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In this paper we show under certain conditions that the skew generalized power series
R[[S,w]] is a right zip (weak zip) ring if and only if R is a right zip (weak zip) ring.
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1. Introduction

Throughout this paper R denotes an associative ring with iden-
tity. Recall from Faith [3] that R is a right zip ring if the right
annihilator rz(X) of a subset X < R is zero, then rp(Xy) = 0 for
a finite subset Xy of X, equivalently for a left ideal L of R if
rr(L) = 0, then there exists a finitely generated left ideal
L, c Lsuch that rg(L;) = 0. Although the concept of zip rings
was initiated by Zelmanowitz [17] it was not called so at that
time. However, He showed that any ring satisfying the
descending chain condition on right annihilators is a right
zip ring but the converse is not true.

Extensions of zip rings were studied by several authors. In
[1] Beach and Blair showed that if R is a commutative zip ring,
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then R[x] is a zip ring. The pioneering paper [12] introduced
the notion of an Armendariz ring: a ring R is called Armenda-
riz if whenever polynomials /="' jax" and g =Y " b/
€ R[x] satisfy fg = 0, then a; = 0 for each 0 <i<n and
0 <j< m. In Hong et al. [7, Theorem 1] showed that if R is
an Armendariz ring, then R is a right zip ring if and only if
R[x] is a right zip ring.

Rege and Chhawchharia in [12] motivated the other
researchers to adapt the Armendariz condition for different
extensions. Cortes in [2] defined and extended the condition
for skew polynomial rings (R[x,o]), skew Laurant polynomial
rings (R[x,x~', 6]), skew power series rings (R[[x, ¢]]), and skew
Laurant power series rings (R[[x,x ',o]]). These extensions
share the right zip property with the base rings satisfying the
corresponding Armendariz condition. In Zhongkui [18] ex-
tended the notion of an Armendariz ring to the generalized
power series ring A = [[R5<]], where (S, <) is a commutative
strictly ordered monoid as follows: whenever f,g € [[R><]]
such that fg = 0, then f{(s)g(r) = 0 for all s & supp(f) and
1 € supp(g).

In Marks et al. [10] unified all versions of Armendariz rings
and called it (S, w)-Armendariz ring as follows. For a ring R,
(S,<) a strictly ordered monoid, and w:S — (End R, +) a
monoid homomorphism, whenever fg = 0 for f,g in the skew
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generalized power series ring R[[S,w]] , then f{(s)w,(g(¢)) = 0
for all s € supp(f) and t € supp(g).

Motivated by the above Ouyang in [8] introduced the no-
tion of right weak zip rings (i.e., rings provided that if the right
weak annihilator of a subset X of R, Nrg(X) < nil(R), then
there exists a finite subset Xy < X such that Nrg(Xy) c nil(R)),
where nil(R) is the set of all nilpotent elements of R and
Nrg(X) = {a € Rl xa € nil(R) for each x € X}. The author in
[8] studied the transfer of the right (left) weak zip property be-
tween the base ring R and Ore extension R[x,o,d], where o is
an endomorphism and ¢ is a o-derivation. A ring R is called
g-compatible if for each x,y€ R,xy = 0 < xoy = 0. In
this case it is clear that ¢ is a monomorphism. A ring R is
called NI if nil(R) forms an ideal, i.e., if the set of all nilpotent
elements forms an ideal. Ribenboim studied extensively rings
of generalized power series (see [13,14]). In [11] Mazurek and
Ziembowski generalized Ribenboim construction and intro-
duced a twisted version of the generalized power series rings
as follows.

Let (S, +,<) be a strictly ordered monoid, R a ring, w:
S — End(R) a monoid homomorphism and let w; = w(s) de-
notes the image of s € S under w for any s € S. Consider the
set A of all maps £:S — R such that supp(f) = {s € S f(s) # 0}
is Artinian and narrow subset of S, i.e., every strictly decreas-
ing sequence of elements of supp(f) is finite and every subset of
pairwise order-incomparable elements of supp(f) is finite with
pointwise addition and product operation called convolution
defined by

(f)(s)= > flwyw.(g(v)) foreachf,ge 4

(uv)eXs(f.g)

where X (f,g) = {(u,v) € Sx Su+v= s, flu), and g(v) # 0} is
finite.

