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nction we present order and type, integral representations and differential
lations. Also, the Humbert matrix differential equation is studied.
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efficients and variables is ap-
peared in [1,2]. S%@al matrix functions appear in the literature
related to statistic 4]. Recently, Laguerre, Hermite and
Gegenbauer matrix polynomials have appeared in connection
with the study of matrix differential equations [5-7]. The pri-
mary goal of this paper is to consider a new system of matrix
functions, namely the Humbert matrix function. The paper is
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organized as follows. Section 2 is define and study of a new
matrix functions, say, the Humbert matrix function, the radius
of regularity and order and type on this function are estab-
lished. In Section 3 Integral expressions of Humbert matrix
functions are given. In Section 4 deducing some recurrence
relations of Section 5, we prove that the Humbert matrix func-
tion satisfy a matrix differential equation.

A matrix P in C¥*V is a positive stable matrix if Re(1) > 0
for all Z € a(P) where a(P) is the set of all eigenvalues of P and
its two-norm denoted by

H x|l
1Pl = T 2
where for a vector y in c,
norm of y.
Let a(P) and y(P) be the real numbers which were defined in

[5] by

¥l = (yTy)% is the Euclidean
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a(P) = max{Re(z) : z € a(P)},
€ a(P)}.

p(P) = min{Re(z) : z
(1.1)

If f(z) and g(z) are holomorphic functions of the complex
variable z which are defined in an open set Q of the complex
plane and P is a matrix in CV*¥ such that ¢(P) c Q, then from
the properties of the matrix functional calculus (see [5]), it fol-
lows that

J(P)g(P) = g(P)f(P). (1.2)
Hence, if O in CV is a matrix for which ¢(Q) c Q and if
PQ = QP, then
J(P)g(Q) = g(QN(P). (1.3)
1

The reciprocal Gamma function denoted by I'"'(z) = 7o 1
an entire function of the complex variable z. Then the image of
I'"!(z) acting on P denoted by I'"'(P) is a well-defined matrix.

Furthermore, if

P+nl

is invertible for all integer n > 0, (1.4)

Then from [5], the Pochhammer symbol or shifted factorial de-
fined by

(P),=PP+I1)---(P+(n—-1)I

=I(P+nD)I'(P); n=1; (P),=1 (1.5)
Jodar and Cortés have proved in [8] that
r(P) = lim(n— 1)![(P),] 'n". (1.6)
Let P and Q be two positive stable matrices in CV*"

gamma matrix function I'(P) and the beta matrix fun
B(P, Q) have been defined in [9], as follows

I'(P)= / et Tdy, " T=exp(P-1)
0

and

2. Humbe,

we deal with the Humbert matrix function
acd by

In this sectr®
J4.5(2) that is

\AHB ) 23
Jan(z) = (§> I YA+ DI (B+1)oF (f, A4 ILBAI fﬁ>
7i(—1)kF"(A+(k+1)1)F"(B+(k+ 1) (E)A+B+3kl
= k! 3
= ZUA+B+3I<IZA+B+3M¢ (2.1)

=
I
o

where A4 + I and B + I are matrices in CVV such that
A + (k + D)Iand B + (k + 1)I are invertible for every integer
k = —1. The first few terms of the series are given by the
formula

JAA,B(Z):ZMBF? (AJQF B0, _z 1KA+1)3];1![(B+1)]7
A+ D) (A 20] (B4 D) [(B+21)” _}
3621

For 4 and B are equal the zero matrix 0 it follows

z ZG[ Z9]
?+36-23_39.23.33+”}'

37
ngo(Z) = 11—

Now we prove that the matrix power series (2.1) converges
uniformly in any bounded domain gfghe complex variable z,
by the following inequality

5
i
|

[17.4,5(

A+1)A”[<B+mr‘(;)“’”
k! ’

(A+Dr'(B+1)|

)

—) s B+

—1 Z3

(A+D)7"(B+1) 5

Lo s
exp 2—7|z| .

