

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

ORIGINAL ARTICLE

On zip and weak zip rings of skew generalized power series

R.M. Salem¹

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Received 22 August 2011; revised 30 September 2012 Available online 6 December 2012

KEYWORDS

Strictly ordered monoid; Artinian and narrow subset; Generalized power series ring; Zip ring; Weak zip ring; Armendariz ring; NI ring

1. Introduction

Throughout this paper R denotes an associative ring with identity. Recall from Faith [3] that R is a right zip ring if the right annihilator $r_R(X)$ of a subset $X \subseteq R$ is zero, then $r_R(X_0) = 0$ for a finite subset X_0 of X, equivalently for a left ideal L of R if $r_R(L) = 0$, then there exists a finitely generated left ideal $L_1 \subseteq L$ such that $r_R(L_1) = 0$. Although the concept of zip rings was initiated by Zelmanowitz [17] it was not called so at that time. However, He showed that any ring satisfying the descending chain condition on right annihilators is a right zip ring but the converse is not true.

Extensions of zip rings were studied by several authors. In [1] Beach and Blair showed that if *R* is a commutative zip ring,

Peer review under responsibility of Egyptian Mathematical Society.

ELSEVIER Production and hosting by Elsevier

Abstract In this paper we show under certain conditions that the skew generalized power series R[[S,w]] is a right zip (weak zip) ring if and only if R is a right zip (weak zip) ring.

© 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.

> then R[x] is a zip ring. The pioneering paper [12] introduced the notion of an Armendariz ring: a ring R is called Armendariz if whenever polynomials $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$ $\in R[x]$ satisfy fg = 0, then $a_i b_j = 0$ for each $0 \le i \le n$ and $0 \le j \le m$. In Hong et al. [7, Theorem 1] showed that if R is an Armendariz ring, then R is a right zip ring if and only if R[x] is a right zip ring.

> Rege and Chhawchharia in [12] motivated the other researchers to adapt the Armendariz condition for different extensions. Cortes in [2] defined and extended the condition for skew polynomial rings ($R[x, \sigma]$), skew Laurant polynomial rings ($R[x, x^{-1}, \sigma]$), skew power series rings ($R[[x, \sigma]]$), and skew Laurant power series rings ($R[[x, x^{-1}, \sigma]]$). These extensions share the right zip property with the base rings satisfying the corresponding Armendariz condition. In Zhongkui [18] extended the notion of an Armendariz ring to the generalized power series ring $\Lambda = [[R^{S, \leq}]]$, where (S, \leq) is a commutative strictly ordered monoid as follows: whenever $f, g \in [[R^{S, \leq}]]$ such that fg = 0, then f(s)g(t) = 0 for all $s \in supp(f)$ and $t \in supp(g)$.

> In Marks et al. [10] unified all versions of Armendariz rings and called it (S, w)-Armendariz ring as follows. For a ring R, (S, \leq) a strictly ordered monoid, and $w:S \rightarrow (End R, +)$ a monoid homomorphism, whenever fg = 0 for f, g in the skew

1110-256X © 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.joems.2012.10.003

¹ Present address: Basic Science Dept., Canadian International College, New Cairo, Egypt.

E-mail addresses: refaat_salem@cic-cairo.com, rsalem_02@hotmail. com

generalized power series ring R[[S, w]], then $f(s)w_s(g(t)) = 0$ for all $s \in supp(f)$ and $t \in supp(g)$.

Motivated by the above Ouyang in [8] introduced the notion of right weak zip rings (i.e., rings provided that if the right weak annihilator of a subset X of R, $Nr_R(X) \subseteq nil(R)$, then there exists a finite subset $X_0 \subseteq X$ such that $Nr_R(X_0) \subseteq nil(R)$, where nil(R) is the set of all nilpotent elements of R and $Nr_R(X) = \{a \in R \mid xa \in nil(R) \text{ for each } x \in X\}$. The author in [8] studied the transfer of the right (left) weak zip property between the base ring R and Ore extension $R[x, \sigma, \delta]$, where σ is an endomorphism and δ is a σ -derivation. A ring R is called σ -compatible if for each $x, y \in R, xy = 0 \iff x\sigma y = 0$. In this case it is clear that σ is a monomorphism. A ring R is called NI if nil(R) forms an ideal, i.e., if the set of all nilpotent elements forms an ideal. Ribenboim studied extensively rings of generalized power series (see [13,14]). In [11] Mazurek and Ziembowski generalized Ribenboim construction and introduced a twisted version of the generalized power series rings as follows.

Let $(S, +, \leq)$ be a strictly ordered monoid, *R* a ring, *w*: $S \rightarrow End(R)$ a monoid homomorphism and let $w_s = w(s)$ denotes the image of $s \in S$ under *w* for any $s \in S$. Consider the set Λ of all maps $f:S \rightarrow R$ such that $supp(f) = \{s \in S | f(s) \neq 0\}$ is Artinian and narrow subset of *S*, i.e., every strictly decreasing sequence of elements of supp(f) is finite and every subset of pairwise order-incomparable elements of supp(f) is finite with pointwise addition and product operation called convolution defined by

$$(fg)(s) = \sum_{(u,v)\in X_s(f,g)} f(u)w_u(g(v)) \text{ for each } f,g \in A$$

where $X_s(f,g) = \{(u,v) \in S \times S | u + v = s, f(u), \text{ and } g(v) \neq 0\}$ is finite.

Hence, $\Lambda = R[[S, w]]$ becomes a ring called skew generalized power series with coefficients in R and exponents in S, for more details on the structure of $\Lambda = R[[S, w]]$ (see[11]).

