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Abstract In this paper we show under certain conditions that the skew generalized power series

R[[S,w]] is a right zip (weak zip) ring if and only if R is a right zip (weak zip) ring.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

Throughout this paper R denotes an associative ring with iden-
tity. Recall from Faith [3] that R is a right zip ring if the right

annihilator rR(X) of a subset X ˝ R is zero, then rR(X0) = 0 for
a finite subset X0 of X, equivalently for a left ideal L of R if
rR(L) = 0, then there exists a finitely generated left ideal

L1 ˝ L such that rR(L1) = 0. Although the concept of zip rings
was initiated by Zelmanowitz [17] it was not called so at that
time. However, He showed that any ring satisfying the
descending chain condition on right annihilators is a right

zip ring but the converse is not true.
Extensions of zip rings were studied by several authors. In

[1] Beach and Blair showed that if R is a commutative zip ring,
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then R[x] is a zip ring. The pioneering paper [12] introduced
the notion of an Armendariz ring: a ring R is called Armenda-

riz if whenever polynomials f ¼
Pn

i¼0aix
i and g ¼

Pm
j¼0bjx

j

2 R½x� satisfy fg= 0, then aibj = 0 for each 0 6 i 6 n and
0 6 j 6 m. In Hong et al. [7, Theorem 1] showed that if R is

an Armendariz ring, then R is a right zip ring if and only if
R[x] is a right zip ring.

Rege and Chhawchharia in [12] motivated the other

researchers to adapt the Armendariz condition for different
extensions. Cortes in [2] defined and extended the condition
for skew polynomial rings (R[x,r]), skew Laurant polynomial
rings (R[x,x�1,r]), skew power series rings (R[[x,r]]), and skew

Laurant power series rings (R[[x,x�1,r]]). These extensions
share the right zip property with the base rings satisfying the
corresponding Armendariz condition. In Zhongkui [18] ex-

tended the notion of an Armendariz ring to the generalized
power series ring K = [[RS,6]], where (S,6) is a commutative
strictly ordered monoid as follows: whenever f,g 2 [[RS,6]]

such that fg= 0, then f(s)g(t) = 0 for all s 2 supp(f) and
t 2 supp(g).

In Marks et al. [10] unified all versions of Armendariz rings
and called it (S,w)-Armendariz ring as follows. For a ring R,

(S,6) a strictly ordered monoid, and w:S fi (End R,+) a
monoid homomorphism, whenever fg= 0 for f,g in the skew
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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generalized power series ring R[[S,w]] , then f(s)ws(g(t)) = 0
for all s 2 supp(f) and t 2 supp(g).

Motivated by the above Ouyang in [8] introduced the no-

tion of right weak zip rings (i.e., rings provided that if the right
weak annihilator of a subset X of R, NrR(X) ˝ nil(R), then
there exists a finite subset X0 ˝ X such that NrR(X0) ˝ nil(R)),

where nil(R) is the set of all nilpotent elements of R and
NrR(X) = {a 2 RŒxa 2 nil(R) for each x 2 X}. The author in
[8] studied the transfer of the right (left) weak zip property be-

tween the base ring R and Ore extension R[x,r,d], where r is
an endomorphism and d is a r-derivation. A ring R is called
r-compatible if for each x,y 2 R,xy= 0 () xry= 0. In
this case it is clear that r is a monomorphism. A ring R is

called NI if nil(R) forms an ideal, i.e., if the set of all nilpotent
elements forms an ideal. Ribenboim studied extensively rings
of generalized power series (see [13,14]). In [11] Mazurek and

Ziembowski generalized Ribenboim construction and intro-
duced a twisted version of the generalized power series rings
as follows.

Let (S,+,6) be a strictly ordered monoid, R a ring, w:
S fi End(R) a monoid homomorphism and let ws = w(s) de-
notes the image of s 2 S under w for any s 2 S. Consider the

set K of all maps f:S fi R such that supp(f) = {s 2 SŒf(s) „ 0}
is Artinian and narrow subset of S, i.e., every strictly decreas-
ing sequence of elements of supp(f) is finite and every subset of
pairwise order-incomparable elements of supp(f) is finite with

pointwise addition and product operation called convolution
defined by

ðfgÞðsÞ ¼
X

ðu;vÞ2Xsðf;gÞ
fðuÞwuðgðvÞÞ for each f; g 2 K

where Xs(f,g) = {(u,v) 2 S · SŒu + v= s, f(u), and g(v) „ 0} is
finite.

