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Abstract In this paper, the sampled measurement is used to estimate the neuron states, instead of

the continuous measurement, and a sampled-data estimator is constructed. Leakage delay is used to

unstable the neuron states. It is a challenging task to develop delay dependent condition to estimate

the unstable neuron states through available sampled output measurements such that the error-state

system is globally asymptotically stable. By constructing Lyapunov–Krasovskii functional (LKF), a

sufficient condition depending on the sampling period is obtained in terms of linear matrix inequal-

ities (LMIs). Moreover, by using the free-weighting matrices method, simple and efficient criterion

is derived in terms of LMIs for estimation.
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1. Introduction

Cellular neural networks (CNNs), proposed by Chua and

Yang in [1,2] have been extensively studied both in theory
and in applications. Based on traditional CNN, the fuzzy cel-
lular neural networks (FCNNs) have been introduced at the
first time in 1996, proposed by Yang in [3,4]. The FCNN is
a fuzzy neural networks which integrates fuzzy logic into the

structure of traditional CNN. It is a very useful tool in image
processing and pattern recognition. However, the existence of
time delays may lead to the instability or bad performance of

systems [5–7]. So, it is of prime importance to consider the
delay effects on the dynamical behavior of systems. Recently,
FCNNs with various types of delay have been widely investi-

gated by many authors; see [8–12] and references therein.
However, so far, there has been very little existing work on
FCNNs with time delay in the leakage (or ‘‘forgetting’’) term

[13–17]. In fact, time delay in the leakage term also has great
impact on the dynamics of FCNNs. As pointed out by
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http://dx.doi.org/10.1016/j.joems.2014.07.003
http://www.sciencedirect.com/science/journal/1110256X
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Gopalsamy [18], time delay in the stabilizing negative feedback
term has a tendency to destabilize a system. Moreover, the
time delay involving in the first term of the state variable of

dynamical networks known as leakage delay on FCNNs can-
not be ignored.

It is well known that the knowledge about the system state

is necessary to solve many control theory problems; for exam-
ple, stabilizing a system using state feedback. In most practical
cases, the physical state of the system cannot be determined by

direct observation. Instead, indirect effects of the internal state
are observed by the way of the system outputs. A simple exam-
ple is that of vehicles in a tunnel: the rates and velocities at
which vehicles enter and leave the tunnel can be observed

directly, but the exact state inside the tunnel can only be esti-
mated. If a system is observable, it is possible to fully recon-
struct the system state from its output measurements using

the state observer. Also, the state estimation problem for neu-
ral networks has attracted some attention in the recent years,
see [19–21].

For the state estimation problem, normally the periodic
type constant vector is used in the existing literatures for get-
ting the unstable behavior in the system. Without having such

constant vector the given system should be stable, see for
example [19–21]. In this regard there is no meaningful idea
behind for designing the estimator gain matrix H. Motivating
this reason, in this paper, leakage delay in the leakage term is

used to unstable the neuron states without constant vector. On
the other hand, the sampled-data control technology has
developed largely as the rapid development of computer hard-

ware. The measurements used to estimate the neuron states are
sampled by samplers. Based on the sampled measurements, in
this paper a sampled-data estimator is constructed. By con-

verting the sampling period into a time-varying but bounded
delay, the error dynamics of the considered FCNN is derived
in terms of a differential equation with two different time-

delays [22]. To the best of authors’ knowledge, there was no
results available in any of the existing literature dealing the
state estimation for FCNNs with time delay in the leakage
term, discrete and unbounded distributed delays based on sam-

ple-data.
Motivated by the above discussion, in this paper leakage

delay in the leakage term is used to unstable the neuron states.

It is challenging to develop delay dependent condition to esti-
mate the unstable neuron states through available sampled
output measurements such that the error-state system is glob-

ally asymptotically stable. Based on the LKF which contains a
triple-integral term, an improved delay-dependent stability cri-
terion is derived in terms of LMIs. However using the free-
weighting matrices method, simple and efficient criterion is

derived in terms of LMIs for estimation. Finally, numerical
examples and its simulations are provided to demonstrate
the effectiveness and merits of the derived result.

