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1. Introduction 

In all that follows, unless specifically stated otherwise, R will
be an associative ring, Z(R ) the center of R, Q its Martindale
quotient ring and U its Utumi quotient ring. The center of U ,
denoted by C , is called the extended centroid of R (we refer the
reader to [1] , for the definitions and related properties of these
objects). For any x, y ∈ R , the symbol [ x, y ] and x ◦ y stands for
the commutator xy − yx and anti-commutator xy + yx , respec-
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tively. Given x, y ∈ R , we set x ◦0 y = x , x ◦1 y = x ◦ y = xy + yx ,
and inductively x ◦m 

y = (x ◦m −1 y ) ◦ y for m > 1 . Recall that a
ring R is prime if xRy = { 0 } implies either x = 0 or y = 0 , and
R is semiprime if xRx = { 0 } implies x = 0 . An additive map-
ping d : R → R is called a derivation if d ( xy ) = d (x ) y + yd (x )

holds for all x, y ∈ R . In particular d is an inner derivation in-
duced by an element q ∈ R , if d (x ) = [ q, x ] holds for all x ∈ R .
If R is a ring and S ⊆ R , a mapping f : R → R is called strong
commutativity-preserving (scp) on S if [ f (x ) , f (y )] = [ x, y ] for
all x, y ∈ S. 

Many results in the literature indicate that the global struc-
ture of a ring R is often tightly connected to the behavior of
additive mappings defined on R . Derivations with certain prop-
erties investigated in various papers (see for Refs. [2–4] ). Start-
ing from these results, many authors studied generalized deriva-
tions in the context of prime and semiprime rings. By a gen-
eralized inner derivation on R , one usually means an addi-
tive mapping F : R → R if F (x ) = ax + xb for fixed a, b ∈ R .
For such a mapping F , it is easy to see that F ( xy ) = F (x ) y +
oduction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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 [ y, b] = F (x ) y + xI b (y ) . This observation leads to the defini-
ion given in [5] : an additive mapping F : R → R is called gen-
ralized derivation associated with a derivation d if F ( xy ) =
 (x ) y + xd (y ) for all x, y ∈ R . Familiar examples of general-
zed derivations are derivations and generalized inner deriva- 
ions, and the latter includes left multipliers (i.e., an additive 
apping f ( xy ) = f (x ) y for all x, y ∈ R ). Since the sum of two

eneralized derivations is a generalized derivation, every map of 
he form F (x ) = cx + d (x ) is a generalized derivation, where c
s a fixed element of R and d is a derivation of R . 

In [6] , Lee extended the definition of a generalized deriva- 
ion as follows: by a generalized derivation we mean an additive 
apping F : I → U such that F ( xy ) = F (x ) y + xd (y ) holds

or all x, y ∈ I , where I is a dense right ideal of R and d is a
erivation from I into U . Moreover, Lee also proved that every
eneralized derivation can be uniquely extended to a general- 
zed derivation on U , and thus all generalized derivations of R
ill be implicitly assumed to be defined on the derivation F on
ense right ideal of R can be uniquely extended to U and as-
umes the form F (x ) = ax + d (x ) for some a ∈ U and a deriva-
ion d on U (see Theorem 3, in [6] ). More related results about
eneralized derivations can be found [7,8] . 

During the past few decades, there has been an ongoing in- 
erest concerning the relationship between the commutativity 
f a ring and the existence of certain specific types of deriva-
ions (see [9] , where further references can be found). In [9] ,
shraf and Rehman prove that if R is a prime ring, I is a
onzero ideal of R and d is a nonzero derivation of R such that
(x ◦ y ) = x ◦ y for all x, y ∈ I , then R is commutative. In [10] ,
rgaç and Inceboz generalized the above result as following: 
et R be a prime ring, I a nonzero ideal of R and n a fixed
ositive integer, if R admits a nonzero derivation d with the 
roperty (d (x ◦ y )) n = x ◦ y for all x, y ∈ I , then R is commu-
ative. In [8, Theorem 2.3] , Quadri et al., discussed the com-
utativity of prime rings with generalized derivations. More 

recisely, Quadri et al., prove that if R is a prime ring, I a
onzero ideal of R and F a generalized derivation associated 

ith a nonzero derivation d such that F (x ◦ y ) = x ◦ y for all
, y ∈ I , then R is commutative. In 2012 Huang [11] , general-

zed the result obtained by Quadri et al., and he proved that if R
s a prime ring, I a nonzero ideal of R, n a fixed positive integer
nd F a generalized derivation associated with a nonzero deriva- 
ion d such that (F (x ◦ y )) n = x ◦ y for all x, y ∈ I , then R is
ommutative. 