Let $\pi(f)$ denotes the set of all minimal elements of supp(f). If (S, \leq) is totally ordered, then $\pi(f)$ consists of only one element which is still denoted by $\pi(f)$. Let T = C(f) be the content of f i.e., $C(f) = \{f(s) | s \in supp(f)\}$. Since, $R \simeq c_R$ we can identify, the content of f with

$$c_{C(f)} = \{c_{f(u_i)} | u_i \in supp(f)\} \subseteq \Lambda.$$

For any nonempty subset $X \subseteq R$, let $X[[S,w]] = \{f \in A \mid f(s) \in X \cup \{0\} \text{ for each } s \in supp(f)\}.$

The motivation of this paper is to continue the studying of the transfer of some algebraic properties between the base ring R and the generalized power series ring $[[R^{S,\leq}]]$ (see [5,15]) also to extend the results of Cortes [2], Oynang [8] and Salem [16] to the skew generalized power series over zip and weak zip rings.

2. Skew generalized power series over zip rings

Hirano [6], Cortes [2] and Ouyang [8] studied the relation between the right annihilators of R and those of R[x] and $R[x,\sigma,\delta]$ respectively. In [10] Marks et al presented a characterization theorem for (S, w)-Armendariz rings in terms of one-sided annihilator and for the sake of completeness of this note we give a version of [10, Theorem 3.4]. Let *R* be a ring, (S, \leq) a strictly ordered monoid and $w:S \rightarrow End(R)$ a monoid homomorphism. *R* is called *S*-compatible if w_s is compatible for every $s \in S$. In fact w_s is a monomorphism for each $s \in S$ (see [4]).

Lemma 2.1. Suppose that R is a ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible and $U \subset R$, then

$$r_A(U) = r_R(U)[[S, w]] \quad (l_A(U) = l_R(U)[[S, w]]).$$

Proof 1. Let $f \in r_A(U)$. Then $0 = c_u f$ for each $u \in U$. So, $0 = (c_u f)(s) = uw_0(f(s)) = uf(s)$ for each $s \in supp(f)$. Consequently, $f(s) \in r_R(u)$ for each $s \in supp(f)$. Hence, $f \in r_R(U)$ [[S,w]] and it follows that $r_A(U) \subseteq r_R(U)$ [[S,w]].

Conversely, let $f \in r_R(U)[[S, w]]$. Then 0 = Uf(s) for each $s \in supp(f)$. So, for each $u \in U$, $0 = uf(s) = uw_0(f(s)) = (c_u f)(s)$. Hence, $f \in r_A(u)$ and it follows that $r_R(U)$ $[[S, w]] \subseteq r_A(U)$.

Consequently, $r_A(U) = r_R(U)[[S, w]]$. \Box

Using Lemma 2.1 we have the map $\phi: r_R(2^R) \to r_A(2^A)$ defined by $\phi(I) = I[[S, w]]$ for every $I \in r_R(2^R)$ and the map $\psi: l_R(2^R) \to l_\lambda(2^A)$ defined by $\psi(J) = J[[S, w]]$ for every $J \in l_R(2^R)$ without any condition on R, where $r_R(2^R) = \{r_R(U) | U \subseteq R\}(l_R(2^R) = \{l_R(U) | U \subseteq R\})$. Obviously $\phi(\psi)$ is injective. In the following lemma we show that $\phi(\psi)$ is a bijective map if and only if R is an (S, w)-Armendariz ring.

Lemma 2.2. Suppose that R is a ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then the following are equivalent:

- (1) R is an (S, w)-Armendariz ring.
- (2) $\phi: r_R(2^R) \to r_A(2^A)$ defined via $\phi(I) = I[[S,w]]$ $(\psi: l_A(2^R) \to l_A(2^A)$ defined via $\psi(J) = J[[S,w]])$ is a bijective map.

Proof 2. $1 \Rightarrow 2$

Let
$$Y \subseteq \Lambda$$
 and $T = \bigcup_{f \in Y} C(f) = \bigcup_{f \in Y} \{f(s) \mid s \in supp(f)\}$

From Lemma 2.1 it is sufficient to show that $r_A(f) = r_R C(f)[[S, w]]$ for each $f \in Y$. So, let $g \in r_A(f)$, it follows that fg = 0. Since, R is an (S, w)-Armendariz ring and S-compatible, then $0 = f(u)w_u(g(v)) = f(u)g(v)$ for each $u \in supp(f)$ and $v \in supp(g)$.

So, for a fixed $u \in supp(f)$ and each $v \in supp(g)$, 0 = f(u)g(v) and it follows that $g \in r_R f(u)[[S, w]]$. Consequently, $g \in r_R C(f)$ [[S,w]], hence $r_A(f) \subseteq r_R C(f)$ [[S,w]].

Conversely, let $g \in r_R C(f)[[S, w]]$, hence f(u)g(v) = 0 for each $u \in supp(f)$ and $v \in supp(g)$. Since *R* is *S*-compatible, then $0 = f(u)w_u(g(v))$ for each $u \in supp(f)$ and $v \in supp(g)$. So, $(fg)(s) = \sum_{(u,v) \in X_s(f,g)} f(u)w_ug(v) = 0$. Therefore, $g \in r_A f$ and it follows that $r_R C(f)[[S, w]] \subseteq r_A(f)$.