NotationsRn denotes the n-dimensional Euclidean Space. For

any matrix A ¼ ½aij�n�n, let A
T and A�1 denote the transpose and

the inverse of A, respectively. jAj ¼ ½jaijj�n�n. Let A > 0 ðA < 0Þ
denotes the positive-definite (negative-definite) symmetric
matrix, respectively. I denotes the identity matrix of appropriate

dimension. K ¼ f1; 2; . . . ; ng and N ¼ f1; 2; . . . ;mg. � denotes
the symmetric terms in a symmetric matrix.
2. Model formulation and preliminaries

Consider the following FCNNs with leakage delay, discrete
and unbounded distributed delays

_xiðtÞ¼�aixiðt�rÞþ
Xn
j¼1

b0ij gjðxjðtÞÞ

þ
Xn
j¼1

b1ij gjðxjðt� s1ðtÞÞÞþ
n̂

j¼1
aij

R t

�1kjðt� sÞgjðxjðsÞÞds

þ
_n
j¼1

bij

R t

�1kjðt� sÞgjðxjðsÞÞds; i2K;

xiðsÞ¼ uiðsÞ; s2 ð�1;0�;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where uið�Þ 2 Cðð�1; 0�;RÞ; aij and bij are the elements of

fuzzy feedback MIN template, fuzzy feedback MAX
template, respectively; b0ij and b1ij are the elements of feedback

template;
V
,
W

denote the fuzzy AND and fuzzy OR opera-

tion, respectively; xi denotes the state of the ith neuron; ai is
a diagonal matrix, ai represents the rates with which the ith
neuron will reset their potential to the resting state in isolation

when disconnected from the networks and external inputs; gj
represents the neuron activation function; kiðsÞP 0 is the feed-
back kernel and satisfiesZ 1

0

kiðsÞds ¼ 1; i 2 K: ð2Þ
ðA1Þ The transmission delay s1ðtÞ is a time varying delay,
and it satisfies 0 6 s1ðtÞ 6 s1, where s1 is a positive

constant;
ðA2Þ The leakage delay satisfies r P 0. Also, it is assumed
that the neuron activation function gð�Þ satisfies the follow-
ing Lipschitz condition
jgðxÞ � gðyÞj 6 jLðx� yÞj; ð3Þ

where L 2 Rn�n is a known constant matrix.
Our aim in this paper is to investigate an efficient estima-

tion algorithm in order to observe the neuron states from the

available network outputs. Therefore, the network measure-
ments are assumed to satisfy ylðtÞ ¼ cljxiðtÞ; l 2 N; i; j 2 K,

where yl 2 Rm is the measurement output of the lth neuron
and clj is the element of a known constant matrix with appro-

priate dimension.
In this paper, the measurement output is sampled before it

enters the estimator. The sampled measurement is assumed to
be generalized by a zero-order hold function with a sequence
of hold times 0 ¼ t0 < t1 < � � � < tk < � � �
ylðtkÞ ¼ cljxiðtkÞ; tk 6 t < tkþ1; ð4Þ

where tk denotes the sampling instant and satisfies
0 ¼ t0 < t1 < t2 < � � � < tk < � � � < limk!þ1tk ¼ þ1. More-

over, the sampling period under consideration is assumed to be
bounded by a known constant s2, that is tkþ1 � tk 6 s2 for k P 0.

The full order state estimation of system (1) is given as

follows
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_̂xiðtÞ¼�aix̂iðt�rÞþ
Xn
j¼1

b0ij gjðx̂jðtÞÞþ
Xn
j¼1

b1ij gjðx̂jðt� s1ðtÞÞÞ

þ
n̂

j¼1
aij

R t

�1kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1kjðt� sÞgjðx̂jðsÞÞds

þhil ylðtkÞ� cljx̂iðtkÞ
� �

; l2N; i; j2 K;

x̂iðsÞ¼ viðsÞ; s2 ð�1;0�;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð5Þ

where við�Þ 2 Cðð�1; 0�;RÞ; x̂iðtÞ is the estimation of the ith

neuron state; hil is the element of an estimator gain matrix to
be designed.

