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Abstract A modified variational approach and the coupled homotopy perturbation method with

variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular

oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restor-

ing force is inversely proportional to the dependent variable are achieved analytically. The approx-

imate frequency obtained using the coupled method is more accurate than the modified variational

approach and ones obtained using other approximate methods and the discrepancy between the

approximate frequency using this coupled method and the exact one is lower than 0.31% for the

whole range of values of oscillation amplitude. The coupled method provides a very good accuracy

and is a promising technique to a lot of practical engineering and physical problems.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

There is a large variety of approximate methods usually used
for solving nonlinear oscillatory systems including Linstedt–
Poincaré [1,2], the multiple scales [3–5], variational iteration
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[6,7], homotopy perturbation [8–11], energy balance [12–15],
Krylov–Bogoliubov–Mitropolsky [16,17], harmonic balance
[18–22], the max–min [23–25] methods, and so on [26–33].

In this paper, we apply a modified variational approach
(MVA) and the coupled homotopy perturbation method with
variational formulation (CHV) to obtain analytic approximate

solutions for a nonlinear oscillator in which the restoring force
is inversely proportional to the dependent variable. This singu-
lar nonlinear oscillator has been recently studied by some

researchers using a modified generalized, rational harmonic
balance method [20], the standard harmonic balance method
[18,22], and the homotopy perturbation method [26]. the results

indicate that the coupled method [32] has a higher accuracy and
provides a better solution. The approximate frequency derived
by the coupled method is more accurate and closer to the exact
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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solution and the relative error in the frequency is reduced and

the maximum relative error is less than 0.31%.
In the next sections of the paper, the modified variational

approach [33] and the coupled method are applied to an
important and interesting conservative nonlinear singular

oscillator in plasma physics in the following one:

€uþ 1

u
¼ 0; uð0Þ ¼ A; _uð0Þ ¼ 0; ð1Þ

where it can be shown that the exact value for the angular fre-

quency is given as:

xex ¼
2p

2
ffiffiffi
2
p R A

0
duffiffiffiffiffiffiffiffiffiffiffiffiffi

lnA�ln u
p

¼ 1

A

ffiffiffi
p
2

r
¼ 1:253314

A
: ð2Þ

The results demonstrate that by using both methods a solution
with good accuracy is obtained. As we will see, the relative
error of the coupled method is lower than the relative error ob-
tained by the modified variational approach and other approx-

imate methods which utilized for the oscillator till now.

2. Modified variational approach

In this section, the modified variational approach is utilized.
we can rewrite Eq. (1) in the following form:

u � €uþ 1 ¼ 0; ð3Þ

based on the procedure, the minimization problem is:

Minimize Eð _u; u; tÞ ¼
Z T

0

ðu � €uþ 1Þ2dt; T ¼ 2p
x
: ð4Þ

For the first order approximation, We begin the procedure

with the simplest trial function:

u1ðtÞ ¼ A cosðxtÞ: ð5Þ

Substituting Eq. (5) into Eq. (4) yields:

Minimize Eð _u1; u1; tÞ ¼
pð3A4x4 � 8A2x2 þ 8Þ

4x
: ð6Þ

The solution of Eq. (6) could be found through

@Eð _u1; u1; tÞ
@x

¼ 0; ð7Þ

by some simplifications, the following equation is obtained:

9A4x4 � 8A2x2 � 8 ¼ 0; ð8Þ

by solving Eq. (8), the approximate frequency is achieved as:

xMVA1 ¼
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2

ffiffiffiffiffi
22
pp

A
¼ 1:219327

A
: ð9Þ

For the second order approximation, consider the trial func-

tion as:

u2ðtÞ ¼ b cosðxtÞ þ ðA� bÞ cosð3xtÞ: ð10Þ

By substituting Eq. (10) into Eq. (4) yields:

Minimize Eð _u2; u2; tÞ ¼
p
4x
½243A4x4 � 972A3x4

þ 1694A2b2x4 � 1424Ab3x4

þ 462b4x4 � 72A2x2 þ 144Abx

� 80b2x2 þ 8�: ð11Þ
The solution of Eq. (11) could be found through

@Eð _u2; u2; tÞ
@x

¼ 0;
@Eð _u2; u2; tÞ

@b
¼ 0: ð12Þ

After some simplifications, the solution for stationary condi-

tions yields:

xMVA2 ¼
1:227214

A
: ð13Þ

For the third order approximation, consider the trial function

as follows:

u3ðtÞ ¼ b cosðxtÞ þ c cosð3xtÞ þ ðA� b� cÞ cosð5xtÞ: ð14Þ

By substituting Eq. (14) in Eq. (4), The solution could be
found through

@Eð _u3; u3; tÞ
@x

¼ 0;
@Eð _u3; u3; tÞ

@b
¼ 0;