Hence,

$$r_{A}(Y) = \bigcap_{f \in Y} r_{A} f = \bigcap_{f \in Y} r_{R} C(f)[[S, w]] = r_{R}(T)[[S, w]].$$

$$2 \Rightarrow 1$$

Let $f, g \in A$ be such that fg = 0 then using Lemma 2.1 $g \in r_A(f) = T[[S, w]]$ for some right ideal T of R. Hence, g(v) $\in T$ for each $v \in supp(g)$. So, $0 = fc_{g(v)}$. Thus, $0 = (fc_{g(v)})(u) = f(u)w_u(g(v)))$ for each $u \in supp(f)$. Therefore, R is a (S, w)-Armendariz ring. \Box

Now, we are ready to prove the main result of this section.

Theorem 2.3. Suppose that R is an (S,w) Armendariz ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then R is a right (left) zip ring if and only if Λ is a right (left) zip ring.

Proof 3. Suppose Λ is right zip and $X \subseteq R$ satisfies $r_R(X) = 0$. Let $Y = \{c_x | x \in X\}$, then $r_A(Y) = 0$ by Lemma 2.1. Since Λ is right zip, $r_A(c_{x_1}, \ldots, c_{x_n}) = 0$ for some $x_1, \ldots, x_n \in X$. Now Lemma 2.1 shows that $r_R(x_1, \ldots, x_n) = 0$. Hence R is right zip.

Conversely, suppose *R* is right zip and $Y \subseteq \Lambda$ satisfies $r_{\Lambda}(Y) = 0$. Let T = C(Y) be the content of *Y*, then $r_{R}(T) = 0$ by [10, Theorem 3.4]. Since *R* is right zip, $r_{R}(t_{1}, \ldots, t_{n}) = 0$ for some $t_{1}, \ldots, t_{n} \in T$. For any $i \in \{1, \ldots, n\}$ there exists $f_{i} \in Y$ with $t_{i} \in f_{i}(s)$. Set $Y_{0} = \{f_{1}, \ldots, f_{n}\}$. Since $\{t_{1}, \ldots, t_{n}\} \subseteq C(Y_{0})$, $r_{R}(C(Y_{0})) = 0$ and thus $r_{\Lambda} = 0$ by [10, Theorem 3.4]. Hence Λ is right zip. \Box

3. Skew generalized power series over weak zip rings

The following results introduce some properties of *S*-compatible rings.

Lemma 3.1. Suppose that R is a ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then we have the following:

- (i) If ab = 0, then $w_s(a)b = 0$ and $aw_t(w_s(b)) = aw_{t+s}$ (b) = 0 for every $s, t \in S$.
- ii) If $w_s(a)b = 0$ for some $s \in S$, then ab = 0.

Proof 4

- (i) Suppose that ab = 0, then for each $s \in S$, $0 = w_s(ab) = w_s(a)w_s(b)$. Since *R* is *S*-compatible, then $w_s(a)b = aw_s(b) = 0$. Again since, *R* is a *S*-compatible, then for each $t \in S$, $0 = aw_t(w_s(b)) = aw_{t+s}(b)$.
- (ii) Suppose that $w_s(a)b = 0$. Since, R is S-compatible in fact it is a monomorphism, then $0 = w_s(a)b = w_s(a)w_s(b) = w_s(ab)$. Hence, ab = 0. \Box

Let $f_{w_s}^k = w_s + w_{2s} + \dots + w_{ks-1}$ denotes the map which is the sum of endomorphisms where k is a positive integer. Then we can deduce the following.

Lemma 3.2. Suppose that R is a ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then ab = 0 implies that $0 = af_{w_s}^k(b) = aw_s(b) + aw_{2s}(b) + \cdots + aw_{ks-1}(b)$

Proof 5. Since, *R* is *S*-compatible, then for each $s \in S$ $aw_s(b) = 0$. Thus by Lemma 3.1 $aw_{2s}(b) = 0$, and it follows that $0 = aw_s(b) + aw_{2s}(b) + \cdots + aw_{ks-1}(b)$. \Box

Lemma 3.3. Suppose that R is a ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible and $aw_s(b)$ is nilpotent, then ab is nilpotent.

Proof 6. Since, $aw_s(b)$ is nilpotent, then there exists an integer k such that $(aw_s(b))^k = aw_s(b)aw_s(b)\cdots aw_s(b) = 0$ (k - times). Since, R is S-compatible, then

$$0 = aw_s(b)aw_s(b)\cdots aw_s(b)ab = aw_s(b)aw_s(b)\cdots aw_s(bab)$$
$$= aw_s(b)aw_s(b)\cdots abab$$

Continuing on this process we can deduce that $0 = (ab)^k$ and the lemma is proved. \Box

Lemma 3.4. Suppose that R is an NI ring, S a strictly ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then $ab \in nil(R)$ implies that $aw_s(b) \in nil(R)$.

Proof 7. Since, *ab* is nilpotent, then there exists an integer *k* such that $(ab)^k = 0$. We use the *S*-compatibility of *R* many times. Hence

$$0 = (ab)^{k} = abab \cdots abab \qquad k - \text{times} = aw_{s}(bab \cdots abab)$$
$$= aw_{s}(b)w_{s}(abab \cdots abab) = aw_{s}(b)(abab \cdots abab)$$
$$= aw_{s}(b)aw_{s}(bab \cdots abab) = aw_{s}(b)aw_{s}(b)ab \cdots ab$$

Continuing on this process it can be easily shown that $0 = (aw_s b)^k$ and the lemma is proved. \Box

Proposition 3.5. Suppose that R is an NI ring and S a strictly totally ordered monoid. If R is S-compatible and $f \in A = R[[S,w]]$ is nilpotent, then f(u) is nilpotent for each $u \in supp(f)$.

