arrive at a contradiction. we conclude that *v* and *qv* are linearly \mathcal{D} -dependent for all $v \in \mathcal{V}$. Reasoning as in the proof of Theorem 1.1, we get required result. \Box

The following example demonstrates that R to be prime is essential in the hypothesis.

Example 2.1. Let *S* be any ring.

(i) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in S \right\}$$
 and $I = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in S \right\}$. Then R is a ring under usual

operations and *I* is a nonzero ideal of *R*. We define a map $F : R \to R$ by $F(x) = 2e_{11}x - xe_{11}$. Then it is easy to see that *F* is a generalized derivation associated with a nonzero derivation $d(x) = e_{11}x - xe_{11}$. It is straightforward to check that for all positive integers m, n, F satisfies the properties, $(1)(F(x) \circ d(y))^m = (x \circ y)^n$ $(2)F(x) \circ_m d(y) = (x \circ y)^n$ for $x, y \in I$, however *R* is not commutative.

(ii) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \right\}$$
 and $I = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \right\}$

$$\left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} : a \in \mathbb{Z}_2 \right\}$$
 be a nonzero ideal of R . De-

fine a map $F: R \to R$ by $F(x) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. It is easy to see that F is a generalized derivation associated with a nonzero derivation $d(x) = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$. It is straightforward to check that F satisfies the properties, $(1)(F(x) \circ d(y))^m = (x \circ y)^n \quad (2)F(x) \circ_m d(y) = (x \circ y)^n$ for $x, y \in I$, but R is not commutative.

3. The results in semiprime rings

In all that follows, R will be semiprime ring, U is the left Utumi quotient ring of R. In order to prove the main result of this section we will make use of the following facts:

Fact 3.1 ([1, Proposition 2.5.1]). Any derivation of a semiprime ring R can be uniquely extended to a derivation of its left Utumi quotient ring U, and so any derivation of R can be defined on the whole U.

Fact 3.2 ([23, p. 38]). *If R is semiprime then so is its left Utumi quotient ring. The extended centroid C of a semiprime ring coincides with the center of its left Utumi quotient ring.*

Fact 3.3 ([23, p. 42]). Let B be the set of all the idempotents in C, the extended centroid of R. Assume R is a B-algebra orthogonal complete. For any maximal ideal P of B, PR forms a minimal prime ideal of R, which is invariant under any nonzero derivation of R.

We will prove the following:

Theorem 1.3. Let *R* be a semiprime ring, *U* the left Utumi quotient ring of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation d such that $(F(x) \circ d(y))^m = (x \circ y)^n$ for all $x, y \in R$, then *R* is commutative.

Proof. Since *R* is semiprime and *F* is a generalized derivation of *R*, by Lee [6, Theorem 3], F(x) = ax + d(x) for some $a \in U$ and a derivation *d* on *U*. We are given that

$$((ax \circ d(y)) + (d(x) \circ d(y)))^m = (x \circ y)^n,$$

for all $x, y \in R$. By Fact 3.2, Z(U) = C, the extended centroid of R, and, by Fact 3.1, the derivation d can be uniquely extended on U. By Lee [14], R and U satisfy the same differential identities. Then

$$((ax \circ d(y)) + (d(x) \circ d(y)))^m = (x \circ y)^n$$

for all $x, y \in U$. Let *B* be the complete Boolean algebra of idempotents in *C* and *M* be any maximal ideal of *B*. Since *U* is a *B*-algebra orthogonal complete [23, p.42], by Fact 3.3, *MU* is a prime ideal of *U*, which is *d*-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by d on \overline{U} , i.e., $\overline{d}(\overline{u}) = \overline{d(u)}$ for all $u \in U$. For any $\overline{x}, \overline{y} \in \overline{U}$,

$$\left((\overline{ax}\circ\overline{d}(\overline{y}))+(\overline{d}(\overline{x})\circ\overline{d}(\overline{y}))\right)^m=(\overline{x}\circ\overline{y})^n.$$

