Journal of the Egyptian Mathematical Society (2012) 20, 172-178

Egyptian Mathematical Society

ﬁ"‘-,[,‘;l:':;;,'

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems

ORIGINAL ARTICLE

Direct and inverse theorems for Bernstein polynomials

with inner singularities

Wen-ming Lu !, Lin Zhang *

Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310037, PR China

Received 22 March 2012; revised 26 May 2012; accepted 14 August 2012

Available online 22 October 2012

KEYWORDS

Weighted approximation;
Bernstein polynomials;
Inner singularities

Abstract We introduce a new type of Bernstein polynomials, which can be used to approximate
the functions with inner singularities. The direct and inverse results of the weighted approximation
of this new type of combinations are obtained.

© 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.

1. Introduction

The set of all continuous functions, defined on the interval 7, is
denoted by C(I). For any f¢€ C([0,1]), the corresponding
Bernstein polynomials are defined as follows:

n k

B’i (f? X) = Zf(g)pmk (X)7
k=0

where

Pui(x) = (Z))/‘(l —x)"* k=0,1,2,...,n, x€0,1].

Let w(x) =|x—¢", 0< &< 1, a>0and Cy := {fe€ C([0,1]
\{¢&}) : lim,_:(wf)(x) = 0}. The norm in C; is defined by
flle, = /]l = supp<, < 1[(w/) (x)[. Define
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Wi ={fe Cy:f € 4.C((0,1), [wd’f"|| < oo},
W2 ={fcCy:f € A.C(0,1), |we*f"|| < oc}.

WA

For f € C;, the weighted modulus of smoothness is defined
by
wi(ﬁ 1), = sup sup |w(x)A2¢(X>f(x)\,

0<h<i0<x<1

where
/(%) = flx + hp(x)) = 2f(x) + flx — hep(x)),
and ¢(x) = v/x(1 = x), 6,(x) = (x) + -

Recently Felten showed the following two theorems in [1]:

Theorem A. Let ¢(x) = /x(1 — x) and let ¢:[0,1] - R, p#0
be an admissible step-weight function of the Ditzian—Totik
modulus of smoothness [4] such that ¢° and ¢°|¢* are concave.
Then, for f€ C[0,1] and 0 < o < 2,

B, A9l < of (£ 00,

Theorem B. Let ¢(x) = /x(1 — x) and let ¢:[0,1] - R, ¢ #0

be an admissible step-weight function of the Ditzian—Totik
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modulus of smoothness such that ¢° and @°|§° are concave.
Then, for f€ C[0,1] and 0 < o < 2,

1B,(f,x) — f(x)] = 0(('1*‘/2 %))

implies oy (f, 1) = O(r").

Approximation properties of Bernstein polynomials have
been studied very well [2-5]. In order to approximate the func-
tions with singularities, Della Vecchia et al. [3] introduced
some kinds of modified Bernstein polynomials. Throughout
the paper, C denotes a positive constant independent of n
and x, which may be different in different cases.

Let ¢: [0,1] > R, ¢ #0 be an admissible step-weight func-
tion of the Ditzian—Totik modulus of smoothness, that is, ¢
satisfies the following conditions:

(I) For every proper subinterval [a,b] [0, 1] there exists a
constant Cy = C(a,b) > 0 such that C7' < ¢(x) < C
for x € [a,b].

(I) There are two numbers (0) > 0 and (1) > 0 for which
xPO), as x — 0+,
¢(X)N{(1—x)ﬁ<l), asx— 1 —.

(X ~ Y means C 'Y < X < CYfor some ).
Combining conditions (I) and (IT) on ¢, we can deduce that

Cly(x) < ¢(x) < Chy(x), x€0,1],
where ¢(x) = x"O(1 — x)"D.

2. The main results

Let
10x° — 15x* +6x°, 0<x<1,
Y(x) =140, x <0,
1, x = 1.
Obviously,  is non-decreasing on the real axis,

Y € C((—o0, +00)), ¢¥(0) =0, i=0, 1, 2.
i = 1,2 and (1) = 1. Further, let

Y1) = 0,

CmE=2yn]  mé—m  [né4 /]
- n e n P n ’
(& +2v/n]
Xy =,
n
and
- X — X = X — X3
Yi(x) = lﬁ(}@ —X1>’ Ya(x) = lﬁ(m)
Consider
L X — X4 X — X
P(X) T X — X4 x| — x4f(x4)7

the linear function joining the points (x1,f{x;)) and (x4, f(x4)).
And let

F,(f,x) == F,(x)
= f)(1 = (x) + (X)) + 1 (x) (1 = 2 (x)) P().