Proof 8. Suppose that $f \in \Lambda$ is a nilpotent element, hence there exists $k \in \mathbb{N}$ such that $f^k = 0$, i.e., $supp(f^k) = \phi$. Since, S is a totally ordered monoid, let $\pi(f) = u_0$.

Therefore, $0 = f^k(ku_0) = f(u_0)w_{u_0}f(u_0)w_{2u_0}f(u_0)\cdots w_{(k-1)u_0}f(u_0) + \sum_{(t_1,\dots,t_k)\in X_{ku_0}-\{(u_0,u_0,\dots,u_0)\}}f(t_1)w_{t_1}f(t_2)\cdots w_{t_1+\dots+t_{k-1}}f(t_k).$

Since, $\pi(f) = u_0$, then for some $i \in \{1, \dots, k\}, t_i > u_0$.

Hence,

 $ku_0 = u_0 + \dots + u_0 < t_1 + \dots + t_i + \dots + t_k = u_0 + \dots + u_0$ a contradiction. So, $t_i = u_0$ for each $i \in \{1, \dots, k\}$.

Consequently, $0 = f^k(ku_0) = f(u_0)w_{u_0}f(u_0)\cdots w_{(k-1)u_0}f(u_0)$. Since, *R* is *S*-compatible, then by freely using Lemma 3.3 it follows that $0 = (f(u_0))^k$ and $f(u_0)$ is a nilpotent element of *R*.

Consider now, $f = (f - c_{f(u_0)}e_{u_0}) + c_{f(u_0)}e_{u_0} = (f - f'_0) + f'_0 = f_0 + f'_0$, where $supp(f - f'_0) = supp(f) - \{u_0\}$ and $supp(f'_0) = supp(c_{f(u_0)}e_{u_0}) = \{u_0\}$.

Hence, $0 = f^k = (f_0 + f'_0)^k = (f_0 + f'_0)(f_0 + f'_0)\cdots(f_0 + f'_0)$ = $f^k_0 + f_0f^{k-1}_0 + \cdots + f^{k-1}_0f_0 + f^2_0f^{k-2}_0 + f_0f^{k-2}_0f_0 + \cdots + f^k_0$ = $f^k_0 + \Delta + f^k_0$, where $supp(f^k_0) \subseteq supp(f'_0) + \cdots + supp(f'_0)$ k-times $\subseteq ksupp(f'_0) = \{ku_0\}.$

Thus $f_0^k(ku_0) = f(u_0)w_{u_0}f(u_0)w_{2u_0}f(u_0)\cdots w_{(k-1)u_0}f(u_0)$ and by freely using Lemma 3.3 $f_0^{\prime k}(ku_0) = (f(u_0))^k = 0$ and f_0 is nilpotent.

Now, it is clear that Δ is the sum of monomials each monomial is the product of ℓ copies of f_0 and $(k - \ell)$ copies of f'_0 , where *supp* each monomial \subseteq the sum of ℓ copies of $supp(f_0)$ and $(k - \ell)$ copies of $supp(f'_0)$.

Since, $f'_0(u_0) = f(u_0)$ is nilpotent and *R* is an NI ring, then nilpotent elements of *R* form an ideal. Therefore it can be easily shown that each monomial is a nilpotent element of Λ and it follows that f_0 is also nilpotent.

If $f = f'_0$, then $f \in \Lambda$ is a nilpotent element of Λ and $f'_0(u_0) = (c_{f(u_0)}e_{u_0})(u_0) = f(u_0)$ is a nilpotent element of R and there is nothing to prove.

So, suppose that $0 \neq f_0 = f - f'_0$ and $\pi(f_0) = \pi(f - f'_0) = u_i$.

Since, $0 \neq (f - f'_0)(u_i) = (f - c_{f(u_0)}e_{u_0})(u_i) = f(u_i)$ and $f_0(u_0) = (f - f'_0)(u_0) = (f - c_{f(u_0)}e_{u_0})(u_0) = f(u_0) - f(u_0)e_{u_0}$ $(u_0) = f(u_0) - f(u_0) = 0$ then $u_0 < u_i$.

Since, f_0 is nilpotent, then there exists a positive integer k' such that $(f_0)^{k'} = 0$,

using the same procedure above it can be easily shown that $0 = f_0^{k\prime} (k' u_i) = (f(u_i))^{k\prime}$. Continuing on this process $f = f_\mu + f'_\mu$, where $f'_\mu : S \to R$ is defined by $f'_\mu(u_m) = (c_{f(u_m)}e_{u_m})(u_m) = f(u_m)$ which is nilpotent for each $u_m \in supp(f)$, $m \leq \mu$ and f_μ is a nilpotent element of Λ . Let $\pi(f_\mu) = \pi(f - f'_\mu) = \pi(f - f'_\mu) = \pi(f - c_{f(u_\mu)}e_{u_\mu}) = u_\theta$, $u_\mu < u_\theta$.

Using [14, 5.3] we can define a relation on Λ called section relation for f'_{μ} and $f'_{\nu} \in \Lambda$ as follows:

(i) $f'_{\mu} \leq f'_{\nu}$ if $\mu < \nu$ (ii) $\pi(f - f') < \pi(f - f')$ where μ

(ii) $\pi(f - f'_{\mu}) < \pi(f - f'_{\nu})$, where $\mu < \nu$ (iii) $u < \pi(f - f'_{\mu})$ for each $u \in supp(f'_{\mu})$

(iv) $f_{\mu} = f - f'_{\mu} \in \Lambda$ is nilpotent and $f'_{\mu}(u_m) \in R$ is nilpotent for each $u_m \in supp(f), m \leq \mu$.