In 1994 Bell and Daif [12] , initiated the study of strong
ommutativity-preserving maps and prove that a nonzero right 
deal I of a semiprime ring is central if R admits a derivation
hich is scp on I . In 2002 Ashraf and Rehman [9] , prove that

f R is a 2-torsion free prime ring, I is a nonzero ideal of R and
 is a nonzero derivation of R such that d (x ) ◦ d (y ) = x ◦ y for
ll x, y ∈ I , then R is commutative. The present paper is mo-
ivated by the previous results and we here generalized the re- 
ult obtained in [9,11] . Moreover, we continue this line of in-
estigation by examining what happens if a ring R satisfies the 
dentity. 

(i) (F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ I . 
(ii) F (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ I . 

We obtain some analogous results for semiprime rings in the 
ase I = R . 

Explicitly we shall prove the following theorems: 
heorem 1.1. Let R be a prime ring, I a nonzero ideal of R,
nd m, n are fixed positive integers. If R admits a generalized
erivation F associated with a nonzero derivation d such that 
F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ I, then R is commutative.

heorem 1.2. Let R be a prime ring, I a nonzero ideal of R,
nd m, n are fixed positive integers. If R admits a generalized
erivation F associated with a nonzero derivation d such that 
 (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ I, then R is commutative. 

heorem 1.3. Let R be a semiprime ring, U the left Utumi quo-
ient ring of R, and m, n are fixed positive integers. If R admits
 generalized derivation F associated with a nonzero derivation 
 such that (F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ R , then R is
ommutative. 

heorem 1.4. Let R be a semiprime ring, U the left Utumi quo-
ient ring of R, and m, n are fixed positive integers. If R admits
 generalized derivation F associated with a nonzero derivation d 
uch that F (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ R , then R is com-
utative. 

. The results in prime rings 

e will make frequent use of the following result due to
harchenko [13] (see also [14] ): 

Let R be a prime ring, d a nonzero derivation of R and I a
onzero two sided ideal of R . Let f (x 1 , . . . x n , d (x 1 , . . . x n )) be
 differential identity in I , that is 

f (r 1 , . . . r n , d (r 1 ) , . . . , d (r n )) = 0 for all r 1 , . . . , r n ∈ I . 

ne of the following holds: 

1) Either d is an inner derivation in Q , the Martindale quo-
tient ring of R , in the sense that there exists q ∈ Q such that
d = ad (q ) and d (x ) = ad (q )(x ) = [ q, x ] , for all x ∈ R , and I
satisfies the generalized polynomial identity 

f (r 1 , . . . , r n , [ q, r 1 ] , . . . , [ q, r n ]) = 0 ; 

2) or, I satisfies the generalized polynomial identity 

f (x 1 , . . . , x n , y 1 , . . . , y n ) = 0 . 

heorem 1.1. Let R be a prime ring, I a nonzero ideal of R,
nd m, n are fixed positive integers. If R admits a generalized
erivation F associated with a nonzero derivation d such that 
F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ I, then R is commutative.

roof. If F = 0 , then (x ◦ y ) n = 0 for all x, y ∈ I , which can be
ewritten as ( xy + yx ) n = 0 . If char (R ) � = 2 , then (2 x 

2 ) 
n = 0

or all x ∈ I . This is a contradiction by Xu [15] . If char (R ) = 2 ,
hen ( xy + yx ) n = 0 = [ x, y ] n for all s, y ∈ I . Thus by Herstein
16, Theorem 2] , we have I ⊆ Z(R ) , and so R is commutative
y Mayne [17] . Hence, onward we will assume that F � = 0 and
F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ I . By Lee [6, Theorem
] , every generalized derivation of R will be implicitly assumed
o be defined on dense right ideal of R can be uniquely extended
o U and assumes the form F (x ) = ax + d (x ) for some a ∈ U 

nd a derivation d on U . Therefore, I satisfies the polynomial
dentity 

 ( ax + d (x )) ◦ d (y ) ) m = (x ◦ y ) n for all x, y ∈ I . 
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Which is rewritten as, for all x, y ∈ I

( ( ax ◦ d (y )) + (d (x ) ◦ d (y )) ) m = (x ◦ y ) n . 