From the above definitions it follows that

2
few,.

Sx), x € [0, x1] U [x4, 1],
g = 1T =TI £ BOP, €l
e P(x), X € [x2,x3],
P(x)(1 = Ya(x)) + Y2 (0)f(x), X € [x3,x4).

Evidently, F, is a positive linear polynomials which depends
on the functions values f(k/n), 0 < k/n < xp or x3 < k/n < 1, it
reproduces linear functions, and F, € C*([0,1]) provided
Now for every fe€ C; define the Bernstein type
polynomials

By(f.x) = By(F,(f), x

= 3 b a(
k/n€(0,x1]U[xg4,1]

4

SRy

k
> P, k )P (_>
\7<k/71<\'; n

k k k

w2 o) (-9() 0 ()G}
‘<|</\/n<‘<2 n n n
k k k

* 2 ) e () (1-0(5)) o ()1 <z -

2.1)

Obviously, B, is a positive linear polynomials, B,(f) is a

polynomial of degree at most n, it preserves linear functions,
and depends only on the function values f(k/n), k/n € [0, x,] U
[x3,1]. Now we state our main results as follows:

Theorem 1. If o > 0, for any f € Cy, we have

|wB,(N|| < Cn*||wf]. (2.2)
Theorem 2. For any « >0, min{f(0), (1)} > 1, 0<é<1,
we have
_ Cn|wf|l, f€ Cg,

— 2 os

w(x X)B (f, x)| < 7 X 2.3
| ( )¢ ( ) )1(/ )‘ {C||W¢2f”||7 fe Wi ( )
Theorem 3. For f€ Cy, 0 < &< 1, a>0, min{f(0),5(1)} =

1, g €(0,2), we have

1

W()Ifx) = Bulf )| = 0 (w49 (0)6,() ") = @i (110),
= 0(t™).

3. Lemmas

Lemma 1. [7] For any non-negative real u and v, we have

i (’;) h (1 - %) ﬂvpn,k(x) < Cx"(1—x)". (3.1)

k=1

Lemma 2. [3] For any o > 0, f€ Cy;, we have

IwB, (NIl < Clwl. (3:2)

Lemma 3. [6] Let min{(0), (1
t<x < 11—t we have

)} = 4 then for 0 < t < {and
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5ot 2
/ / 2 <x+2uk>du1 du, < CP7*(x). (3.3)
3/ k=1

Proof From the definition of d)(x) it is enough to prove (3.3)
for ¢ < x <4 since the proof for 1 < x < 1— ¢ is very similar.
Obviously, we have

/ / — dwduy < CPx
ﬁx+z“m

Therefore, by the Holder inequality, we have

/ / <x+ E uk>du1 du,
%
1
2/1 1
< C(16/7) / /1 L o

(x + Z/¢:1“k>

: 2p(0)
< C(16/7)70) =260 / duy du,
-3 X+Zk 1 Uk
< C(16/7)V x40 O

A

du, du,

Lemma 4 [3]. If'y € R, then

n

> Dk —nx! < Crigi(x). (3.4)

k=0

Lemma 5. Let Ay(x) = W(X)} e < yiPui(x). Then A,(x) <
S for0 < &< Iando > 0.

then the statement is trivial. Hence
x < 1 can be

Proof 2. If [x — ¢| < \/-,
assume 0 < x < &— w1 (the case g+ﬁ <
treated similarly). Then for a fixed x the maximum of p,, x(x)
is attained for k = k,, := [n& — \/n|. By using Stirling’s formula,
we get

() ixt(1 = 5"
PRV EE

< £ E kn l’l(l _ .X) n—ky
=y \k, n—k,
kn

C k, — nx k, — nx\ "%
-~ (1= 1+ .
N/ k, n—k,

Now from the inequalities

pn‘k,,('x) < C

k,,—nx:[né—\/ﬁ]—nx>n(ﬁ—x)—\/ﬁ—1 >

and

12

l—u< e, 14+u < e, u =0,

it follows that the second inequality is valid. To prove the first
one we consider the function A(u)=e** +u—1. Here
20)=0, Z(u) = —(14+u)e ™ +1, X(0) =0, 2"(u) = u(u+
Qe > 0. Hence

0, whence A(u) > 0 for u >

C
pn,kn(x) < %

k,—nx 1 /(k,—nx 2
xexp{kn{— s —5( k, ) +kn—nx}
C (k, — nx)* ()