Let * denotes the section relation \leq with the above properties. Let α be an ordinal such that card $\alpha > card supp f$ and Γ the set of all ordinals $\lambda < \alpha$. We show that for each $\lambda \in \Gamma$ there exists $f'_{\lambda} \in \Lambda$ such that * is satisfied. In fact let $\lambda \in \Gamma$ and assume that we have already found the element $f'_{\mu} \in \Lambda$ for every $\mu < \lambda$ satisfying * for ordinals $\mu < \nu < \lambda$.

Now, we will determine an element f'_{λ} , where * is satisfied for $\mu < v \leq \lambda$. Suppose that there exists an ordinal η such that $\lambda = \eta + 1$. If $f - f'_{\eta} = 0$, then $f = f'_{\eta}$ is nilpotent. Thus $f'_{\eta}(u_m) = (c_{f(u_m)}e_{u_m})(u_m) = f(u_m) \in R$ is nilpotent for each $u_m \in supp(f), m \leq \eta$ and there is nothing to prove.

Hence, suppose that $f_{\eta} = f - f'_{\eta} \neq 0$, and let $\pi(f_{\eta}) = \pi(f - f'_{\eta}) = u_{\lambda}$. Let $f'_{\lambda} : S \to R$ be defined by $f'_{\lambda} = f'_{\eta} + c_{f(u_{\lambda})}e_{u_{\lambda}}$. So, $f'_{\lambda} \in A$ and we show that $f'_{\eta} \leq f'_{\lambda}$ and this implies that $f'_{\mu} \leq f'_{\lambda}$ for every $\mu < \lambda$.

In fact $0 \neq (f - f'_{\eta})(u_{\lambda}) = f(u_{\lambda})$ and it follows that $supp(f'_{\lambda} - f'_{\eta}) = supp(c_{f(u_{\lambda})}e_{u_{\lambda}}) = \{u_{\lambda}\}$. If $u \in supp(f'_{\eta})$, then by * $u < \pi(f - f'_{\eta}) = u_{\lambda} \in supp(f'_{\lambda} - f'_{\eta})$. Thus $f'_{\eta} \leq f'_{\lambda}$, if $f'_{\eta} = f'_{\lambda}$,

then $c_{f(u_{\lambda})}e_{u_{\lambda}} = 0$ which is a contradiction. If $f'_{\mu} = f'_{\lambda}$, then $f'_{\mu} \leq f'_{\eta} \leq f_{\lambda} = f'_{\mu}$ and $f'_{\lambda} = f'_{\eta}$ which is again a contradiction. Hence, $f'_{\mu} \neq f'_{\lambda}$ for each $\mu < \eta \leq \lambda$, and it can be easily shown that $f_{\lambda} = f - f'_{\lambda}$ is nilpotent and $f'_{\lambda}(u_m) = (c_{f(u_m)}e_{u_m})(u_m) = f(u_m) \in R$ is nilpotent for each $m \leq \lambda$.

If $f_{\lambda} = f - f'_{\lambda} = 0$, there is nothing to prove, otherwise there exists $u_{\xi} \in supp(f)$ such that $\pi(f - f'_{\lambda}) = u_{\xi}$ where $f'_{\lambda} = f'_{\eta} + c_{f(u_{\lambda})}e_{u_{\lambda}}$. Since, $(f - f'_{\lambda}) = f - f'_{\eta} - c_{f(u_{\lambda})}e_{u_{\lambda}}$ and $(f - f'_{\lambda})$ $(u_{\lambda}) = (f - f'_{\eta} - c_{f(u_{\lambda})}e_{u_{\lambda}})(u_{\lambda}) = f(u_{\lambda}) - f'_{\eta}(u_{\lambda}) - f(u_{\lambda}) = 0$ then $u_{\lambda} < u_{\xi}$. By the fact that $0 \neq (f - f'_{\lambda})$ $(u_{\xi}) = (f - f'_{\eta} - c_{f(u_{\lambda})}e_{u_{\lambda}})$ $(u_{\xi}) = (f - f'_{\eta})(u_{\xi})$, we have that, $u_{\xi} \in supp(f - f'_{\eta})$. Hence, $u_{\lambda} < u_{\xi}$ and $\pi(f - f'_{\eta}) < \pi(f - f_{\lambda})$ and this implies that $\pi(f - f'_{u}) < \pi(f - f'_{\lambda})$ for each $\mu < \lambda$.

Now, we show that $u < \pi(f - f_{\lambda})$ for each $u \in supp(f_{\lambda})$. In fact $supp(f_{\lambda}) = supp(f_{\eta} + c_{f(u_{\lambda})}e_{u_{\lambda}}) \subseteq supp(f_{\eta}) \cup supp(c_{f(u_{\lambda})}e_{u_{\lambda}})$. If $u \in supp(f_{\eta})$, then $u < \pi(f - f_{\eta})$ and if $u \in supp(c_{f(u_{\lambda})}e_{u_{\lambda}})$, then $u = u_{\lambda} = \pi(f - f_{\eta}) < \pi(f - f_{\lambda})$.

Now, let λ be a limit ordinal for the family $\{f_{\lambda} | \mu < \lambda\}$ of elements $f_{\mu}^{\rho} \in \Lambda$ it was proved in [14, 5.3] that there exists an element $b = \preceq -\sup(f_{\mu})_{\mu < \lambda} \in \Lambda$ such that

(i) $f'_{\mu} \leq b$ for every $\mu < \lambda$

(ii) If $b' \in A$ and $f'_{\mu} \leq b'$ for every $\mu < \lambda$, then $b \leq b'$.