Hence, A = R[[S,w]] becomes a ring called skew general-
ized power series with coefficients in R and exponents in S,
for more details on the structure of A = R[[S,w]] (see[11]).

Let 7(f) denotes the set of all minimal elements of supp(f). If
(S, <) is totally ordered, then n(f) consists of only one element

which is still denoted by n(f). Let T = C(f) be the content of f

ie., C(f) = {f(s) s € supp(f)}. Since, R = cx we can identify,
the content of f with

ccy) = {¢pului € supp(f)} C A.

For any nonempty subset Xc R, let
{fe A fis) € XU {0} for each s € supp(f)}.

The motivation of this paper is to continue the studying of
the transfer of some algebraic properties between the base ring
R and the generalized power series ring [[RS<]] (see [5,15]) also
to extend the results of Cortes [2], Oynang [8] and Salem [16] to
the skew generalized power series over zip and weak zip rings.

XIS, wl] =

2. Skew generalized power series over zip rings

Hirano [6], Cortes [2] and Ouyang [8] studied the relation be-
tween the right annihilators of R and those of R[x] and
R[x,0,0] respectively. In [10] Marks et al presented a charac-
terization theorem for (S,w)-Armendariz rings in terms of
one-sided annihilator and for the sake of completeness of this
note we give a version of [10, Theorem 3.4].

Let R be a ring, (S,<) a strictly ordered monoid and
w:S — End(R) a monoid homomorphism. R 1is called
S-compatible if w, is compatible for every s € S. In fact wy is
a monomorphism for each s € S (see [4]).

Lemma 2.1. Suppose that R is a ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible and
UcC R, then

ra(U) = rr(U)[[S,w]]  (14(U) = [r(U)[[S, w]]).

Proof 1. Let f€r (U). Then 0 = ¢,f for each u€ U. So,
0 = (¢, )(s) = uwo(f(s)) = uf(s) for each s € supp(f). Conse-
quently, f{(s) € rr(u) for each s € supp(f). Hence, f€ rg(U)
[[S,w]] and it follows that r(U) < rx(O)[[S, w]].

Conversely, let '€ rp(U)[[S,w]]. Then 0 = Uf(s) for each
s € supp(f). So, for each ue U, 0= uf(s) = uwy(f(s)) =
(c.f)(s). Hence, fery(u) and it follows that rz(U)
[[S, wll < ra(V).

Consequently, r4(U) = rr(O)[S,w]]l. O

Using Lemma 2.1 we have the map ¢: rp(2%) — r,(2%) de-
fined by ¢(I) = I[[S,w]] for every I € rg(2%) and the map :
[r(2%) = 1,2 defined by y(J) = J[[S,w]] for every J € Iz(2%)
without any condition on R, where rg(2%) = {rp(U) Uc
RY(IR(2%) = {ZR(U)| U c R}). Obviously ¢ (¥) is injective. In
the following lemma we show that ¢ () is a bijective map if
and only if R is an (S, w)-Armendariz ring.

Lemma 2.2. Suppose that R is a ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible, then the

following are equivalent:

(1) Ris an (S,w)-Armendariz ring.

) derr(2%) = ra(2Y)  defined via  §(1) = I[[S.w]]
(Yl (28) = 1,(21) defined via W(J) = J[[S,w]]) is a
bijective map.

Proof 2. 1 =2
Let YcAand T = UpeyC(f) = Upe fs) s € supp(f)}

From Lemma 2.1 it is sufficient to show that
rA(f) = rrCHILS, w]] for each f'€ Y. So, let g € r,(f), it follows
that fg = 0. Since, R is an (S,w)-Armendariz ring and
S-compatible, then 0 = flu)w,(g(v)) = flu)g(v) for each
u € supp (f) and v € supp(g).

So, for a fixed u € supp(f) and each v € supp(g), 0 = f(u)g(v)

and it follows that g € rgf(u)[[S,w]]. Consequently, g € rzC(f)
[[S, w]], hence r4(f) < rrCNILS, w]].

Conversely, let g € rprC(H[[S,w]], hence f(u)g(v) = 0 for
each u € supp(f) and v € supp(g). Since R is S-compatible, then
0 = fluyw,(g(v)) for each u € supp(f) and v € supp(g). So,
(18)(5) = X (unex, g /()wug(v) = 0. Therefore, g € r,f and it
follows that rxC()[[S, w]] < rA(f).