@Eð _u3; u3; tÞ
@c

¼ 0: ð15Þ

After some simplifications, the approximate frequency is

achieved as:

xMVA3 ¼
1:245689

A
: ð16Þ
3. Coupled homotopy perturbation method with variational

formulation

In this section, the coupled homotopy perturbation method
with variational formulation is employed. we can rewrite Eq.
(1) in the following form:

uu002 þ u00 ¼ 0; ð17Þ

based on the coupled method, we construct the following
homotopy:

u00 þ x2uþ p½uu002 � x2u� ¼ 0; p 2 ½0; 1�: ð18Þ

In Eq. (18), u is assumed to be

u ¼ u0 þ p1u1 þ p2u2 þ . . . ð19Þ

Substituting Eq. (19) into Eq. (18) and collecting terms of the

same power of p, gives:

u000 þ x2u0 ¼ 0; u0ð0Þ ¼ A; u00ð0Þ ¼ 0; ð20Þ

And

u001 þ x2u1 þ u0u
002
0 � x2u0 ¼ 0; u1ð0Þ ¼ 0; u01ð0Þ ¼ 0: ð21Þ

From Eq. (20), we find:

u0ðtÞ ¼ A cosxt; ð22Þ

for determining x, we applied the variational formulation for

u1 in Eq. (21), which reads

Jðu1Þ ¼
Z T

0

� 1

2
u021 þ

1

2
x2u21 þþu0u0020 u1 � x2u0u1

� �
dt;

T ¼ 2p
x
: ð23Þ

For first order approximation, we consider the trial function
for u1 as follows:

u1ðtÞ ¼ Bðcosxt� 1

3
cos 3xtþ 1

3
cos 5xt� cos 7xtÞ: ð24Þ

Substituting Eq. (24) into Eq. (23) yields:



Table 1 A comparison between the accuracy of the achieved

frequencies.

Frequencies xMVA1 xMVA2 xMVA3 xCHV1 xCHV2

Relative error (%) 2.7117 2.0825 0.6084 2.2795 0.3017
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JðA;B;xÞ ¼ 2

3
pA3Bx3 � pABxþ 10

9
pB2x: ð25Þ

The stationary condition of Eq. (25) requires that

@J

@B
¼ 0;

@J

@x
¼ 0: ð26Þ

Then we have:

@J

@B
¼ 2

3
pA3x3 � pAxþ 20

9
pBx ¼ 0; ð27Þ

@J

@x
¼ 2pA3Bx2 � pABþ 10

9
pB2 ¼ 0: ð28Þ

Solving above equations, the frequency obtained as:

xCHV1 ¼
1

2

ffiffiffi
6
p

A
¼ 1:224745

A
: ð29Þ

For the second order approximation, we consider the trial

function for u1 as follows:

u1ðtÞ ¼ Bðcosxt� 1

3
cos 3xtþ 1

3
cos 5xt� cos 7xtÞ

þ CðcosðxtÞ � cosð3xtÞÞ: ð30Þ

Substituting Eq. (30) into Eq. (23) yields:

JðA;B;C;xÞ ¼ 1

2
pA3Bx3 þ 2

3
pA3Cx3 � pABxþ pB2x

þ 4

3
pBCx� pACxþ 10

9
pC2x: ð31Þ

The stationary condition of Eq. (31) requires that

@J

@B
¼ 0;

@J

@C
¼ 0;

@J

@x
¼ 0: ð32Þ

Then we have:

@J

@B
¼ 1

2
pA3x3 � pAxþ 2pBxþ 4

3
pCx; ð33Þ

@J

@C
¼ 2

3
pA3x3 þ 4

3
pBx� pAxþ 20

9
pCx; ð34Þ

@J

@x
¼ 3

2
pA3Bx2 þ 2pA3Cx2 � pABþ pB2 þ 4

3
pBC

� pACþ 10

9
pC2: ð35Þ

Solving above equations, the frequency is obtained as:

xCHV2 ¼
1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ

ffiffiffiffiffiffiffiffi
226
pp

A
¼ 1:249533

A
: ð36Þ

Accuracy of the achieved frequencies for the above mentioned
methods is shown in Table 1.

4. Conclusion

A modified variational approach and the coupled homotopy
perturbation method with variational formulation have been
applied to obtain analytical approximate solutions for nonlin-

ear oscillators in which the restoring force is inversely propor-
tional to the dependent variable. The major conclusion is that
the coupled method provides excellent approximations to the
solution of equation (1), with high accuracy. The analytical

representations obtained using this technique give excellent
approximations to the exact solutions for the whole range of
values of oscillation amplitude. The second order approxima-

tion of the coupled method is better than the approximate solu-
tions obtained using other approximate methods presented in
the literature. For the second order approximation, the relative

error of the analytical approximate frequency obtained using
the coupled method is lower than 0.31%. The general conclu-
sion is that the coupled method provides an easy and direct

procedure for determining the second-order analytical approx-
imate solution of these nonlinear systems. This procedure also
gives a very accurate estimate for the frequency. Finally, in
comparison to the modified variational approach, the coupled

method produces a better solution.
References

[1] P.J. Melvin, On the construction of Poincare–Lindstedt

solutions: the nonlinear oscillator equation, SIAM Journal on

Applied Mathematics 33 (1977) 161–194.

[2] A. Casal, M. Freedman, A Poincaré–Lindstedt approach to
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