Define the error eiðtÞ ¼ xiðtÞ � x̂iðtÞ; /jðtÞ ¼ gjðxjðtÞÞ�
gjðx̂jðtÞÞ; i; j 2 K; then it follows from (1), (4), and (5) that

_eiðtÞ ¼ �aieiðt� rÞ � hilcljeiðtkÞ þ
Xn
j¼1

b0ij/jðtÞ

þ
Xn
j¼1

b1ij/jðt� s1ðtÞÞ þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
_n
j¼1

bij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds;

i; j 2 K; l 2 N;

eiðsÞ ¼ uiðsÞ � viðsÞ ¼ uiðsÞ; s 2 ð�1; 0�:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

Clearly, it is difficult to analyze the state estimation for

FCNNs based on error system (6) because of the discrete term
eðtkÞ. Therefore, the input delay approach [23] is applied, so
that s2ðtÞ ¼ t� tk; tk 6 t < tkþ1. It is easily seen that
0 6 s2ðtÞ < s2. Therefore, the error estimator takes the follow-

ing form

eiðtkÞ :¼ eiðt� s2ðtÞÞ; tk 6 t < tkþ1; i 2 K: ð7Þ

Consequently, connecting (7) to system (6) yields

_eiðtÞ ¼ �aieiðt� rÞ � hilcljeiðt� s2ðtÞÞ

þ
Xn
j¼1

b0ij/jðtÞ þ
Xn
j¼1

b1ij/jðt� s1ðtÞÞ

þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
_n
j¼1

bij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds;

i; j 2 K; l 2 N;

eiðsÞ ¼ uiðsÞ; s 2 ð�1; 0�:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ
Using a simple transformation, system (8) leads the following

equivalent form

d
dt

eiðtÞ�ai
R t

t�r eiðsÞds
� �

¼�aieiðtÞ�hilcljeiðt� s2ðtÞÞþ
Xn
j¼1

b0ij/jðtÞ

þ
Xn
j¼1

b1ij/jðt� s1ðtÞÞ

þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1 kjðt� sÞgjðxjðsÞÞds

�
_n
j¼1

bij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds;

i; j2K; l2N;

eiðsÞ¼uiðsÞ; s2 ð�1;0�:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

It is clear from (3) that

/TðtÞ/ðtÞ ¼ jgðxðtÞÞ � gðx̂ðtÞÞj2 6 jLeðtÞj2

¼ eTðtÞLTLeðtÞ: ð10Þ
3. Main results

Theorem 3.1. Assume that assumptions ðA1Þ � ðA2Þ and the
Lipschitz condition (3) hold. The error dynamical system (8) is
globally asymptotically stable, if there exist n� n positive

diagonal matrices P; Q, some n� n positive definite symmetric
matrices R; W; N; M1; M2, three scalars l > 0; �1 > 0;

�2 > 0, and a 2n� 2n matrix
T11 T12

� T22

� �
> 0;

V11 V12

� V22

� �
> 0 such that the following LMI has feasible

solution

X ¼ W CT

� �ln�1I

" #
< 0; ð11Þ

where ðWÞ13�13 with

W1;1 ¼ �2PAþ PþWþ r2N� 2M1 � 2M2 þ �1LTL;
W1;3 ¼ TT

12; W1;4 ¼ �RCþ VT
12;

W1;6 ¼ ATPA; W1;7 ¼
2

s1
M1; W1;8 ¼

2

s1
M1;

W1;9 ¼
2

s2
M2; W1;10 ¼

2

s2
M2; W1;11 ¼ PB0;

W1;12 ¼ PB1; W2;2 ¼ �W; W2;5 ¼ �ATPT;
W3;3 ¼ s1T11 � 2TT

12 þ �2LTL; W4;4 ¼ s2V11 � 2VT
12;

W4;5 ¼ �CTRT; W4;6 ¼ CTRTA; W5;5 ¼ �2Pþ s1T22

þ s2V22 þ
s21
2
M1 þ

s22
2
M2; W5;11 ¼ PB0;

W5;12 ¼ PB1; W6;6 ¼ ATPA�N; W6;11 ¼ �ATPB0;

W6;12 ¼ �ATPB1; W7;7 ¼ �
2

s21
M1;

W7;8 ¼ �
2

s21
M1; W8;8 ¼ �

2

s21
M1; W9;9 ¼ �

2

s22
M2;

W9;10 ¼ �
2

s22
M2; W10;10 ¼ �

2

s22
M2;
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W11;11 ¼ Q� �1; W12;12 ¼ ��2; W13;13 ¼ 2nSTPSþ lI�Q;

jajs ¼ diag
Xn
i¼1
jai1j;

Xn
i¼1
jai2j; . . . ;

Xn
i¼1
jainj

( )
;

jbjs ¼ diag
Xn
i¼1
jbi1j;

Xn
i¼1
jbi2j; . . . ;

Xn
i¼1
jbinj

( )
;

S ¼ jajs þ jbjs;
CT ¼ 0 0 0 0 ðPSÞT 0 0 0 0 0 0 0 0

� �T
:

Moreover, the estimation gain is H ¼ P�1R.