Let $f'_{\lambda} = b = \preceq -\sup(f'_{\mu})_{\mu < \lambda}$. Then by i) we know that $f'_{\mu} \preceq f'_{\lambda}$ for every $\mu < \lambda, f_{\lambda} = f - f'_{\lambda}$ is a nilpotent element of Λ and that $f'_{\lambda}(u_m) \in \mathbb{R}$ is nilpotent for each $u_m \leq u_{\lambda}$. If $f'_{\mu} = f'_{\lambda}$, then $f'_{\mu} \preceq f'_{\mu+1} \preceq f'_{\lambda} = f'_{\mu}$ and $f'_{\mu} = f'_{\mu+1}$ which is a contradiction. Hence, $f'_{\mu} \neq f'_{\lambda}$ for every $\mu < \lambda$.

Since, $f - f'_{\lambda} = (f - f'_{\mu}) - (f'_{\lambda} - f'_{\mu})$ for every $\mu < \lambda$, then by [14, 5.3], $u_{\xi} = \pi(f - f'_{\lambda}) \ge \min\{\pi(f - f'_{\mu}), \pi(f'_{\lambda} - f'_{\mu})\}$. Note that, $\pi(f'_{\lambda} - f'_{\lambda}) = \pi(f'_{\lambda} - f'_{\lambda}) = \pi(f - f'_{\lambda}) - (f - f'_{\lambda})$

$$\pi(J_{\lambda} - J_{\mu}) = \pi(J_{\mu+1} - J_{\mu}) = \pi(J - J_{\mu}) - (J - J_{\mu+1})$$

$$\geq \min\{u_{\theta}, u_{\theta+1}\}$$

Hence, $u_{\xi} \ge u_{\theta}$ for all $\mu < \lambda$ and if $u_{\theta} \le u_{\theta+1} \le u_{\xi}$, then $u_{\theta} < u_{\xi}$.

We now show that $u < \pi(f - f'_{\lambda})$ for each $u \in supp(f'_{\lambda})$. In fact, $supp(f'_{\lambda}) = \bigcup_{\mu < \lambda} supp(f'_{\mu})$, then there exists an ordinal $\mu < \lambda$ such that $u \in supp(f'_{\mu})$, thus $u < u_{\mu} < u_{\lambda}$.

Hence, for μ , $v \in \Gamma$, $\mu < v$, then $u_{\mu} < u_{v}$ and we have that $|\{u_{\lambda}\}$ such that $\lambda \in \Gamma| = |\Gamma| > |S|$ which is a contradiction. So, $f = f_{\lambda}$ and the proposition is proved. \Box

Proposition 3.6. Suppose that *R* is a right Noetherian NI ring, *S* a strictly totally ordered monoid, and let $\Lambda = R[[S,w]]$. If *R* is *S*-compatible and $f \in \Lambda$ such that f(u) is nilpotent for each $u \in supp(f)$, then *f* is nilpotent.

Proof 9. Let $f \in A$ be such that f(u) is nilpotent for each $u \in supp(f)$ and *I* the ideal generated by $\{f(u) \mid u \in supp(f)\}$. Since, *R* is an NI right Noetherian ring, then by [19, Lemma 3.1] *I* is a finitely generated nilpotent ideal. Thus, there exists a positive integer *n* such that $I^n = (0)$. So, for each

$$(u_1, \dots, u_n) \in X_u(f, \dots, f)$$

 $f(u_1)w_{u_1}(f(u_2)) \cdots w_{u_1+u_2+\dots+u_{n-1}}(f(u_n)) = 0.$

Thus, $f^n(u) = \sum_{(u_1,\dots,u_n)\in X_n(f,\dots,f)} f(u_1)w_{u_1}(f(u_2))\cdots w_{u_1+u_2+\dots+u_{n-1}}$ $(f(u_n)) = 0$, for each $u \in S$ and it follows that f is nilpotent. \Box

We combine Propositions 3.5 and 3.6 to get the following.

Theorem 3.7. Suppose that *R* is a right Noetherian NI ring, *S* a strictly totally ordered monoid, and let $\Lambda = R[[S,w]]$. If *R* is *S*-compatible, then $f \in \Lambda$ is a nilpotent element if and only if $f(u) \in R$ is nilpotent for each $u \in \text{supp}(f)$.

Proof 10. Is clear. \Box

Lemma 3.8. Suppose that *R* is a right Noetherian NI ring, *S* a strictly totally ordered monoid, and let $\Lambda = R[[S,w]]$. If *R* is *S*-compatible and $X \subseteq R$, then $Nr_A(X) = Nr_R(X)[[S,w]]$ $(Nl_A(X) = Nl_R(X)[[S,w]])$

Proof 11. Suppose that $f \in Nr_R(X)[[S,w]]$. Thus $xf(u) \in nil(R)$ for each $x \in X$ and $u \in supp(f)$. Hence, $xf(u) = xw_0(-f(u)) = (c_xf)(u) \in nil(R)$ and using Proposition 3.6 $c_xf \in nil(\Lambda)$ for each $x \in X$. Therefore, $f \in Nr_A(X)$ and $Nr_R(X)[[S,w]] \subseteq Nr_A(X)$.