Hence, K = R[[S,w]] becomes a ring called skew general-
ized power series with coefficients in R and exponents in S,

for more details on the structure of K = R[[S,w]] (see[11]).
Let p(f) denotes the set of all minimal elements of supp(f). If

(S,6) is totally ordered, then p(f) consists of only one element

which is still denoted by p(f). Let T = C(f) be the content of f
i.e., C(f) = {f(s)Œs 2 supp(f)}. Since, R . cR we can identify,
the content of f with

cCðfÞ ¼ fcfðuiÞjui 2 suppðfÞg# K:

For any nonempty subset X ˝ R, let X[[S,w]] =

{f 2 KŒf(s) 2 X [ {0} for each s 2 supp(f)}.
The motivation of this paper is to continue the studying of

the transfer of some algebraic properties between the base ring

R and the generalized power series ring [[RS,6]] (see [5,15]) also
to extend the results of Cortes [2], Oynang [8] and Salem [16] to
the skew generalized power series over zip and weak zip rings.
2. Skew generalized power series over zip rings

Hirano [6], Cortes [2] and Ouyang [8] studied the relation be-

tween the right annihilators of R and those of R[x] and
R[x,r,d] respectively. In [10] Marks et al presented a charac-
terization theorem for (S,w)-Armendariz rings in terms of

one-sided annihilator and for the sake of completeness of this
note we give a version of [10, Theorem 3.4].
Let R be a ring, (S,6) a strictly ordered monoid and
w:S fi End(R) a monoid homomorphism. R is called
S-compatible if ws is compatible for every s 2 S. In fact ws is

a monomorphism for each s 2 S (see [4]).

Lemma 2.1. Suppose that R is a ring, S a strictly ordered
monoid, and let K = R[[S,w]]. If R is S-compatible and

U � R, then

rKðUÞ ¼ rRðUÞ½½S;w�� ðlKðUÞ ¼ lRðUÞ½½S;w��Þ:

Proof 1. Let f 2 rK(U). Then 0 = cuf for each u 2 U. So,

0 = (cuf)(s) = uw0(f(s)) = uf(s) for each s 2 supp(f). Conse-
quently, f(s) 2 rR(u) for each s 2 supp(f). Hence, f 2 rR(U)
[[S,w]] and it follows that rK(U) ˝ rR(U)[[S,w]].

Conversely, let f 2 rR(U)[[S,w]]. Then 0 = Uf(s) for each
s 2 supp(f). So, for each u 2 U, 0 = uf(s) = uw0(f(s)) =

(cuf)(s). Hence, f 2 rK(u) and it follows that rR(U)
[[S,w]] ˝ rK(U).

Consequently, rK(U) = rR(U)[[S,w]]. h

Using Lemma 2.1 we have the map /: rR(2
R) fi rK(2

K) de-

fined by /(I) = I[[S,w]] for every I 2 rR(2
R) and the map w:

lR(2
R) fi lk(2

K) defined by w(J) = J[[S,w]] for every J 2 lR(2
R)

without any condition on R, where rR(2
R) = {rR(U)ŒU ˝

R}(lR(2
R) = {lR(U)ŒU ˝ R}). Obviously / (w) is injective. In

the following lemma we show that / (w) is a bijective map if
and only if R is an (S,w)-Armendariz ring.

Lemma 2.2. Suppose that R is a ring, S a strictly ordered

monoid, and let K = R[[S,w]]. If R is S-compatible, then the
following are equivalent:

(1) R is an (S,w)-Armendariz ring.
(2) /:rR(2

R) fi rK(2
K) defined via /(I) = I[[S,w]]

(w:lK(2
R) fi lK(2

K) defined via w(J) = J[[S,w]]) is a

bijective map.

Proof 2. 1) 2

Let Y ˝ K and T = [f2YC(f) = [f2Y{f(s)Œs 2 supp(f)}

From Lemma 2.1 it is sufficient to show that

rK(f) = rRC(f)[[S,w]] for each f 2 Y. So, let g 2 rK(f), it follows
that fg = 0. Since, R is an (S,w)-Armendariz ring and
S-compatible, then 0 = f(u)wu(g(v)) = f(u)g(v) for each
u 2 supp (f) and v 2 supp(g).

So, for a fixed u 2 supp(f) and each v 2 supp(g), 0 = f(u)g(v)
and it follows that g 2 rRf(u)[[S,w]]. Consequently, g 2 rRC(f)

[[S,w]], hence rK(f) ˝ rRC(f)[[S,w]].