Proof. Consider the following LKFs

VðtÞ ¼
X7
i¼1

ViðtÞ; ð12Þ

where

V1ðtÞ ¼ eðtÞ � A

Z t

t�r
eðsÞds

� �T
P eðtÞ � A

Z t

t�r
eðsÞds

� �

¼
Xn
i¼1

pi eiðtÞ � ai

Z t

t�r
eiðsÞds

� �2

;

V2ðtÞ ¼
Z t

t�r
eTðsÞWeðsÞds; V3ðtÞ ¼ r

Z t

t�r

Z t

h
eTðsÞNeðsÞdsdh;

V4ðtÞ ¼
Xn
j¼1

qj

Z 1

0

kjðhÞ
Z t

t�h
/2

j ðsÞdsdh;

V5ðtÞ ¼
Z t

0

Z h

h�s1ðhÞ

eðh� s1ðhÞÞ
_eðsÞ

" #T
T11 T12

� T22

" #

�
eðh� s1ðhÞÞ

_eðsÞ

" #
dsdh

þ
Z t

0

Z h

h�s2ðhÞ

eðh� s2ðhÞÞ
_eðsÞ

" #T
V11 V12

� V22

" #
eðh� s2ðhÞÞ

_eðsÞ

" #
dsdh;

V6ðtÞ ¼
Z 0

�s1

Z t

tþh

_eTðsÞT22 _eðsÞdsdhþ
Z 0

�s2

Z t

tþh

_eTðsÞV22 _eðsÞdsdh;

V7ðtÞ ¼
Z 0

�s1

Z 0

h

Z t

tþk

_eTðsÞM1 _eðsÞdsdkdh

þ
Z 0

�s2

Z 0

h

Z t

tþk

_eTðsÞM2 _eðsÞdsdkdh:

By calculating the time derivation of ViðtÞ along the trajectory

of system (9), one can obtain

_V1ðtÞ¼ 2
Xn
i¼1

pi eiðtÞ�ai

Z t

t�r
eiðsÞds

� �

� d

dt
eiðtÞ�ai

Z t

t�r
eiðsÞds

� �
; ð13Þ

_V2ðtÞ¼ eTðtÞWeðtÞ� eTðt�rÞWeðt�rÞ; ð14Þ

_V3ðtÞ6r2eTðtÞNeðtÞ�
Z t

t�r
eTðsÞds N

Z t

t�r
eðsÞds; ð15Þ

_V4ðtÞ¼/TðtÞQ/ðtÞ�
Z t

�1
Kðt� sÞ/ðsÞds

� �T

�Q

Z t

�1
Kðt� sÞ/ðsÞds

� �
; ð16Þ
_V5ðtÞ6 eTðt� s1ðtÞÞ s1T11�2TT
12

� �
eðt� s1ðtÞÞ

þ2eTðtÞTT
12eðt� s1ðtÞÞþ

Z t

t�s1

_eTðsÞT22 _eðsÞds

þ eTðt� s2ðtÞÞ s2V11�2VT
12

� �
eðt� s2ðtÞÞ

þ2eTðtÞVT
12eðt� s2ðtÞÞþ

Z t

t�s2

_eTðsÞV22 _eðsÞds; ð17Þ

_V6ðtÞ¼ s1 _eTðtÞT22 _eðtÞ�
Z t

t�s1

_eTðsÞT22 _eðsÞds

þ s2 _eTðtÞV22 _eðtÞ�
Z t

t�s2

_eTðsÞV22 _eðsÞds; ð18Þ

_V7ðtÞ¼
s21
2

_eTðtÞM1 _eðtÞ�
Z 0

�s1

Z t

tþh

_eTðsÞM1 _eðsÞdsdh

þ s22
2

_eTðtÞM2 _eðtÞ�
Z 0

�s2

Z t

tþh

_eTðsÞM2 _eðsÞdsdh; ð19Þ

On the other hand, it is clear from (10) that the following is

true for �j > 0; j ¼ 1; 2

06 �1 eTðtÞLTLeðtÞ�/TðtÞ/ðtÞ
� �

; ð20Þ
06 �2 eTðt� s1ðtÞÞLTLeðt� s1ðtÞÞ�/Tðt� s1ðtÞÞ/ðt� s1ðtÞÞ

� �
: ð21Þ

Hence, from (13)–(21) we have

_VðtÞ 6 nTðtÞ½Wþ CTl�1nC� nðtÞ ¼ nTðtÞ X nðtÞ; ð22Þ

where

nðtÞ ¼ eTðtÞ; eTðt� rÞ; eTðt� s1ðtÞÞ; eTðt� s2ðtÞÞ; _eTðtÞ;
�
Z t

t�r
eTðsÞds;

Z t

t�s1ðtÞ
eTðsÞds;

Z t�s1ðtÞ

t�s1

eTðsÞds;
Z t

t�s2ðtÞ
eTðsÞds;

Z t�s2ðtÞ

t�s2

eTðsÞds; /TðtÞ;

/Tðt� s1ðtÞÞ;Z t

�1
Kðt� sÞ/TðsÞds

�T
;

X ¼ Wþ CTl�1nC:

By (11), it yields _VðtÞ 6 �nTðtÞ XH nðtÞ; t > 0, where

XH ¼ �X > 0. Thus, it can be deduced that

VðtÞ þ
Z t

0

nTðsÞXHnðsÞds 6 Vð0Þ <1; t P 0; ð23Þ

where

Vð0Þ 6 2kmaxðPÞ ð1þ r2max
i2K

aiÞ þ rkmaxðWÞ þ r3kmaxðNÞ
�

þ
Xn
j¼1

qjkjmax
j2K

l2j

Z 1

0

hkjðhÞdhþ s21kmaxðT22Þ þ s22kmaxðV22Þ

þs31kmaxðM1Þ þ s32kmaxðM2Þ
	
kuek

2 <1:

From the definition of V2ðtÞ and Jensen’s inequality lemma

[24], we have
R t

t�r eðsÞds


 

2 6 r

kminðWÞ
VðtÞ 6 r

kminðWÞ
Vð0Þ, which

together with the definition of V1ðtÞ yields

keðtÞk 6 A

Z t

t�r
eðsÞds










þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1ðtÞ

kminðPÞ

s

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ai

r
kminðWÞ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kminðPÞ

s( ) ffiffiffiffiffiffiffiffiffiffi
Vð0Þ

p
:
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Fig. 1 (a) the true state x1ðtÞ and its estimate state x̂1ðtÞ when r ¼ 0:2, with estimator gain matrix (31), (b) the true state x2ðtÞ and its

estimate state x̂2ðtÞ when r ¼ 0:2, with estimator gain matrix (31), (c) the true state x3ðtÞ and its estimate state x̂3ðtÞ when r ¼ 0:2, with

estimator gain matrix (31), and (d) the error trajectories of system (8) when r ¼ 0:2 with estimator gain matrix (31).
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This implies that the error system (8) is locally stable. Next,
one can prove that keðtÞk ! 0 as t!1. First, for any con-

stant h 2 ½0; 1�, it follows from (12) and Jensen’s inequality
lemma [24] that

keðtþ hÞ � eðtÞk2 6 1

kminðXHÞ

Z tþ1

t

nTðsÞXHnðsÞds! 0

as t!1;

which implies that for any � > 0; h 2 ½0; 1�, there exists a
T1 ¼ T1ð�Þ > 0 such that

keðtþ hÞ � eðtÞk < �

2
; t > T1: ð24Þ

On the other hand, from (12) we haveZ tþ1

t

eðsÞds











2

6
1

kminðXHÞ

Z tþ1

t

nTðsÞXHnðsÞds! 0

as t!1;

which implies that for any � > 0, there exists a T2 ¼ T2ð�Þ > 0

such that
R tþ1
t

eðsÞds



 