In light of Kharchenko’s theory [13] , we divide the proof into
two cases: 

Case 1. If d is Q -outer, then I satisfies the polynomial iden-
tity 
( ( ax ◦ t) + (s ◦ t) ) m = (x ◦ y ) n , for all x, y, s, t ∈ I . 

In particular for x = 0 , I satisfies the blended component
( st + ts ) n = 0 for all s, t ∈ I , then R is commutative, by using
the argument presented above. 

Case 2. Let d is Q -inner induced by an element q ∈ Q , that
is, d (x ) = [ q, x ] for all x ∈ R . Then for any x, y ∈ I , 

( ( ax ◦ [ q, y ]) + ([ q, x ] ◦ [ q, y ]) ) m = (x ◦ y ) n . 

By Chuang [18, Theorem 1] , I and Q satisfy same generalized
polynomial identities (GPIs), we have 

( ( ax ◦ [ q, y ]) + ([ q, x ] ◦ [ q, y ]) ) m = (x ◦ y ) n , for all x, y ∈ Q . 

In case the center C of Q is infinite, we have 

( ( ax ◦ [ q, y ]) + ([ q, x ] ◦ [ q, y ]) ) m = (x ◦ y ) n , 

for all x, y ∈ Q �C C , where C is algebraic closure of C . Since
both Q and Q �C C are prime and centrally closed [19, Theo-
rems 2.5 and 3.5] , we may replace R by Q or Q �C C according
to C is finite or infinite. Thus we may assume that R is cen-
trally closed over C (i.e., RC = R ) which is either finite or alge-
braically closed and 

( ( ax ◦ [ q, y ]) + ([ q, x ] ◦ [ q, y ]) ) m = (x ◦ y ) n for all x, y ∈ R, (1)

By Martindale [20, Theorem 3] , RC (and so R ) is a primitive
ring having nonzero socle H with D as the associated division
ring. Hence by Jacobson’s theorem [21, p.75] , R is isomorphic
to a dense ring of linear transformations of some vector space V
over D and H consists of the finite rank linear transformations
in R . If V is a finite dimensional over D. Then the density of R
on V implies that R 

∼= 

M k (D) , where k = dim D V . Suppose that
dim D V ≥ 2 , otherwise we are done. 

Step 1. We want to show that v and qv are linearly D-
dependent for all v ∈ V . If qv = 0 then { v, qv } is linearly D-
dependent. Suppose on contrary that v and qv are linearly D-
independent for some v ∈ D. 

If q 2 v / ∈ Span D { v, qv } then { v, qv , q 2 v } are linearly D-
independent. By the density of R there exist x 0 , y 0 ∈ R such that 

x 0 v = 0 , x 0 qv = qv , x 0 q 2 v = 0 

y 0 v = 0 , y 0 qv = v, y 0 q 2 v = v . 

The application of (1) implies that 

v = (( ax 0 ◦ [ q, y 0 ]) + [ q, x 0 ] ◦ [ q, y 0 ]) m v = (x 0 y 0 + y 0 x 0 ) 
n 

v = 0 , a contradiction. 

If q 2 v ∈ Span D { v, qv } then q 2 v = vα + qv γ for some α, 0 � = γ ∈
D. In view of the density of R , there exist x 0 , y 0 ∈ R such that 

x 0 v = 0 , x 0 qv = qv 

y 0 v = 0 , y 0 qv = v . 
It follows from the relation (1) that 

0 = (( ax 0 ◦ [ q, y 0 ]) + [ q, x 0 ] ◦ [ q, y 0 ]) m v = (x 0 y 0 + y 0 x 0 ) 
n v 

= vγ m � = 0 , 
and we arrive at a contradiction. So we conclude that v and qv
are linearly D-dependent for all v ∈ V . 

Step 2. We show here that there exists β ∈ D such that
qv = vβ, for any v ∈ V . Note that the arguments in [22] are still
valid in the present situation. For the sake of completeness and
clearness we prefer to present it. In fact, choose v, w ∈ V linearly
independent. By Step 1, there exist βv , βw , βv + w ∈ D such that 

qv = vβv , qw = wβw , q (v + w ) = (v + w ) βv + w 

Moreover, 

vβv + wβ = (v + w ) βv + w . 

Hence 

v (βv − βv + w ) + w (βw − βv + w ) = 0 , 

and because v, w are linearly D-independent, we have βv = βw =
βv + w , that is, β does not depend on the choice of v . This com-
pletes the proof of Step 2. 