Hence,

rA(Y) = N geytaf = N ey rCOIUS, Il = rr(DILS, w]l-

2=1
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Let f,g € A be such that fg = 0 then using Lemma 2.1
g ery(f) = T[S,w]] for some right ideal T of R. Hence, g(v)
€T for each vesupp(g). So, 0 = fcey. Thus, 0=
(feg)(u) = fluyw,(g(v))) for each u € supp(f). Therefore, R is
a (S,w)-Armendariz ring. 0O

Now, we are ready to prove the main result of this section.

Theorem 2.3. Suppose that R is an (S,w) Armendariz ring, S a
strictly ordered monoid, and let A = R[[S,w]]. If R is S-
compatible, then R is a right (left) zip ring if and only if A is a
right (left) zip ring.

Proof 3. Suppose A is right zip and X c R satisfies rz(X) = 0.
Let ¥ = {cJ x € X}, then r,(Y) = 0 by Lemma 2.1. Since A is

right zip, r4(cy,...,¢y,) =0 for some xj,...,x,€X.
Now Lemma 2.1 shows that rg(xy,...,x,) = 0. Hence R is
right zip.

Conversely, suppose R is right zip and Y c A satisfies
ra(Y) = 0. Let T = C(Y) be the content of Y, then rg(7) = 0
by [10, Theorem 3.4]. Since R is right zip, rg(ti,...,t,) = 0 for
some fq,...,t, € T. For any i€ {1,...,n} there exists f;€ Y
with ¢; € fi(s). Set Yo = {f1,....fn}. Since {¢#1,...,t,} < C(Yy),
rr(C(Yyp)) = 0 and thus r4, = 0 by [10, Theorem 3.4]. Hence A
is right zip. O

3. Skew generalized power series over weak zip rings

The following results introduce some properties of S-compat-
ible rings.

Lemma 3.1. Suppose that R is a ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible, then we
have the following:

(1) If ab = 0, then wy(a)b = 0 and aw,(wy(b)) = aw,+
(b) = 0 for every s,t € S.
i) If we(a)b = 0 for some s € S, then ab = 0.

Proof 4

(i) Suppose that ab =0, then for each s,
0 = wy(ab) = wya)wy(b). Since R is S-compatible, then
wya)b = awy(b) = 0. Again since, R is a S-compatible,
then for each 1 € S, 0 = aw,(wy(b)) = aw,; (D).

(i) Suppose that wya)b = 0. Since, R is S-compatible in
fact it is a monomorphism, then 0 = wya)b = w-
s@wy(b) = wy(ab). Hence, ab = 0. [

Let f5 =wg+wa + -+ wi_y denotes the map which is
the sum of endomorphisms where k is a positive integer. Then
we can deduce the following.

Lemma 3.2. Suppose that R is a ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible, then
ab = 0 implies that 0= afﬁ,v(b) = aws(b) + awa(b) + -+
awks—1(b) ’

Proof 5. Since, R is S-compatible, then for each s€ S
awyb) = 0. Thus by Lemma 3.1 aw,y(b) = 0, and it follows
that 0 = awy(b) + awyy(b) + -+ + awi,_1(b). O

Lemma 3.3. Suppose that R is a ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible and
awg(b) is nilpotent, then ab is nilpotent.

Proof 6. Since, awy(b) is nilpotent, then there exists an integer
k such that (aw(B)F = awy(B)aw(b) - - awy(b) = 0
(k — times). Since, R is S-compatible, then

0 = aws(b)awy(b) - - - awy(b)ab = aws(b)aws(b) - - - awy(bab)
= aw,(b)aw,(b) - - - abab

Continuing on this process we can deduce that 0 = (ab)* and
the lemma is proved. [

Lemma 3.4. Suppose that R is an NI ring, S a strictly ordered
monoid, and let A = R[[S,w]]. If R is S-compatible, then ab €
nil(R) implies that awy(b) € nil(R).