 < �

2
; t > T2. Note that eðsÞ is continu-

ous on ½t; tþ 1�; t > 0. Applying the integral mean value theo-

rem, there exists a vector dt ¼ ðdt1; dt2; � � � ; dtnÞT 2 Rn;
dtj 2 ½t; tþ 1�, such that

keðdtÞk ¼
Z tþ1

t

eðsÞds










 < �

2
; t > T2: ð25Þ

By (24), (25) and for any � > 0, there exists a
T ¼ maxfT1;T2g > 0 such that t > T implies

keðtÞk 6 keðtÞ � eðdtÞk þ keðdtÞk 6
�

2
þ �
2
¼ �:

This proves that keðtÞk ! 0 as t!1. Therefore, one can con-
clude that the error dynamical system (8) is globally asymptot-
ically stable. As a result, the full order sampled state estimation
FCNNs with time delay in the leakage term, discrete and
unbounded distributed delays (5) is globally estimated with

the FCNNs (1). This completes the proof. h

Remark 3.1. It is evident from the Fig. 2(a)–(c), the true state
xiðtÞ is stable when r ¼ 0 and its estimated state is

x̂iðtÞ; i ¼ 1; 2; 3. Further through Fig. 1(a)–(c), it is clear that
the true state xiðtÞ is unstable when r ¼ 0:2 and its estimated
state is x̂iðtÞ; i ¼ 1; 2; 3. Moreover, the error trajectories of
Figs. 1(d) and 2(d) converges to 0. The time delays which is

called leakage delay r exists in the negative feedback term of
system (1), which is different from the time-varying delays in
other terms. It has been shown in [18,25] that the time delay

in the leakage term has great impact on the dynamics of neural
networks and often has a quick tendency to destabilize a sys-
tem. This motivates to consider the leakage delay effects on

the state estimation of FCNNs with discrete time-varying
delays and continuously unbounded distributed delays. How-
ever, this paper deals for the constant leakage delay; to
improve and extend the results for time-varying leakage delay

may lead a challenging problem. In the near future, some fur-
ther research on this topic will be investigated.

When there is no time delay in the leakage term, that is
r ¼ 0, the error dynamical FCNNs (8) becomes the following

_eiðtÞ¼�aieiðtÞ�hilcljeiðt�s2ðtÞÞþ
Xn
j¼1

b0ij/jðtÞþ
Xn
j¼1

b1ij/jðt� s1ðtÞÞ

þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðxjðsÞÞds�
n̂

j¼1
aij

R t

�1kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1kjðt� sÞgjðxjðsÞÞds�
_n
j¼1

bij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds;

i; j2K; l2N;

eiðsÞ¼uiðsÞ; s2 ð�1;0�:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð26Þ
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Fig. 2 (a) the true state x1ðtÞ and its estimate state x̂1ðtÞ when r ¼ 0, with estimator gain matrix (34), (b) the true state x2ðtÞ and its

estimate state x̂2ðtÞ when r ¼ 0, with estimator gain matrix (34), (c) the true state x3ðtÞ and its estimate state x̂3ðtÞ when r ¼ 0, with

estimator gain matrix (34), and (d) the error trajectories of system (26) with estimator gain matrix (34).
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In the following Corollary 3.1, global asymptotic stability cri-
teria for error dynamical FCNNs (26) is discussed.

Corollary 3.1. Assume that assumptions ðA1Þ � ðA2Þ, the Lips-

chitz condition (3) hold. The error dynamical system (26) is
globally asymptotically stable, if there exist n� n positive
diagonal matrices P; Q, some n� n positive definite symmetric

matrices R; M1; M2, three scalars l > 0; �1 > 0; �2 > 0, and

a 2n� 2n matrices
T11 T12

� T22

� �
> 0;

V11 V12

� V22

� �
> 0, such

that the following LMI has feasible solution

X ¼ W CT

� �ln�1I

" #
< 0; ð27Þ

where ðWÞ11�11 with

W1;1 ¼�2PAþP� 2M1 � 2M2 þ �1LTL; W1;2 ¼ TT
12;

W1;3 ¼�RCþVT
12; W1;4 ¼�ATP;

W1;5 ¼
2

s1
M1; W1;6 ¼

2

s1
M1; W1;7 ¼

2

s2
M2;

W1;8 ¼
2

s2
M2; W1;9 ¼ PB0; W1;10 ¼ PB1;

W2;2 ¼ s1T11 � 2TT
12 þ �2LTL; W3;3 ¼ s2V11 � 2VT

12;

W3;4 ¼�CTRT;