Let now for r ∈ R, v ∈ V . By Step 2, qv = vα, r ( qv ) = r (vα) ,
and also q ( rv ) = ( rv ) α. Thus 0 = [ q, r ] v , for any v ∈ V , that is
[ q, r ] V = 0 . Since V is a left faithful irreducible R -module, hence
[ q, r ] = 0 , for all r ∈ R , i.e., q ∈ Z(R ) and d = 0 , which contra-
dicts our hypothesis. This completes the proof of theorem. �

Theorem 1.2. Let R be a prime ring, I a nonzero ideal of R,
and m, n are fixed positive integers. If R admits a generalized
derivation F associated with a nonzero derivation d such that
F (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ I, then R is commutative. 

Proof. If F = 0 , then (x ◦ y ) n = 0 . Using the same argument
presenting in Theorem 1.1 we have done. Now suppose that
F � = 0 and F (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ I . By Lee [6,
Theorem 3] , F (x ) = ax + d (x ) for some a ∈ U and a derivation
d on U . This condition is a differential identity and therefore I
satisfies 

( ax + d (x )) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ I . 

Which is rewritten as, for all x, y ∈ I

( ax ◦m 

d (y )) + (d (x ) ◦m 

d (y )) = (x ◦ y ) n . 

In light of Kharchenko’s theory [13] , either d = ad (q ) is the
inner derivation induced by an element a ∈ Q , the Martindale
quotient ring R , or I satisfies the polynomial identity 

( ax ◦m 

t) + (s ◦m 

t) = (x ◦ y ) n , for all x, y, s, t ∈ I . 

In the latter case set t = 0 , to obtain the identity ( xy + yx ) n = 0
for all x, y ∈ I , and R is commutative by Theorem 1.1 . Assume
now that d = ad (q ) . Then, 

( ax ◦m 

[ q, y ]) + ([ q, x ] ◦m 

[ q, y ]) = (x ◦ y ) n , 

for all x, y ∈ I . As in the proof Theorem 1.1 , we see that 

( ax ◦m 

[ q, y ]) + ([ q, x ] ◦m 

[ q, y ]) = (x ◦ y ) n for all x, y ∈ R, (2)
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here R is a primitive ring with D as the associated division 

ing. If V is finite dimensional over D, then the density of R
mplies that R 

∼= 

M k (D) , where k = dim D V . 
Suppose that dim D V ≥ 2 , otherwise we are done. We want 

o show that v and qv are linearly D-dependent for all v ∈ V .
f qv = 0 then { v, qv } is linearly D-dependent. Suppose on con-
rary that v and qv are linearly D-independent for some v ∈ D. 

If q 2 v / ∈ Span D { v, qv } then { v, qv , q 2 v } are linearly D-
ndependent. By the density of R there exist x, y ∈ R such that 

xv = 0 , xqv = qv , xq 2 v = 0 

yv = 0 , yqv = v, yq 2 v = v . 

he application of (2) implies that v = ( ax ◦m 

[ q, y ]) v +
[ q, x ] ◦m 

[ q, y ]) v = ( xy + yx ) n v = 0 , and we arrive at a contra-
iction. 

If q 2 v ∈ Span D { v, qv } then q 2 v = vα + qv γ for some α, 0 � =
γ ∈ D. In view of the density of R , there exist x, y ∈ R such
hat 

xv = 0 , xqv = qv 

yv = 0 , yqv = v . 

t follows from the relation (2) that 

 = ( ax ◦m 

[ q, y ]) + ([ q, x ] ◦m 

[ q, y ]) v = ( xy + yx ) n v 

= (−1) m +1 2 m −1 vγ � = 0 , 

nd we arrive at a contradiction. we conclude that v and qv are
inearly D-dependent for all v ∈ V . Reasoning as in the proof of
heorem 1.1 , we get required result. �

The following example demonstrates that R to be prime is 
ssential in the hypothesis. 

xample 2.1. Let S be any ring. 

(i) Let R = 

{ ( 

a b 

0 0 

) 

: a, b ∈ S 

} 

and I = { ( 

0 a 

0 0 

) 

: a ∈ S 

} 

. Then R is a ring under usual 

operations and I is a nonzero ideal of R . We define a
map F : R → R by F (x ) = 2 e 11 x − xe 11 . Then it is easy
to see that F is a generalized derivation associated with 

a nonzero derivation d (x ) = e 11 x − xe 11 . It is straight-
forward to check that for all positive integers m, n, F 
satisfies the properties, (1) (F (x ) ◦ d (y )) m = ( x ◦ y ) n 

(2) F (x ) ◦m 

d (y ) = (x ◦ y ) n for x, y ∈ I , however R is not
commutative. 