Conversely, let g 2 rRC(f)[[S,w]], hence f(u)g(v) = 0 for
each u 2 supp(f) and v 2 supp(g). Since R is S-compatible, then
0 = f(u)wu(g(v)) for each u 2 supp(f) and v 2 supp(g). So,
ðfgÞðsÞ ¼

P
ðu;vÞ2Xsðf;gÞfðuÞwugðvÞ ¼ 0. Therefore, g 2 rKf and it

follows that rRC(f)[[S,w]] ˝ rK(f).

Hence,
rK(Y) = \ f2YrKf= \ f2YrRC(f)[[S,w]] = rR(T)[[S,w]].

2) 1



On zip and weak zip rings of skew generalized power series 159
Let f,g 2 K be such that fg= 0 then using Lemma 2.1

g 2 rK(f) = T[[S,w]] for some right ideal T of R. Hence, g(v)
2 T for each v 2 supp(g). So, 0 = fcg(v). Thus, 0 =
(fcg(v))(u) = f(u)wu(g(v))) for each u 2 supp(f). Therefore, R is

a (S,w)-Armendariz ring. h

Now, we are ready to prove the main result of this section.

Theorem 2.3. Suppose that R is an (S,w) Armendariz ring, S a

strictly ordered monoid, and let K = R[[S,w]]. If R is S-
compatible, then R is a right (left) zip ring if and only if K is a
right (left) zip ring.

Proof 3. Suppose K is right zip and X ˝ R satisfies rR(X) = 0.
Let Y= {cxŒx 2 X}, then rK(Y) = 0 by Lemma 2.1. Since K is
right zip, rKðcx1 ; . . . ; cxnÞ ¼ 0 for some x1, . . . ,xn 2 X.

Now Lemma 2.1 shows that rR(x1, . . . ,xn) = 0. Hence R is

right zip.

Conversely, suppose R is right zip and Y ˝ K satisfies
rK(Y) = 0. Let T = C(Y) be the content of Y, then rR(T) = 0
by [10, Theorem 3.4]. Since R is right zip, rR(t1, . . . , tn) = 0 for
some t1, . . . , tn 2 T. For any i 2 {1, . . . ,n} there exists fi 2 Y

with ti 2 fi(s). Set Y0 = {f1, . . . , fn}. Since {t1, . . . , tn} ˝ C(Y0),
rR(C(Y0)) = 0 and thus rK = 0 by [10, Theorem 3.4]. Hence K
is right zip. h
3. Skew generalized power series over weak zip rings

The following results introduce some properties of S-compat-
ible rings.

Lemma 3.1. Suppose that R is a ring, S a strictly ordered

monoid, and let K = R[[S,w]]. If R is S-compatible, then we
have the following:

(i) If ab = 0, then ws(a)b = 0 and awt(ws(b)) = awt+s

(b) = 0 for every s, t 2 S.
ii) If ws(a)b = 0 for some s 2 S, then ab = 0.

Proof 4

(i) Suppose that ab= 0, then for each s 2 S,

0 = ws(ab) = ws(a)ws(b). Since R is S-compatible, then
ws(a)b = aws(b) = 0. Again since, R is a S-compatible,
then for each t 2 S, 0 = awt(ws(b)) = awt+s(b).

(ii) Suppose that ws(a)b = 0. Since, R is S-compatible in

fact it is a monomorphism, then 0 = ws(a)b = w-

s(a)ws(b) = ws(ab). Hence, ab= 0. h

Let fkws
¼ ws þ w2s þ � � � þ wks�1 denotes the map which is

the sum of endomorphisms where k is a positive integer. Then

we can deduce the following.

Lemma 3.2. Suppose that R is a ring, S a strictly ordered
monoid, and let K = R[[S,w]]. If R is S-compatible, then

ab = 0 implies that 0 ¼ afkws
ðbÞ ¼ awsðbÞ þ aw2sðbÞ þ � � � þ

awks�1ðbÞ
Proof 5. Since, R is S-compatible, then for each s 2 S

aws(b) = 0. Thus by Lemma 3.1 aw2s(b) = 0, and it follows
that 0 = aws(b) + aw2s(b) + � � �+ awks�1(b). h

Lemma 3.3. Suppose that R is a ring, S a strictly ordered
monoid, and let K = R[[S,w]]. If R is S-compatible and

aws(b) is nilpotent, then ab is nilpotent.