W4;4 ¼�2Pþ s1T22þ s2V22 þ
s21
2
M1 þ

s22
2
M2;W4;9 ¼ PB0;

W4;10 ¼ PB1; W5;5 ¼�
2

s21
M1;

W5;6 ¼�
2

s21
M1; W6;6 ¼�

2

s21
M1; W7;7 ¼�

2

s22
M2;

W7;8 ¼�
2

s22
M2; W8;8 ¼�

2

s22
M2;
W9;9 ¼Q� �1; W10;10 ¼��2; W10;11 ¼ 0;

W11;11 ¼ nSTPSþ lI�Q;

jajs ¼ diag
Xn
i¼1
jai1j;

Xn
i¼1
jai2j; . . . ;

Xn
i¼1
jainj

( )
;

jbjs ¼ diag
Xn
i¼1
jbi1j;

Xn
i¼1
jbi2j; . . . ;

Xn
i¼1
jbinj

( )
;

S¼ jajs þ jbjs; CT ¼ 0 0 0 ðPSÞT 0 0 0 0 0 0 0
� �T

:

Moreover, the estimation gain is H ¼ P�1R.

Proof. Consider the following LKFs

VðtÞ ¼
X5
i¼1

ViðtÞ; ð28Þ

where

V1ðtÞ¼ eTðtÞPeðtÞ¼
Xn
i¼1

pie
2
i ðtÞ;

V2ðtÞ¼
Xn
j¼1

qj

Z 1

0

kjðhÞ
Z t

t�h
/2

j ðsÞdsdh;

V3ðtÞ¼
Z t

0

Z h

h�s1ðhÞ

eðh�s1ðhÞÞ
_eðsÞ

� �T
T11 T12

� T22

� �
eðh�s1ðhÞÞ

_eðsÞ

� �
dsdh

þ
Z t

0

Z h

h�s2ðhÞ

eðh�s2ðhÞÞ
_eðsÞ

� �T
V11 V12

� V22

� �
eðh�s2ðhÞÞ

_eðsÞ

� �
dsdh;

V4ðtÞ¼
Z 0

�s1

Z t

tþh

_eTðsÞT22 _eðsÞdsdhþ
Z 0

�s2

Z t

tþh

_eTðsÞV22 _eðsÞdsdh;

V5ðtÞ¼
Z 0

�s1

Z 0

h

Z t

tþk

_eTðsÞM1 _eðsÞdsdkdh

þ
Z 0

�s2

Z 0

h

Z t

tþk

_eTðsÞM2 _eðsÞdsdkdh:



Asymptotical state estimation of fuzzy cellular neural networks 149
The proof of this Corollary 3.1 is immediately follows from

Theorem 3.1. h

Remark 3.2. In this paper, delay rate independent stability
conditions have been derived without involving the time-vary-
ing delay s1ðtÞ in the LKFs. Moreover, the conditions that the

time-varying delay is differentiable and the derivative is
bounded or smaller than one are not required.
4. Numerical examples

Example 4.1. Consider the following simple three-dimensional
FCNNs with leakage delay, discrete and unbounded distrib-

uted delays

_xiðtÞ¼�aixiðt�rÞþ
Xn
j¼1

b0ij gjðxjðtÞÞþ
Xn
j¼1

b1ij gjðxjðt� s1ðtÞÞÞ

þ
n̂

j¼1
aij

R t

�1kjðt� sÞgjðxjðsÞÞds

þ
_n
j¼1

bij

R t

�1kjðt� sÞgjðxjðsÞÞds; i 2 K;

xiðsÞ¼ uiðsÞ; s2 ð�1;0�;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð29Þ

with parameters defined as r ¼ 0:2; s1ðtÞ ¼ 0:1 j sinðtÞj,
uðsÞ ¼ ð2;�1;�1:7ÞT; s 2 ð�1; 0�, and gjðxjÞ ¼ 1

2
ðjxj þ 1j�

jxj � 1jÞ; j ¼ 1; 2; 3, which satisfy the Lipschitz condition

(3), we get L ¼ I,

A ¼
6 0 0

0 6 0

0 0 6

2
64

3
75; B0 ¼

5 �1:2 �1
�3 1:1 �4
�0:32 1:7 0:95

2
64

3
75;