N R 7 G T
\/ﬁexp{ % <e

Thus 4,(x) < C(& —x)% " An easy calculation
shows that here the maximum is attained when & — x :%
and the lemma follows. [

Lemma 6. For 0 < ¢ < 1, a, f > 0, we have

_ =
w(x) Yk =nxl"p(x) < CnTol(x). (35)
le—nl < Vi

Proof 3. By (3.4) and the Lemma 5, we have

-1 1
o

n
L1 _ n,
W7 9(x) Y pulx) > k= nxp,(x)
l—né|<v/n We—né|< i

< Cnﬁ%qa/f(x). O

Lemma 7. For any o >0, f€ W2, min{B(0),
have

B} > 4 we

w(x)|f(x) = P(f, x)

5 t
o < (2D Y G

Proof If x € [x1,x4], for any f € W2, we have

fox0) =) +£ () =)+ [ -

X1

F0) = 1) 4 () (s — x) + /"r(r X))

X4

6n(x)~\/iﬁ, n=12,....
So
F) - P < xl‘_“f;/ = )"0
+ w(x )" (2)|dt
=L+

Whence ¢ between x; and x, we have "“(‘[)" < '“‘ 4 then

5 < Cad e — )(x — ) / s

< () pwgrn < (2 gy

Analogously, we have

5 < c(j;(i)) gl
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Now the lemma follows from combining these results
together. [

Lemma 8. If f€ W;, min{B(0),p(1)} > 1, then

W’ || = O(llwg?s"[1)- (3.7)

Proof Again, it is sufficient to estimate (W F!)(x) for
X € [x3,x4], and the same as x € [x},x;]. For x € [x,x3],
F!(x) =0, while for x € [0,x;]U[x4,1], F,(x) =f(x). Thus
for x € [x3,x4], then F,(x) = P(x) + ¥ (x)(f(x) — P(x)) and

Fi() = mp" [ (x = x3)| (A1) = P(x))
+ 2ty [ (x = x3)| (1) = P())
0 [ = ) ()

= L(x)+ L(x)+ L(x).

From the proof of Lemma 7, we have

()67 (X)11 ()] = O(ng™ ()" [ (x = x3) | () (1) = P(x)))

o<n¢2<y> (2 i M'II)

= O(lwg’/"|).

For Ix3(x), it is obvious that

() (x)5(x)| = O(|[we™f"|)).

Finally

()¢ ()B(3)] = O (s (x)d* (Dl () ~ P (x)])

o(lwe’f'l). O

4. Proof of theorem
4.1. Proof of Theorem 1

Case 1. If f € Cy, when x € [L, 1 —1], by [2], we have
‘W B’(f; | S W ’Bn(f ‘

+w(x Zp,, ;
7, (’f) B »v<x><p*4<x>ip,,,k<x>

k=0
! <k) ‘
n

= A1+A2+A3. (41)

— nx|

x (k — nx)?

By (3.2), we have

Ai(x )—n(p x)w(x {B (f,x | < Cn2\|ﬂﬂ|. (4.2)
and
Ay = w(x)p~*(x) [Z k —nx ( > ’Pnk
k/ned
k
+ Z k — nx||P| - pmk(x) =0 + 0,.

X2 < k/n < x3 n

thereof A:=[0,x,] U [x3,1]. If £€ 4, when < C(1+n7f|

w(5)
k — nx|"), we have |k — né| > ‘/TZ, by (3.4), then

n

a1 < Cifllo™(x)Y_pus(x)lk = nx|[1 + -k — nx|’]

k=0
= Cllifllo™*(x)D_pai(x)lk —nx|
k=0
+ Cn A ifllo () D pax) ke — nx|
k=0

< Crito Cn?||f]].

S)If] + Crto ()] <

For g5, P is a linear function. We note |P(¥)| < max
(IP(x1)],|P(x4)]) := P(a). If x€[x;,x4], we have w(x) <
w(a). So, if x € [x1,x4], by (3.4), then

0 < Cw(@)P(a)p™*(x)D_pus(x)lk —nx| <

k=0

]l

If x ¢ [x1,x4], then w(a) > n3, by (3.5), we have
o < C(x)e*(x) Y [P@)]|(k —nx)|p,(x)

xy < k/n < x3

OO

xp < k/n < x3

< C”%HWJ(HQD7 |k - nx‘pn,k (X)

< Ccn?||wf].
So

A < Cr*||wf]. (4.3)
Similarly

As < Cr?||wf|. (4.4)

It follows from combining with (4.1)—(4.4) that the inequal-
ity is proved.