Proof 6. Since, aws(b) is nilpotent, then there exists an integer
k such that (aws(b))

k = aws(b)aws(b) � � � aws(b) = 0
(k � times). Since, R is S-compatible, then
0 ¼ awsðbÞawsðbÞ � � � awsðbÞab ¼ awsðbÞawsðbÞ � � � awsðbabÞ
¼ awsðbÞawsðbÞ � � � abab

Continuing on this process we can deduce that 0 = (ab)k and

the lemma is proved. h

Lemma 3.4. Suppose that R is an NI ring, S a strictly ordered
monoid, and let K =R[[S,w]]. If R is S-compatible, then ab 2
nil(R) implies that aws(b) 2 nil(R).

Proof 7. Since, ab is nilpotent, then there exists an integer k
such that (ab)k = 0. We use the S-compatibility of R many
times. Hence

0 ¼ ðabÞk ¼ abab � � � abab k� times ¼ awsðbab � � � ababÞ
¼ awsðbÞwsðabab � � � ababÞ ¼ awsðbÞðabab � � � ababÞ
¼ awsðbÞawsðbab � � � ababÞ ¼ awsðbÞawsðbÞab � � � ab

Continuing on this process it can be easily shown that
0 = (awsb)

k and the lemma is proved. h

Proposition 3.5. Suppose that R is an NI ring and S a strictly

totally ordered monoid. If R is S-compatible and f 2 K =
R[[S,w]] is nilpotent, then f(u) is nilpotent for each
u 2 supp(f).

Proof 8. Suppose that f 2 K is a nilpotent element, hence there
exists k 2 N such that fk = 0, i.e., supp(fk) = /. Since, S is a
totally ordered monoid, let p(f) = u0.

Therefore, 0 ¼ fkðku0Þ ¼ fðu0Þwu0 fðu0Þw2u0 fðu0Þ � � �wðk�1Þu0 fðu0ÞþP
ðt1 ;...;tkÞ2Xku0

�fðu0 ;u0 ; . . . ; u0Þgfðt1Þwt1 fðt2Þ � � �wt1þ���þtk�1 fðtkÞ.

Since, p(f) = u0, then for some i 2 {1, . . . ,k}, ti > u0.

Hence,

ku0 = u0 + � � �+ u0 < t1 + � � �+ ti + � � �+ tk = u0 + � � �+
u0 a contradiction. So, ti = u0 for each i 2 {1, . . . ,k}.

Consequently, 0 ¼ fkðku0Þ ¼ fðu0Þwu0 fðu0Þ � � �wðk�1Þu0 fðu0Þ.
Since, R is S-compatible, then by freely using Lemma 3.3

it follows that 0 = (f(u0))
k and f(u0) is a nilpotent element

of R.

Consider now, f ¼ ðf� cfðu0Þeu0Þ þ cfðu0Þeu0 ¼ ðf� f00Þþ f00 ¼
f0 þ f00, where suppðf� f00Þ ¼ suppðfÞ � fu0g and suppðf00Þ ¼
suppðcfðu0Þeu0Þ ¼ fu0g.
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Hence, 0 ¼ fk ¼ ðf0 þ f00Þ
k ¼ ðf0 þ f00Þðf0 þ f00Þ � � � ðf0 þ f00Þ

¼ fk0 þ f0f
0k�1
0 þ � � � þ f0k�10 f0 þ f20f

0k�2
0 þ f0f

0k�2
0 f0 þ � � � þ f0k0

¼ fk0 þ Dþ f0k0 , where suppðf0k0 Þ# suppðf00Þ þ � � � þ suppðf00Þ
k-times # ksuppðf00Þ ¼ fku0g.

Thus f0k0 ðku0Þ ¼ fðu0Þwu0 fðu0Þw2u0 fðu0Þ � � �wðk�1Þu0 fðu0Þ and
by freely using Lemma 3.3 f0k0 ðku0Þ ¼ ðfðu0ÞÞ

k ¼ 0 and f00 is
nilpotent.

Now, it is clear that D is the sum of monomials each

monomial is the product of ‘copies of f0 and (k � ‘) copies of
f00, where supp each monomial ˝ the sum of ‘ copies of supp(f0)
and (k � ‘) copies of suppðf00Þ.

Since, f00ðu0Þ ¼ fðu0Þ is nilpotent and R is an NI ring, then
nilpotent elements of R form an ideal. Therefore it can be

easily shown that each monomial is a nilpotent element of K
and it follows that f0 is also nilpotent.