Conversely, suppose that $f \in Nr_A(X)$. Then $c_x f \in nil(\Lambda)$ for each $x \in X$. So, for each $u \in supp(f)$ and using Proposition 3.5 $(c_x f)(u) = xw_0 f(u) = xf(u) \in nil(R)$. Hence, for each $x \in X$, $f \in Nr_R(X)[[S, w]]$ and we can deduce that $Nr_A(X) \subseteq Nr_R(X)A$. Hence, $Nr_A(X) = Nr_R(X)[[S, w]]$

Lemma 3.8 supplies us with the following maps ϕ : $Nr_R(2^R) \rightarrow Nr_A(2^A)$ given by $\phi(I) = I[[S, w]]$ and ψ : $Nr_I(2^R) \rightarrow Nl_A(2^A)$ given by $\psi(J) = J[[S, w]]$. It is clear that both ϕ and ψ are injective maps. In the next theorem we will show that those maps are bijective.

Theorem 3.9. Suppose that R is an NI ring, S a strictly totally ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then

$$\phi: Nr_R(2^R) \to Nr_A(2^A)$$
 defined by $\phi(I) = I[[S, w]]$
 $(\psi: Nr_l(2^R) \to Nl_A(2^A)$ defined by $\psi(J) = J[[S, w]])$

is bijective.

Proof 12. It is sufficient to show that $\phi(\psi)$ is a surjective map.

Suppose that $V \subseteq \Lambda$ and $f \in Nr_A(V)$. Then $gf \in nil(\Lambda)$ for each $g \in V$. Using Proposition 3.5 $(gf)(w) \in nil(R)$ for each $w \in supp(gf) \subseteq supp(g) + supp(f)$. Since, S is a totally ordered monoid, let $\pi(g) = v_0$ and $\pi(f) = u_0$. Then

$$(gf)(v_0 + u_0) = g(v_0)w_{v_0}f(u_0) + \sum_{(v_i, u_i) \in X_{v_0 + u_0}(g, f) - \{(v_0, u_0)\}} g(v_i)w_{v_i}f(u_i)$$

Since, $\pi(g) = v_0$ and $\pi(f) = u_0$, then for some *i*, $v_i > v_0$ and $u_i > u_0$. Therefore $v_0 + u_0 > v_i + u_0 = v_0 + u_0$ and it follows that $v_0 = v_i$ and $u_0 = u_i$ for each *i*. Therefore, $(gf)(v_0 + u_0) =$

 $g(v_0)w_{u_0}f(u_0)$ is nilpotent and using Lemma 3.3 it follows that $g(v_0)f(u_0)$ is nilpotent. Hence $f(u_0)g(v_0)$ is nilpotent.

Now, suppose that g(v)f(u), hence f(u)g(v), is nilpotent for each $u \in supp(f)$ and $v \in supp(g)$ such that $u + v < w \in supp(gf)$. Using the transfinite induction we show that f(u)g(v) and g(v)f(u) are nilpotent for each u + v = w. Since, $X_w(g,f) = \{(v,u)| u + v = w \text{ where } v \in supp(g) \text{ and } u \in supp(f)\}$ is a finite subset. Then let

$$X_w(g,f) = \{(v_i, u_i) | i = 1, \dots, n\}$$

By assumption, *S* is a totally ordered monoid, then *S* is a cancellative monoid. Let $u_1 < u_2 < \cdots < u_n$ if $u_1 = u_2$ and $u_1 + v_1 = u_2 + v_2$, then $v_1 = v_2$. As < is strictly order if $u_1 < u_2$ and $u_1 + v_1 = u_2 + v_2$ it must $v_1 > v_2$ and it follows that $v_1 > v_2 > \cdots > v_n$.

Now, from the above ordering on v_i and u_i it follows that $(gf)(w) = g(v_1)w_{v_1}(f(u_1)) + g(v_2)w_{v_2}(f(u_2))$

$$+\cdots+g(v_n)(w_{v_n}(f(u_n)))\in nil(R)$$

Hence

$$g(v_1)w_{v_1}(f(u_1)) = (gf)(w) - g(v_2)w_{v_2}(f(u_2)) - \dots - g(v_n)(w_{v_n}(f(u_n))) \in nil(R)$$

and for $i \ge 2$ it follows that $u_1 + v_i < v_i + u_i$, then by induction hypothesis we have $g(v_i)f(u_1)$ and $f(u_1)g(v_i)$ are nilpotent elements, then multiply from the left side by $f(u_1)$ it follows that

$$f(u_1)g(v_1)w_{v_1}(f(u_1)) = f(u_1)gf(w) - f(u_1)g(v_2)w_{v_2}(f(u_2)) - f(u_1)g(v_n)w_{v_n}(f(u_n))$$

Since, *R* is an NI, then nil(R) is an ideal and by induction $f(u_1)g(v_1)w_{v_1}(f(u_i))$ is a nilpotent element again as *R* is *S*-compatible it follows that $f(u_1)g(v_1)f(u_1)$ is nilpotent. Hence, $f(u_1)g(v_1)$ and $g(v_1)f(u_1)$ are nilpotent. Therefore, multiplying ** from the left by $f(u_2) \cdots f(u_n)$ respectively yields $f(u_i)g(v_i)$ and $g(v_i)f(u_i)$ are nilpotent for each $u_i \in supp(f)$ and $v_i \in supp(g)$. Consequently, $f \in Nr_R(C(g))[[S,w]]$ for each $g \in V$ and it follows that $f \in Nr_R(C(V))[[S,w]]$. Hence, $Nr_A(V) \subseteq Nr_R(C(V))[[S,w]]$ and ϕ is a surjective map. \Box

Theorem 3.10. Suppose that R is a right Noetherian NI ring, S a strictly totally ordered monoid, and let $\Lambda = R[[S,w]]$. If R is S-compatible, then R is a right (left) weak zip ring if and only if Λ is a right (left) weak zip ring.