Proof 7. Since, ab is nilpotent, then there exists an integer k
such that (ab)* = 0. We use the S-compatibility of R many
times. Hence

0 = (ab)" = abab - - - abab k — times = aw,(bab - - - abab)
= aw(b)w(abab - - - abab) = aw(b)(abab - - - abab)
= awy(b)aws(bab - - - abab) = aw(b)aw,(b)ab - - - ab

Continuing on this process it can be easily shown that
0 = (aw,b)* and the lemma is proved. O

Proposition 3.5. Suppose that R is an NI ring and S a strictly
totally ordered monoid. If R is S-compatible and fe A =
R[[S,w]] is nilpotent, then f(u) is nilpotent for each
u € supp(f).

Proof 8. Suppose that /'€ A is a nilpotent element, hence there
exists k € N such that /5 = 0, i.e., supp(f) = ¢. Since, S is a
totally ordered monoid, let n(f) = u,.

0 = f*(kuo) = f(uo) Wuo f(tt0) Wauy/t10) -+ Wite— 100/ (140) +
cos g U)W f(62) - Wiy ).

Since, n(f) = uyp, then for some i € {1,...,k}, t; > up.

Therefore,

Hence,
kuo=u0+~~~+u0<t1+~-~+tl-+-~-+tk=u0+~~~+
ug a contradiction. So, t; = uq for each i € {1,...,k}.

Consequently, 0 = f*(kuo) = f{uo) Wi f(tt0) - =+ W(g 1)/ (tt0)-
Since, R is S-compatible, then by freely using Lemma 3.3
it follows that 0 = (f{ug))* and flue) is a nilpotent element
of R.

Consider now, f'= (f_ C/(llo)euo) + Cfug) uy = (f_ﬂ))'i_ ﬂ) =

Jo + /1y, where supp(f — f,) = supp(f) — {uo} and supp(f;)) =

Supp(cf(uo)euo) = {u()}



160

R.M. Salem

Hence, 0=/=(fo+fy)" = (fo+/0)(fo+ /o) - (fo+1)
:fié +f0f6k—1 4. _~_f6k—lﬁ) +f(2)f6k72 +f0f6k72ﬁ) 4. +j6k
=f+A+fF, where  supp(fif) Csupp(fy) + - - - + supp(fy)

k-times C ksupp(fy) = {kuo}.

Thus 6k(ku()) :j(uo)wuuf(uo)wzl,(j(uo) cee 1v5k,1)14J(u0) and
by freely using Lemma 3.3 f§(kup) = (f(up))" =0 and fj is
nilpotent.

Now, it is clear that 4 is the sum of monomials each
monomial is the product of fcopies of fy and (k — ¢) copies of
Jo» where supp each monomial c the sum of ¢ copies of supp(fo)
and (k — ¢) copies of supp(f;).

Since, f;(u9) = f(uo) is nilpotent and R is an NI ring, then
nilpotent elements of R form an ideal. Therefore it can be
easily shown that each monomial is a nilpotent element of A
and it follows that f; is also nilpotent.

If f=/;, then fe A is a nilpotent element of A and
Jo(uo) = (cfug)eus ) (1) = fluo) is a nilpotent element of R and
there is nothing to prove.

So, suppose that 0 # f, = f— f; and =(fo) = n(f — f;) =

Since, 0 # (f — fo) (i) = (f = cpup)eu ) (i) = fluy) and
Jo(uo) = (f = fo) (uo) = (f = cpupyeus) (o) = fluo) — fluo)ew,
(uo) = fluo) — flug) = 0 then uy < u,.

Since, fy is mlpotent then there exists a positive integer &’
such that (f))" =

using the same procedure above it can be easily shown that
0=f&Ku) = (f(;))¥'. Continuing on this process f'= fu + f}»
where‘f;l : S — R is defined by‘fu(um) = (CHlum)Cun ) (Um) = flth)
which is nilpotent for each u,, € supp(f), m < u and f, is a
nilpotent element of A Let n(fy) ==n(-f)=

n(f— ) €uty )=

Using [14, 5.3] we can define a relation on A called section
relation forf;l and f, € A as follows:

ug, uy < up.

() fp 2 fyifp <
(i) n(f Sp) <n(f = 1)), where p <'v
(i) u < n(f /) for each u € supp(f})
(iv) fu =f —f, € A is nilpotent and f;(u,) € R is nilpotent
for each u, € supp(f), m < p.

Let * denotes the section relation < with the above proper-
ties. Let o be an ordinal such that card o > card supp # and I’
the set of all ordinals 4 < a. We show that for each 1 € I' there
exists f;, € A such that * is satisfied. In fact let 2 € I" and as-
sume that we have already found the element f| € A for every
1 < A satisfying * for ordinals u < v < A.