It is obvious that \overline{U} is prime. Therefore, by Theorem 1.1, we have either \overline{U} is commutative or $\overline{d} = 0$ in \overline{U} . This implies that, for any maximal ideal M of B, either $d(U) \subseteq MU$ or $[U, U] \subseteq MU$. In any case $d(U)[U, U] \subseteq MU$, for all M, where MU runs over all prime ideals of U. Therefore $d(U)[U, U] \subseteq \bigcap_M MU = 0$, we obtain d(U)[U, U] = 0. Therefore [U, U] = 0 since $\bigcap_M MU = 0$. In particular, R is commutative. This completes the proof of the theorem. \Box

Using arguments similar to those used in the proof of the above theorem, we may conclude with the following (we omit the proof brevity). We can prove. **Theorem 1.4.** Let *R* be a semiprime ring, *U* the left Utumi quotient ring of *R*, and *m*, *n* are fixed positive integers. If *R* admits a generalized derivation *F* associated with a nonzero derivation *d* such that $F(x)\circ_m d(y) = (x \circ y)^n$ for all $x, y \in R$, then *R* is commutative.

Acknowledgment

The authors are greatly indebted to the referee for his/her several useful suggestions and valuable comments.

References

- K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker, New York, 1996 p. 196.
- [2] H.E. Bell, M.N. Daif, On derivations and commutativity in prime rings, Acta Math. Hung. 66 (1995) 337–343.
- [3] M.N. Daif, H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992) 205–206.
- [4] E.C. Posner, Derivations in prime rings, Proc. Am. Math. Soc. 8 (1958) 1093–1100.
- [5] M. Bresfir, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991) 89–93.
- [6] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (8) (1998) 4057–4073.
- [7] V. De Filippis, Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45 (2008) 621–629.
- [8] M.A. Quadri, M.S. Khan, N. Rehman, Generalized derivations and commutativity of prime rings, Ind. J. Pure Appl. Math. 34 (98) (2003) 1393–1396.

- [9] M. Ashraf, N. Rehman, On commutativity of rings with derivations, Results Math. 42 (1–2) (2002) 3–8.
- [10] N. Argaç, H.G. Inceboz, Derivation of prime and semiprime rings, J. Korean Math. Soc. 46 (5) (2009) 997–1005.
- [11] S. Huang, Generalized derivations of prime and semiprime rings, Taiwan. J. Math. 16 (2) (2012) 771–776.
- [12] H.E. Bell, M.N. Daif, On commutativity and strong commutativity-preserving maps, Can. Math. Bull. 37 (1994) 443–447.
- [13] V.K. Kharchenko, Differential identities of prime rings, Algebra Logic 17 (1979) 155–168.
- [14] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992) 27–38.
- [15] X.W. Xu, The Power Values Properties of Generalized Derivations, Doctor Thesis of Jilin University, Changchun, 2006.
- [16] I.N. Herstein, Center-like elements in prime rings, J. Algebra 60 (1979) 567–574.
- [17] J.H. Mayne, Centralizing mappings of prime rings, Can. Math. Bull. 27 (1) (1984) 122–126.
- [18] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Am. Math. Soc. 103 (1988) 723–728.
- [19] T.S. Erickson, W. Martindale III, J.M. Osborn, Prime nonassociative algebras, Pac. J. Math. 60 (1975) 49–63.
- [20] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576–584.
- [21] N. Jacobson, Structure of Rings, Colloquium Publications, vol. 37, Amer. Math. Soc. VII, Provindence, RI, 1956.
- [22] L. Carini, V.D. Filippis, Commutators with power central values on a Lie ideal, Pac. J. Math. 193 (2) (2000) 269–278.
- [23] C.L. Chuang, Hypercentral derivations, J. Algebra 166 (1994) 34–71.