(ii) Let R = 

{ ( 

a b 

0 c 

) 

: a, b, c ∈ Z 2 

} 

and I = { ( 

0 a 

0 0 

) 

: a ∈ Z 2 

} 

be a nonzero ideal of R . De- 

fine a map F : R → R by F (x ) = 

( 

a 0 

0 0 

) 

. It is easy

to see that F is a generalized derivation associated 

with a nonzero derivation d (x ) = 

( 

0 b 

0 0 

) 

. It is 

straightforward to check that F satisfies the properties, 
(1) (F (x ) ◦ d (y )) m = ( x ◦ y ) n ( 2) F ( x ) ◦m 

d ( y ) = (x ◦ y ) n 
for x, y ∈ I , but R is not commutative. t
. The results in semiprime rings 

n all that follows, R will be semiprime ring, U is the left Utumi
uotient ring of R . In order to prove the main result of this
ection we will make use of the following facts: 

act 3.1 ( [1, Proposition 2.5.1] ) . Any derivation of a semiprime
ing R can be uniquely extended to a derivation of its left Utumi
uotient ring U, and so any derivation of R can be defined on the
hole U. 

act 3.2 ( [23, p. 38] ) . If R is semiprime then so is its left Utumi
uotient ring. The extended centroid C of a semiprime ring coin-
ides with the center of its left Utumi quotient ring. 

act 3.3 ( [23, p. 42] ) . Let B be the set of all the idempotents in C,
he extended centroid of R. Assume R is a B-algebra orthogonal
omplete. For any maximal ideal P of B, PR forms a minimal
rime ideal of R, which is invariant under any nonzero derivation
f R. 

We will prove the following: 

heorem 1.3. Let R be a semiprime ring, U the left Utumi quo-
ient ring of R, and m, n are fixed positive integers. If R admits
 generalized derivation F associated with a nonzero derivation 
 such that (F (x ) ◦ d (y )) m = (x ◦ y ) n for all x, y ∈ R , then R is
ommutative. 

roof. Since R is semiprime and F is a generalized derivation
f R , by Lee [6, Theorem 3] , F (x ) = ax + d (x ) for some a ∈ U 

nd a derivation d on U . We are given that 

 ( ax ◦ d (y )) + (d (x ) ◦ d (y )) ) m = (x ◦ y ) n , 

or all x, y ∈ R . By Fact 3.2 , Z(U ) = C, the extended centroid
f R , and, by Fact 3.1 , the derivation d can be uniquely extended
n U . By Lee [14] , R and U satisfy the same differential identi-
ies. Then 

 ( ax ◦ d (y )) + (d (x ) ◦ d (y )) ) m = (x ◦ y ) n , 

or all x, y ∈ U . Let B be the complete Boolean algebra of idem-
otents in C and M be any maximal ideal of B . Since U is a
 -algebra orthogonal complete [23, p.42] , by Fact 3.3 , MU is
 prime ideal of U , which is d -invariant. Denote U = U/ MU 

nd d the derivation induced by d on U , i.e., d ( u ) = d (u ) for all
 ∈ U . For any x , y ∈ U , 

( a x ◦ d ( y )) + ( d ( x ) ◦ d ( y )) 
)m 

= ( x ◦ y ) n . 

t is obvious that U is prime. Therefore, by Theorem 1.1 , we
ave either U is commutative or d = 0 in U . This implies
hat, for any maximal ideal M of B , either d (U ) ⊆ MU or
 U, U ] ⊆ MU . In any case d (U )[ U, U ] ⊆ MU , for all M , where

U runs over all prime ideals of U . Therefore d (U )[ U, U ] ⊆
 

M 

MU = 0 , we obtain d (U )[ U, U ] = 0 . Therefore [ U, U ] = 0
ince 

⋂ 

M 

MU = 0 . In particular, R is commutative. This com-
letes the proof of the theorem. �

Using arguments similar to those used in the proof of the
bove theorem, we may conclude with the following (we omit 
he proof brevity). We can prove. 
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Theorem 1.4. Let R be a semiprime ring, U the left Utumi quo-
tient ring of R, and m, n are fixed positive integers. If R admits
a generalized derivation F associated with a nonzero derivation
d such that F (x ) ◦m 

d (y ) = (x ◦ y ) n for all x, y ∈ R , then R is
commutative. 
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