(2.2)

By considering all the terms of the series for J,4 p(z) except
the first, it is found that

s = () e pr s 00+ o),

: (2.3)

where

O] <exp (H(A+I)"(B+I)" = ) -1

27

<l 07 (e (3511) 1),

Thus, the series on the right in (2.1) converges uniformly
in any bounded domain of the complex variables z. We de-
fine the radius of regularity of the function J,4 s(z) given in
the form

1 | \ 1 ‘ T
——1i TR — |im s
&~ sup(|Usensaul) "Ani‘fp< |37 BRI (A 1 kDB + kD) )

1
> ATBIIRT

I
—
1??(\3“"‘““%(5)" (A ) (242) T 3B ) (B2 P

) 1 Bz ]
< lmlsup etd A+ (k+4)1 B (k)1 =0
k=oo \K*2(A+kI) (B+kI)

Therefore, the order and type of the Humbert matrix
function is formulated as follows
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(A+ B+ 3kI)In(A+ B+ 3kI)

In(—t—r
[y

. (A+ B+3kl)In(A4+ B+3kl)
=limsup TR
koo IN(B3EPNEN A+ KD (B+KI))

(A+ B+ 3kD)In(A+ B+ 3kI)
2n(A+ kD) (424" /2n(B T kT (BK) ”*“3“3““)

p=limsup
k—o0

=limsup

o In (Vark(®)*

! 1

ghr/nsup ik T (ATkDIn(ATkT) - BBk
“TC A+ BA3KI) In(A+B+3KD) | (A+B+3kI)In(A+B+3kI) | (A+B+3kI)In(A+B+3kI)

(2.4)

and

711msup(A + B4 3KD) (|| U gy

k—o00
1 A+B+3KI
(3A+B+3k’k!(A +kD(B+ kl)!>
1
=1 limsup(A4 + B+ 3kI)

k—o0

1
=—limsup(4 + B+ 3kI)
€ koo

1 A+B+3kI
X
<\/2nk(§)kw /20 (A + kD) (A San(B+ k) (Bik )B“’)

gllimsup(A+B+3kI) ! =1.

A+B+3kI
3 (kk(A+k1)(A+kl)(B+kI)(B+kl)>

(2.5)

Summarizing, the following result has been established.

Theorem 2.1. Let A and B be matrices in CVN such that
A+ (k+ 1)I and B + (k + 1)I are invertible for every
integer k = —1. Then the Humbert matrix function is an e
function and the order and type of the Humbert matrix funct
is equal one.

3. An integral representation

In this section, we provide integral Humbert

matrix function J4 p(z) by the foll

N such that
it follows that

(3:2)

where y(B) > y(4) > —1.

Proof. Let I= fol(l — ) A2BED) 5y p(21) di,  then
from the expression of Humbert matrix function, we have

A+B+3kI
JA B Z[ )

k! 3 ’

e I YA+ (k+1)DT " (B+ (k+1)1) szt
=3 G

the integral becomes

YA B - A-2(5-1)

1:/01(1—

00 (_l)lcl"*l(A—l—(k—e—l)l) (B+(k+l) ) A+B+3kI
g kz; Kl (3) di
_i(—l)"F‘l(A+(k+1) Dr'(B+(k+1) )( )A+B+3k1
- =0 k! 3
X /1(1 _t3)/‘*3*’[38+21+3k1 dr.
0
Letting © = s, then
I_i(fl)kr—l(A+(k+1)1)r71(3+ ) E)A+B+3k1
- k=0 k! 3
1
X / (1 _ S)AfoISBJrk/ ds
0
(3.3)

atrix function in

(3.4)
(=D T " (A+ (k+ DD (A+ (k+ D)) 2\ 24531
q G
1
N
- IB)A Sy A‘B(Zl) dr.

Another integral representation of J, p(z) can be estab-
lished starting from the formula in [10, p. 115, No. (5.10.5)]
and Lemma 2 of [9, p. 209] we find that

1
Ir''A+k+1)0= 3 /C exp(s)s~ATEDD g, (3.5)
and
1 .
Bk ) =5 /C exp(t)r-BHED gy (3.6)

and substituting the above expression into the series expression
of the Humbert matrix function given in (2.1), it follows that

0 l)k( )A+B+3kl

— (2711')2 /0 /c xpls

Jas(z =Z

+ I)S_(A+(k+l)1)Z_(B+(k+l)1) ds dr.