Case 2. When x € [0,
then

1] (The same as x € [1 —

L1]), by [4],

n—2
EZ(/; _nn_lz lz’ k/npn2k()
k=0

We have

[W()BL( )| < ()
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We can deal with it in accordance with Case 1, and prove it
immediately, then the theorem is done. [

4.2. Proof of Theorem 2

(1) We prove the first inequdlity of Theorem 2.
Case 1. If 0 < ¢(x) < =, by (2.2), we have

¢’ (x)
¢*(x)

w(x) ¢ (x)B, (. x)| = ¢*(x) - [w(x) B, (/, x)| < Cnllitf].

Case 2. 1f ¢(x) > 7=, by [4], we have

2

B(f) = Bi(Fox) = (03() D0t
x Z(v——) F (k)pnk( ) (0*(x) ' Qu(x,mn
< /o))"
So
[ (x) ¢ () BL(f, )| |
< cai () >3 [ () et
_ am)&(mg <<.02}Zx)> Hvzum .o % i z, (%‘) P (%)

xy < k/n < x3

where A:=[0, x,] U [x3, 1]. Working as in the proof of Theorem
1, We can get a; < Cn||wf||, 02 < Cn||wf||. By bringing these
facts together, we can immediately get the first inequality of
Theorem B.

(2) If f € W2, by (2.1), then

, n—2 — [k
RWEWBG] < Pr0P0 % K () )
k=0
n—3 [k
=) 03 B3 (5 e
k=1
+ 120§ (¥) | ATF(0) |, 20(%)
)| B D)p, 220
=L +5L+65
(4.5)
By [4],if 0 < k < n—2, we have
— (K e (k
‘A%F (n)' < Cn"/o F;’(Z—Fu) du, (4.6)
If £ = 0, we have
|R7E,0)] < C/Huﬁ"n’(u)!du, 4.7)
" 0

Similarly

'Z’; ("‘2)' < Cn! /llz(l—u)|7n’(u)|du. (4.8)

()

I < Cnw(x
(s
n

_ cm(xwf(x)k;A/O
e

+ Cnin(x) ¢ (x) Z /
Xy < k/n < x3 0
= T] + Tz.

By (4.6), then

/13

dup, ;. (x)

dupnflk (.X)

dupn—2,k(x)

where A4:=[0,x,] U [x3,1], P is a linear function. If k/n € 4,

w( /E/})'l) C( +n 2‘k—n‘€|

(3.1), (3.4) and (3.7), then

when we have |k —né| > 4, by

Ty < Cw(x)d* (x)||we’F| Zl’n 21 ()W (/)2 (ke /n)
k/neA
: x>Hw¢2F’IIZPn 2 () (1 73l = nx]”) ™ (k /)
< Clwd’Fyl| < Cllwg*f|.

Working as the Theorem 1, we can get

T, < Cllwe’/|.
So, we can get

I < C||we’f"||. (4.9)
By (3.7) and (4.7), we have

L < Cntn(x)¢?(x)(1 —x)"° /;u]f'n’(u)‘du
0

< Crt(x) ¢ (x)(1 x)"72||w¢2Fn’H/ﬁuﬂ”'(u)¢72(u)du
0

< Clwe’Fy|| < C|lwe’f]. (4.10)
Similarly
I < C||we’f"||. (4.11)

By bringing (4.5), (4.9)—(4.11) together, we can get the sec-
ond inequality of TheoremB. O

Corollary 1. For any oo > 0, 0 < A < 1, we have

() B/ Cn{max{n'~*,* "V} }|[f]|, fe Co,

e B3] < {CHIW Il rews,

(4.12)
4.3. Proof of Theorem 3
4.3.1. The direct theorem
We know

t

F(t) = F,(x) + F.()(t — x) + / (t — u)F!(u)du, (4.13)
B,(t—x,x) =0. (4.14)
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Accordmg to the definition of W2 > bY (4.13) and (4.14), for

any g € W , we have B,(g,x) = B,,(G,,(g) x), then
W(x)|Ga(x) = By(Gy, x)| = w(x)| Bu(Ra(Gy, 1, x), x) |, (4.15)
thereof Ry(G,, 1, x) = [1(t — u)G" (u)du.
x)}@,, (x) — B,,(@,,,x){
< CW nk /” ‘7 - ‘!Gﬂ |du
+ C(X)p, o (0 )/ u|Gl)(u)|du
0
1
+ Cw(x)p, ,(x )/ (1- u)|6::(u)}du =L +5L+1L.
(4.16)
If u between -and x, we have
k_ k_ k_ k_
li u| < Vi x|’ ’74 u} < n4 x|. (4.17)
w2 (u) wi(x) "t (u) ¢ (x)