Proof 13. Suppose that Λ is a right weak zip ring and $X \subseteq R$ such that $Nr_R(X) \subseteq nil(R)$. Let $Y = \{c_x \in \Lambda | x \in X\}$ and $0 \neq f \in Nr_A(Y)$. Then $c_x f \in nil(\Lambda)$ for each $c_x \in Y$ and $x \in X$. Using Proposition 3.5 $(c_x f)(u) = xw_0(f(u_0)) = xf(u) \in nil(R)$ for each $u \in supp(f)$.

Hence, $f(u) \in Nr_R(X) \subseteq nil(R)$ for each $u \in supp(f)$. Then using Proposition 3.6 $f \in nil(\Lambda)$. Therefore, $Nr_A(Y) \subseteq nil(\Lambda)$. Since Λ is a right weak zip ring, then it follows that there exists finite subset $Y_0 \subseteq Y$ such that $Nr_A Y_0 \subseteq nil(\Lambda)$, where $Y_0 = \{c_{x_i} | i = 1, ..., n\}$ and $X_0 = \{x_i | i = 1, ..., n\}$. Let $f \in Nr_A$ (Y_0) , then $c_{x_i}f \in nil(\Lambda)$ for each $c_{x_i} \in Y_0$ and using Lemma 3.5 it follows that $(c_{x_i}f)(u) = x_iw_0(f(u)) = x_if(u) \in nil(R)$ for each $u \in supp(f)$ and $x_i \in X_0 \subseteq X$ So, $T = \bigcup_{f \in Nr_A} Y\{f(u) | u \in supp(f)\} \subseteq nil(R)$ and R is right weak zip ring. Since, *R* is an NI ring then $f(u)w_u(a) = (fc_a)(u) \in nil(R)$ for each $u \in supp(f)$. Then using Proposition 3.6 $fc_a \in nil(\Lambda)$. Hence $c_a \in Nr_A(Y) \subseteq nil(\Lambda)$. Therefore, using Lemma 3.5 $a \in nil(R)$. Thus, $Nr_R(T) \subseteq nil(R)$.

Since, *R* is a right weak zip ring there exists a finite subset $T_0 \subseteq T$ such that $Nr_R(T_0) \subseteq nil(R)$. Hence for each $t \in T_0$, there exist $f_t \in Y$ such that $t \in \{f_t(u) \mid u \in supp(f_t)\}$. Let Y_0 be a minimal subset of *Y* which contains each f_t such that $t \in T_0$ and it clear that Y_0 is finite subset. Let $T_1 = \bigcup_{f_t \in Y_0} \{f_t(u) \mid u \in supp(f_t)\}$. Hence $T_0 \subseteq T_1$ and $Nr_R(T_1) \subseteq Nr_R(T_0) \subseteq nil(R)$.

Now, suppose that $g \in Nr_A(Y_0)$, then $fg \in nil(\Lambda)$ for each $f \in Y_0$. Using Proposition 3.5 $(fg)(w) \in nil(R)$ for each $w \in supp(fg)$. Tracing the same procedure used in Theorem 3.9 we can show that f(u)g(v) is nilpotent for each $u \in supp(f)$ and $v \in supp(g)$. Consequently $g(v) \in Nr_R(T_1) \subseteq nil(R)$ for each $v \in supp(g)$, then using Proposition 3.6 $g \in nil(\Lambda)$.

Hence $Nr_A(Y_0) \subseteq nilA$ and A is a right weak zip ring. \Box

Acknowledgement

I'd like to express my deepest gratitude to the referee for drawing my attention to some recent results, also for simplifying the proof of a theorem.

References

- J.A. Beachy, W.D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1) (1975) 1–13.
- [2] W. Cortes, Skew polynomial extensions over zip rings, Int. J. Math. Math. Sci. 10 (2008) 1–8.

- [3] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Commun. Algebra 19 (7) (1991) 1867–1892.
- [4] E. Hashemi, A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (3) (2005) 207–224.
- [5] A.M. Hassanien, R.M. Salem, M. Farahat, Prüfer domains of generalized power series, J. Egypt. Math. Soc. 15 (1) (2007) 11– 19.
- [6] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (1) (2002) 45– 52.
- [7] C.Y. Hong, N.K. Kim, T.K. Kwak, Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (3) (2005) 231–242.
- [8] L. Ouyang, Ore extensions of weak zip rings, Glasgow Math. J. 51 (2009) 525–537.
- [9] G. Marks, R. Mazurek, M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010) 361–397.
- [10] R. Mazurek, M. Ziembowski, On Von Neumann regular rings of skew generalized power series, Commun. Algebra 36 (5) (2008) 1855–1868.
- [11] M.B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997) 14–17.
- [12] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg 61 (1991) 15– 33.
- [13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992) 293–312.
- [14] R.M. Salem, Prüer rings of generalized power series, Southeast Asian Bull. Math. 33 (2009) 527–534.
- [15] R.M. Salem, Zip and weak zip rings of generalized power series, Southeast Asian Bull. Math., in press.
- [16] J.M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Am. Math. Soc. 57 (2) (1976) 213–216.
- [17] L. Zhongkui, Special properties of rings of generalized power series, Commun. Algebra 32 (8) (2004) 3215–3226.
- [18] L. Zhongkui, R. Zhao, On weak Armendariz rings, Commun. Algebra 34 (2006) 2607–2616.