If f ¼ f00, then f 2 K is a nilpotent element of K and
f00ðu0Þ ¼ ðcfðu0Þeu0Þðu0Þ ¼ fðu0Þ is a nilpotent element of R and
there is nothing to prove.

So, suppose that 0 – f0 ¼ f� f00 and pðf0Þ ¼ pðf� f00Þ ¼ ui.

Since, 0 – ðf� f00ÞðuiÞ ¼ ðf� cfðu0Þeu0ÞðuiÞ ¼ fðuiÞ and
f0ðu0Þ ¼ ðf� f00Þðu0Þ ¼ ðf� cfðu0Þeu0Þðu0Þ ¼ fðu0Þ � fðu0Þeu0
ðu0Þ ¼ fðu0Þ � fðu0Þ ¼ 0 then u0 < ui.

Since, f0 is nilpotent, then there exists a positive integer k0

such that ðf0Þk
0
¼ 0,

using the same procedure above it can be easily shown that

0 ¼ fk00 ðk0uiÞ ¼ ðfðuiÞÞ
k0. Continuing on this process f ¼ fl þ f0l,

where f0l : S! R is defined by f0lðumÞ ¼ ðcfðumÞeumÞðumÞ ¼ fðumÞ
which is nilpotent for each um 2 supp(f), m 6 l and fl is a
nilpotent element of K. Let pðflÞ ¼ pðf� f0lÞ ¼
pðf� cfðulÞeul Þ ¼ uh; ul < uh.

Using [14, 5.3] we can define a relation on K called section
relation for f0l and f0m 2 K as follows:

(i) f 0l � f 0m if l < m
(ii) pðf � f 0lÞ < pðf � f 0mÞ, where l < m
(iii) u < pðf � f 0lÞ for each u 2 suppðf 0lÞ
(iv) fl ¼ f � f 0l 2 K is nilpotent and f 0lðumÞ 2 R is nilpotent

for each um 2 supp(f), m 6 l.

Let * denotes the section relation � with the above proper-
ties. Let a be an ordinal such that card a > cardŒsupp fŒ and C
the set of all ordinals k < a. We show that for each k 2 C there

exists f0k 2 K such that * is satisfied. In fact let k 2 C and as-

sume that we have already found the element f0l 2 K for every

l < k satisfying * for ordinals l < m < k.
Now, we will determine an element f0k, where * is satisfied

for l < m 6 k. Suppose that there exists an ordinal g such that
k = g + 1. If f� f0g ¼ 0, then f ¼ f0g is nilpotent. Thus

f0gðumÞ ¼ ðcfðumÞeumÞðumÞ ¼ fðumÞ 2 R is nilpotent for each

um 2 supp(f), m 6 g and there is nothing to prove.

Hence, suppose that fg ¼ f� f0g – 0, and let
pðfgÞ ¼ pðf� f0gÞ ¼ uk. Let f0k : S! R be defined by

f0k ¼ f0g þ cfðukÞeuk
. So, f0k 2 K and we show that f0g � f0k and this

implies that f0l � f0k for every l < k.
In fact 0 – ðf� f0gÞðukÞ ¼ fðukÞ and it follows that
suppðf0k � f0gÞ ¼ suppðcfðukÞeuk

Þ ¼ fukg. If u 2 suppðf0gÞ, then by *

u < pðf� f0gÞ ¼ uk 2 suppðf0k � f0gÞ. Thus f0g � f0k, if f0g ¼ f0k,
then cfðukÞeuk

¼ 0 which is a contradiction. If f0l ¼ f0k, then

f0l � f0g � f0k ¼ f0l and f0k ¼ f0g which is again a contradiction.
Hence, f0l – f0k for each l < g 6 k, and it can be easily shown
that fk ¼ f� f0k is nilpotent and f0kðumÞ ¼ ðcfðumÞeumÞðumÞ ¼
fðumÞ 2 R is nilpotent for each m 6 k.