By (3.4) and (4.17), then

n—1 k
I, < Cllwe*G" || (x ,”x/ﬂ;idu
< ARG L ) [
< c||w¢26"||w(x)§p (x) Loy, % Ty, %
n v nk . W‘Z(M) . ¢4(M)
n—1
< Cn?||we’G), ||</>’2(X)ZP,1,/((X) (k—nx)?
k=0
2
< n—l(p (X) W 26// < G
T o < 4 g |
— 5”(“‘() : = A2
=<(eot) 507G
(4.18)
For I,, when u between f; and x, we let k = 0, then ﬁ <
= and

w(x)?
I < R ||9(x)pa0(x) / v (u) > ()
0

< Clom)(1 =) ! (f’ H 76'G|

5 ) 1
C(qux) |w°G|. (4.19)
Similarly, we have
I < c( Ol ) 5G| (4.20)
Ving( ¢ '
By bringing (4.18)—(4.20), we have
5)[Go(x) — B Gy )| < ( ) 7e?C|.  (421)

By (3.6) and (4.21), when g € Wz, then

W(x)‘g(x) - En(g7 X)}

7x)|g(x)fG |+w |G,1 (g,x) — B.(g x)|

€ WIE0) ~ Ple 0 + ()Y )
(4.22)

< (e

For f'€ C;, we choose proper g € W2, by (3.2) and (4.22),
then

OO 0) =By 0)] < wOIA) — g00)|+ w0 [By(f— )]
+w(x)|g(x) — B,(g, x)|
c<||w<f—g>||+(jﬁ ) L5 ”II>

()
(’\ﬂﬁ( >>,‘

4.3.2. The inverse theorem
The main-part K-functional is given by

Kyy(fi 1), = sup 1nf{||w(f Q) +2||wd’g"||, & € A.Cuc}.

By [4], we have

C Koy (f, ) S 03 (f 1) < CKay(f ), (4.23)

Proof Let 6 > 0, by (4.23), we choose proper g so that

IW(f =)l < Coy(£.9),, [[wg’g"|| < CO7w(f.0),.
(4.24)
then
[P < [900A%, (110) — B (1)
w(x)A ;upB (f—gx )‘ (X)Alzwgn(&x)‘
2 - o
<y (it =it
2 (= )h(x)
+//7d>(\ /W(\ B (f g,‘c-i-Zuk) du1 duz
/x¢2\> h¢2\
/ x)B! (g, x+ZuA>dul iy
=1
_J1+J2+ (425)
Obviously
J < C((n’%dfl(x)é,,(x))%). (4.26)
By (2.2) and (4.24), we have
s < ool [ e
< CRP I (x) | w(f — g)H Crl ¢ (X)wy (1,0),.  (4.27)

By the second inequality of (4.12) and (4.24), we have
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2
’ S o2
duy d
/W;x) //m(\»)(p x+;uk up duy

h(x) ()
Jy < Crllw(f =gl

2

< CHP () ()[R0~ @Il < Cnl§(x)g > (x)},(159),.

(4.28)
By the second inequality of (2.3), (3.3)and (4.24), we have

Mo 2
J; < Cllwe’g"||w(x) / / xS )¢
S k=1

2
X <x + Zuk> duy du,

k=1

< CRP||wd’g"|| < CHSwy(f;0),. (4.29)

Now, by (4.25)—(4.29), there exists a constant M > 0 so
that

‘w(x)AidJ(x)‘ < c( (n’% ‘;((:))) * 4 min {n ¢j(x) 2P’ (x)}

X2 (f,0), + 62wy (f, 5)w>

(O

X (£,0), +h252w;(f,5)w>

(GroREE G

xa}y (f,0), +H 6wl (f, 5)“) .

When n > 2, we have

n38,(x) < (n—1)728,1(x) < V2n5,(x),
Choosing proper x, d, n € N, so that

<o<m-17 5&‘;‘),

Therefore

(‘m(x)AjJ(x)‘ < cfo + 17w (1,0), )

Which implies

WD (f1), < c{&“o + P60, 5))7,}.
So, by Berens—Lorentz lemma in [4], we get

oy (f,1), < Cre. O

We can obtain the similar results when the Bernstein poly-
nomials have no singularities. Now,we can consider the combi-
nations of Bernstein Polynomials with inner singularities as
Theorem 3 with countable or uncountable singularities.
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