Now, we will determine an element f,, where * is satisfied
for u < v < A. Suppose that there exists an ordinal # such that
A=n+ 1. If f—f =0, then f=/ is nilpotent. Thus
Sy (W) = (Cfun) €y, ) (Unm) = flu,) € R is milpotent for each
Uy, € supp(f), m < n and there is nothing to prove.

Hence, suppose that f,=f —ﬂ] #0, and let
n(fy) =n(f—f,) =u.. Let f,:S—R be defined by
Sy =1+ ¢ruew,- So, f; € A and we show that f, < f; and this
implies that f < f; for every p < Z.

In fact 0# (f—/)(w;)=f(u;) and it follows that
supp(f;, — 1) = supp(cpuyen,) = {u}. If u € supp(f,), then by *

u<n(f—f)=uw €supp(f, —f,). Thus f, < f,, if f, =1,
then cyy,)e,, =0 which is a contradlctlon If f’ f;, then
fu 2, 2=/, and f; = f, which is again a contradlctlon
Hence, f, # f; for each u < n < 4, and it can be easily shown
that f; =f—f, is nilpotent and f;(un) = (cru,)€u,)(Um) =
Sfluy,) € R is nilpotent for each m < 4.

If f, = f— f, = 0, there is nothing to prove, otherwise there
exists  u; € supp(f) such that =w(f—f,) =u: where
Lo =1+ Cunew Sinee, (f=f)) =f =1, = ¢ruew, and (f = 1)
() = (f =1, = crupew ) (wz) = flw) = f,(uz) — flu;) = 0 then
u; < ue. By the fact that 0% (f—f,) (u:) = (f—}”n — Cfu)Cu;)
(ue) = (f = f;)(ue), we have that, u: € supp(f—f,). Hence,
u; < ug and n(f—/f,) <n(f—f;) and this implies that
n(f—f,) < =(f—f,) for each u < A.

Now, we show that u < n(f'— f,) for each u € supp(f;). In
fact  supp(f;) = supp(f, + cpuyew,) C supp(f,) U supp(cpue,)-
If uesupp(f,), then u < n(f—f) and if u € supp(cpu,en,),
then u=u, = n(f - f,) < n(f 1))

Now, let / be a limit ordinal for the family {/f;|u < A} of ele-
ments j;l € A it was proved in [14, 5.3] that there exists an ele-
ment b =< — sup(fL) € A such that

n<i

(@) f, S bforevery u < 4

(i) If ' € A and f; =< b’ for every u < A, then b <X &'

Letf, =b==<— sup(/’L)’K/ Then by i) we know that f, < f}
for every u < 4,f; = f— f, is a nilpotent element of A and that
fi(un) € R is nilpotent for each un <uy. It f, =f,, then
Sy 3 S =1, and f, =f,., which is a contradiction.
Hence, f, # f; for every pu < L.

Since, f—f, = (f—f,) — (f; = f,) for every u < 4, then by
[14, 53], wu:=n(f—f) = mln{n(f f“) n(f, afﬂ)}. Note
that,
alfy = f) = 7l =) =7l =1) = (= f0)

> min{up, tgy1 }

Hence, u; >
ug < Ue.

We now show that u < n(f'— f;) for each u € supp(f;). In
fact, supp(f,) = U,L<;vsupp(}”ﬂ), then there exists an ordinal
u < Asuch that u € supp(fﬂ), thus u < u, < u,.

Hence, for u, veI', u < v, then u, < u, and we have that
| {u;} such that eIl =|11 > |8 which is a contradiction.
So, /= f, and the proposition is proved. [

ug for all u < 2 and if wuy<upr1 < ug then

Proposition 3.6. Suppose that R is a right Noetherian NI ring, S
a strictly totally ordered monoid, and let A = R[[S,w]]. If Ris
S-compatible and f€ A such that f(u) is nilpotent for each
u € supp(f), then f is nilpotent.

Proof 9. Let f€ A be such that f{u) is nilpotent for each
u € supp(f) and I the ideal generated by {f(u)| u € supp(f)}.
Since, R is an NI right Noetherian ring, then by [19, Lemma
3.1] I is a finitely generated nilpotent ideal. Thus, there exists
a positive integer n such that I = (0).
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So, for each
(1. yun) € Xu(fs. ., 0)
f(ul)wlq (f(uZ)) © Wity (f(un)) =0.