If fk ¼ f� f0k ¼ 0, there is nothing to prove, otherwise there
exists un 2 supp(f) such that pðf� f0kÞ ¼ un where

f0k ¼ f0g þ cfðukÞeuk
. Since, ðf� f0kÞ ¼ f� f0g � cfðukÞeuk

and ðf� f0kÞ
ðukÞ ¼ ðf� f0g � cfðukÞeuk

ÞðukÞ ¼ fðukÞ � f0gðukÞ � fðukÞ ¼ 0 then

uk < un. By the fact that 0 – ðf� f0kÞ ðunÞ ¼ ðf� f0g � cfðukÞeuk
Þ

ðunÞ ¼ ðf� f0gÞðunÞ, we have that, un 2 suppðf� f0gÞ. Hence,

uk < un and pðf� f0gÞ < pðf� fkÞ and this implies that

pðf� f0lÞ < pðf� f0kÞ for each l < k.
Now, we show that u < pðf� f0kÞ for each u 2 suppðf0kÞ. In

fact suppðf0kÞ ¼ suppðf0g þ cfðukÞeuk
Þ# suppðf0gÞ [ suppðcfðukÞeuk

Þ.
If u 2 suppðf0gÞ, then u < pðf� f0gÞ and if u 2 suppðcfðukÞeuk

Þ,
then u ¼ uk ¼ pðf� f0gÞ < pðf� f0kÞ.

Now, let k be a limit ordinal for the family ff0kjl < kg of ele-
ments f0l 2 K it was proved in [14, 5.3] that there exists an ele-

ment b ¼� � supðf0lÞl<k 2 K such that

(i) f 0l � b for every l < k

(ii) If b0 2 K and f 0l � b0 for every l < k, then b � b0.

Let f0k ¼ b ¼� � supðf0lÞl<k. Then by i) we know that f0l � f0k
for every l < k; fk ¼ f� f0k is a nilpotent element of K and that

f0kðumÞ 2 R is nilpotent for each um 6 uk. If f0l ¼ f0k, then

f0l � f0lþ1 � f0k ¼ f0l and f0l ¼ f0lþ1 which is a contradiction.

Hence, f0l – f0k for every l < k.
Since, f� f0k ¼ ðf� f0lÞ � ðf0k � f0lÞ for every l < k, then by

[14, 5.3], un ¼ pðf� f0kÞP minfpðf� f0lÞ; pðf0k � f0lÞg. Note

that,

pðf0k � f0lÞ ¼ pðf0lþ1 � f0lÞ ¼ pðf� f0lÞ � ðf� f0lþ1Þ
P minfuh; uhþ1g

Hence, un P uh for all l < k and if uh 6 uh+1 6 un, then
uh < un.

We now show that u < pðf� f0kÞ for each u 2 suppðf0kÞ. In
fact, suppðf0kÞ ¼ [l<ksuppðf0lÞ, then there exists an ordinal

l < k such that u 2 suppðf0lÞ, thus u < ul < uk.

Hence, for l, m 2 C, l < m, then ul < um and we have that
Œ{uk} such that k 2 CŒ = ŒCŒ > ŒSŒ which is a contradiction.
So, f ¼ f0k and the proposition is proved. h

Proposition 3.6. Suppose that R is a right Noetherian NI ring, S
a strictly totally ordered monoid, and let K =R[[S,w]]. If R is
S-compatible and f 2 K such that f(u) is nilpotent for each

u 2 supp(f), then f is nilpotent.

Proof 9. Let f 2 K be such that f(u) is nilpotent for each
u 2 supp(f) and I the ideal generated by {f(u)Œu 2 supp(f)}.
Since, R is an NI right Noetherian ring, then by [19, Lemma

3.1] I is a finitely generated nilpotent ideal. Thus, there exists
a positive integer n such that In = (0).
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So, for each

ðu1; . . . ; unÞ 2 Xuðf; . . . ; fÞ
fðu1Þwu1ðfðu2ÞÞ � � �wu1þu2þ���þun�1ðfðunÞÞ ¼ 0:

Thus, fnðuÞ ¼
P
ðu1 ;...;unÞ2Xnðf;...;fÞfðu1Þwu1ðfðu2ÞÞ � � �wu1þu2þ���þun�1

ðfðunÞÞ ¼ 0, for each u 2 S and it follows that f is nilpotent. h

We combine Propositions 3.5 and 3.6 to get the following.

Theorem 3.7. Suppose that R is a right Noetherian NI ring, S a
strictly totally ordered monoid, and let K = R[[S,w]]. If R is

S-compatible, then f 2 K is a nilpotent element if and only if
f(u) 2 R is nilpotent for each u 2 supp(f).