Interchanging the order of the integral and summation,

A+B o (i_z‘)k
J / / exp(s 4 £)s D (BENT AL g dy,
an( 2m Ied ; k!
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that is,

z

JA,B(Z) — 3)

( / / —(A+]) —(B+I) < )
exp(s+1)s r ex ds dz,
(2mi) p( P\ 275

() A+B 3
= (32 / / exp (5+t7ﬁ) ~(AD =B+ dg dr.
i) Jo

Therefore, the following result has been established. [

Theorem 3.2. Let A and B be two matrices in CV*N. Then the
Humbert matrix function for complex variable z satisfies the
Sfollowing integral

A+B

JA,B(Z)

t— | s U B g dy.
exp (S + 275[) s

(3.7)

4. Recurrence relations

Some recurrence relations are carried out on the Humbert ma-
trix function. We obtain the following:

Theorem 4.1. The Humbert matrix function J 4 g(z) satisfies the
following relations:

@ ( ) {Z B 4 5( )} = (=1)"z B g g (2),
(if) S, 5(2) = Jups(2) = 2 JAB< ),
(iii) J); 5(2) = Ju-18(2) — (ZA 2 Jis(2),
(iv) (37/‘) Jap(z) = JA+I,B+I(Z) +JA 18(2),
) @ Jup(2) = Jus1841(2) +Jap-i(2).

Proof.

(i) Applying mathematical gfuctt or 1:

3

(ﬁ) {z7WB T 5(2)} = =z BT T p(2), (4.1)

Forn = r — 1, we have

d r—1 L o
(—) {2 p(2) = (1) BN s e (2)-

zdz

Then for n = r:

() s

- (z dz) (z dz) 1{2_(”3’%3(2)}
- (z dz)

—(A +B)—

r ' _(A+B) = 1)IJA#—(r l)l7B+(r—l)1(Z)}

JA+)IB+71( ) (42)
Thus, the proof of relation (i) is completed.

(ii) In this case

d . sup
E(z J4(2))
(_1)k (%)A+B+3k11_,_1(A +

k 34+43kI
+1)I) )

(Z)3A+3k1—1

|
e

By carrying
hand side

the product on the left-

= ZzAiBJA,LB(Z).

JA‘B(Z)- (43)
I A+ G+ D)D) (B4 (k+ 1))

A+ K+ 1)), g

:Z2BiAJA.’B_1(Z). (44)

By carrying out the differentiation of the product on the left-
hand side, we have

(2B — A)Z*5 A T 5(2) + ZZB’AJ'AYB(Z) =251, 54(2).

Hence 2B — 4
Ty 5(2) = Jupi(z) — @B=4) Ja5(2). (4.5)
(iv) From result (i), we have
A
7w = 1)~ i), (46)

Subtracting (4.5) from result (ii) we obtain the required rela-
tionship.

(v) Subtracting (4.5) from result (iii) we obtain the required
relationship.

Finally, we can find some properties related with differen-
tiation of the Humbert matrix function with respect to indexes
A and B in the forms
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%JM:%g(71)kr-1(A+(k+21)r-1(3+(k+1)1) (g)wﬂu
= Jaa[In(3) =/ (A+ (k+ D)) (A+ (k+ 1))
=10 () = Jas(A+ (k= 1)0),
(4.7)
and
%JM:O%g(—l)kl“”(A+(k+]1{?I)F*‘(B+(k+1)I) (g)umsk:
:AB@(Q_ﬂw+w+nnrnB+w+nﬂ
=In <§>JA,B—JA,B¢(B+(I€+1)1). O
(4.8)

5. Humbert matrix differential equation

We know a matrix differential equation satisfied by any oF, by
specializing the result in [11]. The matrix differential equation:
d
0=y— 5.1
Y (5.1)

has U = ¢Fy(—,4 + I,B + I,y) as one solution. Eq. (5.1) can
also be written

[0(01 + 4)(0T+ B) — y)U = 0;

FU FU dU
2
4+ (A+B+3)y —+A+D(B+1) ——-U
},@3 ( + W[M (A+1)( ) &
=0, (

we now put y = — 3, therefore
w9 U

dy 22 dz’
AU 81 &U 162 dU

WTE e &

and
4U_ 129 U 428 &
dy’ R

in (5.2) to obtain

FU
22—+ (34 +
dz (

— [64 +

in which primes denote differentiations with respect to z, one
solution (5.3) is

i
U=F A+I1 B+ 1, —
0 2< + + 27)
We seek an equation satisfied by U = z?* 2. Hence in
(5.3) we now put W =z"“*"By and arrive at the matrix
differential equation.

&w a&w
2 dz? +32 dz?
5 aw
—[3(A+B)(A+B+1)+(64+6B—2I)+z (A+I)(B+I)]z?
+[(A+B)(A+B+1)(2A+2B+1)+ 64 +68—21)
+22(A+B)(A+1)(B+ 1)+ | W= (5.4)

23
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