Thus, f'(u) = Z(ul,...,u,,)EX”(f;..., (w)wa, (f(2)) = Way s s
(flu,)) = 0, for each u € S and it follows that fis nilpotent. [

We combine Propositions 3.5 and 3.6 to get the following.

Theorem 3.7. Suppose that R is a right Noetherian NI ring, S a
strictly totally ordered monoid, and let A = R[[S,w]]. If R is

S-compatible, then f€ A is a nilpotent element if and only if

f(u) € R is nilpotent for each u € supp(f).
Proof 10. Is clear. O

Lemma 3.8. Suppose that R is a right Noetherian NI ring, S a
strictly totally ordered monoid, and let A = R[[S,w]]. If R is
S-compatible and X c R, then Nr,(X) = Nrp(X)[[S,w]]
(NIs(X) = NIg(X)[[S.w]])

Proof 11. Suppose that f€ Nrgr(X)[[S,w]]. Thus xf(u) € nil(R)
for each xe€ X and wuesupp(f). Hence, xf(u) = xwo(-
fw) = (¢, )(u) € nil(R) and using Proposition 3.6 ¢.f € nil(A)
for each x € X. Therefore, f€ Nr (X) and Nrp(X)[[S,w]] <
NrA(X).

Conversely, suppose that f'€ Nr,(X). Then ¢, f € nil(A) for
each x € X. So, for each u € supp(f) and using Proposition 3.5
(ex)(w) = xwof(lu) = xf(u) € nil(R). Hence, for each x¢€ X,
f€ Nrp(X)[[S,w]] and we can deduce that Nr,(X) < Nrr(X)A.
Hence, Nr (X) = Nrr(X[[S,w]] O

Lemma 3.8 supplies us with the following maps ¢
Nrp(2®) = Nry2%  given by @) = I[[S,w]] and
YiNr2®) — N1L,(27) given by y(J) = JI[S,w]]. It is clear that
both ¢ and  are injective maps. In the next theorem we will
show that those maps are bijective.

Theorem 3.9. Suppose that R is an NI ring, S a strictly totally
ordered monoid, and let A = R[[S,w]]. If R is S-compatible,
then

¢ : Nrp(2®) — Nr,(2") defined by ¢(1) = I][S, w]]

(4 : Nry(28) — NI, (2") defined by v (J) = J[[S, w]])

is bijective.

Proof 12. It is sufficient to show that ¢ (i) is a surjective map.

Suppose that V< A and f€ Nr (V). Then gf € nil(A) for
each g € V. Using Proposition 3.5 (gf)(w) € nil(R) for each
w € supp(gf) < supp(g) + supp(f). Since, S is a totally ordered
monoid, let n(g) = vy and n(f) = uy. Then

(&) (vo + o) = g(vo)wy fluo) + g(vi)wyf(u;)

(vitti)€ Xy +uq (8)—{(vo.u0) }

Since, n(g) = vy and n(f) = ugy, then for some i, v; > vy and
u; > ugy. Therefore vy + uy > v; + ug = vy + ug and it follows
that vy = v; and uy = u; for each i. Therefore, (gf)(vo + 1) =

g(vo)wy,f(up) is nilpotent and using Lemma 3.3 it follows that
g(vo)f(up) is nilpotent. Hence f(up)g(vo) is nilpotent.

Now, suppose that g(v)f(u), hence f(u)g(v), is nilpotent for
each wue€supp(fy and vesupp(g) such that u + v <
w € supp(gf). Using the transfinite induction we show that
f(w)g(v) and g(v)f(u) are nilpotent for each u + v = w. Since,
Xog.p)={vuwlu+v=w where v € supp(g) and
u € supp(f)} is a finite subset. Then let

X.(g,f) = {(Via u;)l

By assumption, S is a totally ordered monoid, then S is a can-
cellative monoid. Let u; < up, < --- < wu, if uy = u, and
uy + vy = uy + vy, then vy = v,. As < is strictly order if
u; < up and u; + v; = up + v, it must v; > v, and it follows
that v > vy > -+ >y,