Proof 10. Is clear. h

Lemma 3.8. Suppose that R is a right Noetherian NI ring, S a

strictly totally ordered monoid, and let K = R[[S,w]]. If R is
S-compatible and X ˝ R, then NrK(X) = NrR(X)[[S,w]]
(NlK(X) = NlR(X)[[S,w]])

Proof 11. Suppose that f 2 NrR(X)[[S,w]]. Thus xf(u) 2 nil(R)
for each x 2 X and u 2 supp(f). Hence, xf(u) = xw0(-
f(u)) = (cxf)(u) 2 nil(R) and using Proposition 3.6 cxf 2 nil(K)
for each x 2 X. Therefore, f 2 NrK(X) and NrR(X)[[S,w]] ˝
NrK(X).

Conversely, suppose that f 2 NrK(X). Then cxf 2 nil(K) for

each x 2 X. So, for each u 2 supp(f) and using Proposition 3.5
(cxf)(u) = xw0f(u) = xf(u) 2 nil(R). Hence, for each x 2 X,
f 2 NrR(X)[[S,w]] and we can deduce that NrK(X) ˝ NrR(X)K.

Hence, NrK(X) = NrR(X)[[S,w]] h

Lemma 3.8 supplies us with the following maps /
:NrR(2

R) fi NrK(2
K) given by /(I) = I[[S,w]] and

w:Nrl(2
R) fi NlK(2

K) given by w(J) = J[[S,w]]. It is clear that
both / and w are injective maps. In the next theorem we will

show that those maps are bijective.

Theorem 3.9. Suppose that R is an NI ring, S a strictly totally
ordered monoid, and let K = R[[S,w]]. If R is S-compatible,
then

/ : NrRð2RÞ ! NrKð2KÞ defined by /ðIÞ ¼ I½½S;w��

ðw : Nrlð2RÞ ! NlKð2KÞ defined by wðJÞ ¼ J½½S;w��Þ

is bijective.

Proof 12. It is sufficient to show that / (w) is a surjective map.

Suppose that V ˝ K and f 2 NrK(V). Then gf 2 nil(K) for
each g 2 V. Using Proposition 3.5 (gf)(w) 2 nil(R) for each

w 2 supp(gf) ˝ supp(g) + supp(f). Since, S is a totally ordered
monoid, let p(g) = v0 and p(f) = u0. Then

ðgfÞðv0 þ u0Þ ¼ gðv0Þwv0 fðu0Þ þ
X

ðvi ;uiÞ2Xv0þu0 ðg;fÞ�fðv0 ;u0Þg
gðviÞwvi fðuiÞ

Since, p(g) = v0 and p(f) = u0, then for some i, vi > v0 and

ui > u0. Therefore v0 + u0 > vi + u0 = v0 + u0 and it follows
that v0 = vi and u0 = ui for each i. Therefore, ðgfÞðv0 þ u0Þ ¼
gðv0Þwu0 fðu0Þ is nilpotent and using Lemma 3.3 it follows that

g(v0)f(u0) is nilpotent. Hence f(u0)g(v0) is nilpotent.

Now, suppose that g(v)f(u), hence f(u)g(v), is nilpotent for
each u 2 supp(f) and v 2 supp(g) such that u + v <
w 2 supp(gf). Using the transfinite induction we show that

f(u)g(v) and g(v)f(u) are nilpotent for each u+ v = w. Since,
Xw(g, f) = {(v,u)Œu + v= w where v 2 supp(g) and
u 2 supp(f)} is a finite subset. Then let

Xwðg; fÞ ¼ fðvi; uiÞj i ¼ 1; . . . ; ng

By assumption, S is a totally ordered monoid, then S is a can-
cellative monoid. Let u1 < u2 < � � �< un if u1 = u2 and
u1 + v1 = u2 + v2, then v1 = v2. As < is strictly order if

u1 < u2 and u1 + v1 = u2 + v2 it must v1 > v2 and it follows
that v1 > v2 > � � �> vn.

Now, from the above ordering on vi and ui it follows that

ðgfÞðwÞ ¼ gðv1Þwv1ðfðu1ÞÞ þ gðv2Þwv2ðfðu2ÞÞ
þ � � � þ gðvnÞðwvnðfðunÞÞÞ 2 nilðRÞ

Hence

gðv1Þwv1ðfðu1ÞÞ ¼ ðgfÞðwÞ � gðv2Þwv2ðfðu2ÞÞ
� � � � � gðvnÞðwvnðfðunÞÞÞ 2 nilðRÞ

and for i P 2 it follows that u1 + vi < vi + ui, then by induc-
tion hypothesis we have g(vi)f(u1) and f(u1)g(vi) are nilpotent
elements, then multiply from the left side by f(u1) it follows
that

fðu1Þgðv1Þwv1ðfðu1ÞÞ ¼ fðu1ÞgfðwÞ � fðu1Þgðv2Þwv2ðfðu2ÞÞ
� fðu1ÞgðvnÞwvnðfðunÞÞ

Since, R is an NI, then nil(R) is an ideal and by induction

fðu1Þgðv1Þwv1ðfðuÞÞ is a nilpotent element again as R is S-com-

patible it follows that f(u1)g(v1)f(u1) is nilpotent. Hence,
f(u1)g(v1) and g(v1)f(u1) are nilpotent. Therefore, multiplying
** from the left by f(u2) � � � f(un) respectively yields f(ui)g(vi)

and g(vi)f(ui) are nilpotent for each ui 2 supp(f) and
vi 2 supp(g). Consequently, f 2 NrR(C(g))[[S,w]] for each
g 2 V and it follows that f 2 NrR(C(V))[[S,w]]. Hence,

NrK(V) ˝ NrR(C(V))[[S,w]] and / is a surjective map. h

Theorem 3.10. Suppose that R is a right Noetherian NI ring, S a
strictly totally ordered monoid, and let K = R[[S,w]]. If R is
S-compatible, then R is a right (left) weak zip ring if and only

if K is a right (left) weak zip ring.
Proof 13. Suppose that K is a right weak zip ring and X ˝ R
such that NrR(X) ˝ nil(R). Let Y = {cx 2 KŒx 2 X} and

0 „ f 2 NrK(Y). Then cxf 2 nil(K) for each cx 2 Y and x 2 X.
Using Proposition 3.5 (cxf)(u) = xw0(f(u0)) = xf(u) 2 nil(R)
for each u 2 supp(f).

Hence, f(u) 2 NrR(X) ˝ nil(R) for each u 2 supp(f). Then
using Proposition 3.6 f 2 nil(K). Therefore, NrK(Y) ˝ nil(K).

Since K is a right weak zip ring, then it follows that there exists
finite subset Y0 ˝ Y such that NrKY0 ˝ nil (K), where
Y0 ¼ fcxi ji ¼ 1; . . . ; ng and X0 = {xiŒi= 1, . . . ,n}. Let f 2 NrK
(Y0), then cxi f 2 nilðKÞ for each cxi 2 Y0 and using Lemma 3.5 it

follows that ðcxi fÞðuÞ ¼ xiw0ðfðuÞÞ ¼ xifðuÞ 2 nilðRÞ for each

u 2 supp(f) and xi 2 X0 ˝ X So, T ¼ [f2NrKYffðuÞju 2
suppðfÞg# nilðRÞ and R is right weak zip ring.
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Conversely, assume that R is a right weak zip ring and

Y ˝ K such that NrK(Y) ˝ nil(K). Let T = C(Y) be the content
of Y and a 2 NrR(T), then f(u)a 2 nil R for each u 2 supp(f).

Since, R is an NI ring then f(u)wu(a) = (fca)(u) 2 nil(R) for
each u 2 supp(f). Then using Proposition 3.6 fca 2 nil(K).
Hence ca 2 NrK(Y) ˝ nil(K). Therefore, using Lemma 3.5

a 2 nil(R). Thus, NrR(T) ˝ nil(R).

Since, R is a right weak zip ring there exists a finite subset

T0 ˝ T such that NrR(T0) ˝ nil(R). Hence for each t 2 T0, there
exist ft 2 Y such that t 2 {ft(u)Œu 2 supp(ft)}. Let Y0 be a
minimal subset of Y which contains each ft such that t 2 T0

and it clear that Y0 is finite subset. Let T1 ¼ [ft2Y0
fftðuÞju 2

suppðftÞg. Hence T0 ˝ T1 and NrR(T1) ˝ NrR(T0) ˝ nil(R).

Now, suppose that g 2 NrK(Y0), then fg 2 nil(K) for each
f 2 Y0. Using Proposition 3.5 (fg)(w) 2 nil(R) for each
w 2 supp(fg). Tracing the same procedure used in Theorem

3.9 we can show that f(u)g(v) is nilpotent for each u 2 supp(f)
and v 2 supp(g). Consequently g(v) 2 NrR(T1) ˝ nil(R) for each
v 2 supp(g), then using Proposition 3.6 g 2 nil(K).

Hence NrK(Y0) ˝ nilKand K is a right weak zip ring. h
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