Now, from the above ordering on v; and u; it follows that

(gf)(w) = g(vi)w,, (flur)) + g(v2)wy, (A1)
+ o+ g(v) (wy, (fun))) € mil(R)

i=1,...,n}

Hence

gwy, (flwn)) = (&N (w) — g(na)ws, (Awa))
— - = g(n)(wy, (1)) € nil(R)

and for i > 2 it follows that u; + v; < v; + u;, then by induc-
tion hypothesis we have g(v;)f(u;) and f(u;)g(v;) are nilpotent
elements, then multiply from the left side by f{u;) it follows
that

San)g(vi)wy, (flur)) = flun)gfw) — flur)g(va) wy, (fuz))
= flu)ga)wy, (Aun))

Since, R is an NI, then nil(R) is an ideal and by induction
Slu)g(vi)wy, (f(uy) is a nilpotent element again as R is S-com-
patible it follows that f{u;)g(v;)f(x#;) is nilpotent. Hence,
flu)g(vy) and g(v)f(u;) are nilpotent. Therefore, multiplying
** from the left by f{u,) - - - f(u,) respectively yields f{u;)g(v,)
and g(v)f(u;) are nilpotent for each w; € supp(f) and
v; € supp(g). Consequently, f€ Nrr(C(g))[[S,w]] for each
geV and it follows that fe Nrp(C(V))[S,w]]. Hence,
Nr(V) < Nrr(C(V))[[S,w]] and ¢ is a surjective map. [

Theorem 3.10. Suppose that R is a right Noetherian NI ring, S a
strictly totally ordered monoid, and let A = R[[S,w]]. If R is
S-compatible, then R is a right (left) weak zip ring if and only
if A is a right (left) weak zip ring.

Proof 13. Suppose that A is a right weak zip ring and X € R
such that Nrgx(X)cnil(R). Let Y = {c,c Alxe X} and
0#f€ Nry(Y). Then c,f € nil(A) for each ¢, € Y and x € X.
Using Proposition 3.5 (¢, f)(u) = xwo(fug)) = xf(u) € nil(R)
for each u € supp(f).

Hence, f(u) € Nrgr(X) cnil(R) for each u € supp(f). Then
using Proposition 3.6 f € nil(A). Therefore, Nr,(Y) < nil(A).
Since A is a right weak zip ring, then it follows that there exists
finite subset Yo Y such that Nr,Yycnil (A), where
Yo={cyli=1,...,n} and Xy = {x]i=1,...,n}. Let f€ Nr,
(Yo), then ¢y f € nil(A) for each ¢y, € Yy and using Lemma 3.5 it
follows that (cyf)(u) = x;wo(f(u)) = xif(u) € nil(R) for each
uecsupp(f) and x;€eXocX So, T =Uwen,y{f(u)uec
supp(f)} Cnil(R) and R is right weak zip ring.
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Conversely, assume that R is a right weak zip ring and
Y < A such that Nr,(Y) c nil(A). Let T = C(Y) be the content
of Y and a € Nrg(T), then f(u)a € nil R for each u € supp(f).

Since, R is an NI ring then flu)w,(a) = (fc,)(u) € nil(R) for
each u € supp(f). Then using Proposition 3.6 fc, € nil(A).
Hence ¢, € Nr(Y) c nil(A). Therefore, using Lemma 3.5
a € nil(R). Thus, Nrg(T) c nil(R).

Since, R is a right weak zip ring there exists a finite subset
To < T such that Nrg(T,) < nil(R). Hence for each ¢ € Ty, there
exist f; € Y such that re {fi(u)lu e supp(f;})}. Let Y, be a
minimal subset of Y which contains each f; such that ¢ € T
and it clear that Yy is finite subset. Let T = Uy, {fi(u)|u €
supp(f;)}. Hence Ty < T and Nrg(Ty) < Nrgr(To) C nil(R).

Now, suppose that g € Nr,(Yy), then fg € nil(A) for each
f€ Y, Using Proposition 3.5 (fg)(w) <€ nil(R) for each
w € supp(fg). Tracing the same procedure used in Theorem
3.9 we can show that f(u)g(v) is nilpotent for each u € supp(f)
and v € supp(g). Consequently g(v) € Nrg(T,) c nil(R) for each
v € supp(g), then using Proposition 3.6 g € nil(A).

Hence Nr4(Y,) c nilAand A is a right weak zip ring. [
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