B1 ¼
1:5 �0:7 �2:6
�3:3 1:2 �0:5
�0:9 1:5 �2:3

2
64

3
75;

a ¼
1=31 �1=31 1=31

1=31 �1=31 1=31

1=31 �1=31 1=31

2
64

3
75;

b ¼
�1=31 1=31 1=31

1=31 �1=31 1=31

1=31 1=31 �1=31

2
64

3
75; C ¼

5 0 0

0 5 0

0 0 5

2
64

3
75:

The corresponding full order sampled state estimation of

system (29) is defined as follows

_̂xiðtÞ¼�aix̂iðt�rÞþ
Xn
j¼1

b0ij gjðx̂jðtÞÞþ
Xn
j¼1

b1ij gjðx̂jðt�s1ðtÞÞÞ

þ
n̂

j¼1
aij

R t

�1kjðt�sÞgjðx̂jðsÞÞdsþ
_n
j¼1

bij

R t

�1kjðt�sÞgjðx̂jðsÞÞds

þhil½ylðtkÞ�cljx̂iðtkÞ�; l2N; i2 K;

x̂iðsÞ¼ viðsÞ; s2ð�1;0�;

8>>>>>>>>><
>>>>>>>>>:

ð30Þ

where ylðtkÞ is given by (4) and the initial condition is

vðsÞ ¼ ð3;�2; 4ÞT; s 2 ð�1; 0�. Moreover, the sampling per-
iod is taken as s2 ¼ 0:05. By using the Matlab LMI toolbox
to solve the LMI (11) in Theorem 3.1, it can be found that
the LMI is feasible. Consequently, the estimator gain matrix

H is designed as follows

H ¼ P�1R ¼
0:0865 0:0235 �0:0010
0:0264 0:0611 �0:0165
�0:0007 �0:0095 0:0925

2
64

3
75: ð31Þ

By Theorem 3.1, systems (29) and (30) are asymptotically esti-

mated. The simulation results are depicted in Fig. 1(a)–(d) by
applying the estimator designed in (31) for this Example 4.1 by
choosing the time step size h ¼ 0:1, and time segment T ¼ 100.

Example 4.2. Consider the following simple three-dimensional

FCNNs without time delay in the leakage term, discrete and
unbounded distributed delays

_xiðtÞ ¼ �aixiðtÞ þ
Xn
j¼1

b0ij gjðxjðtÞÞ þ
Xn
j¼1

b1ij gjðxjðt� s1ðtÞÞÞ

þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðxjðsÞÞds

þ
_n
j¼1

bij

R t

�1 kjðt� sÞgjðxjðsÞÞds; i 2 K;

xiðsÞ ¼ uiðsÞ; s 2 ð�1; 0�;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð32Þ

with parameters defined as in Example 4.1 and r ¼ 0. The cor-
responding full order sampled state estimation of system (32) is

defined as follows

_̂xiðtÞ ¼ �aix̂iðtÞ þ
Xn
j¼1

b0ij gjðx̂jðtÞÞ þ
Xn
j¼1

b1ij gjðx̂jðt� s1ðtÞÞÞ

þ
n̂

j¼1
aij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds

þ
_n
j¼1

bij

R t

�1 kjðt� sÞgjðx̂jðsÞÞds

þhil ylðtkÞ � cljx̂iðtkÞ
� �

; l 2 N; i 2 K;

x̂iðsÞ ¼ viðsÞ; s 2 ð�1; 0�;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð33Þ

By using the Matlab LMI toolbox to solve the LMI (27) in
Corollary 3.1, it can be found that the LMI is feasible. Conse-
quently, the estimator gain matrix H is designed as follows

H ¼ P�1R ¼
0:0523 0:0187 �0:0127
0:0228 0:0471 �0:0275
�0:0078 �0:0138 0:0603

2
64

3
75: ð34Þ

By Corollary 3.1, systems (32) and (33) are asymptotically

estimated.
The simulation results are depicted in Fig. 2(a)–(d) by using

the above estimator (34) for this Example 4.2 by choosing the

time step size h ¼ 0:1, and time segment T ¼ 10.

5. Conclusion

In this paper, state estimation for FCNNs is considered with
time delay in the leakage term, discrete and unbounded
distributed delays based on sampled-data. The sampled mea-
surements have been used to estimate the neuron states. Also
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simple and efficient estimation criterion is derived in terms of
LMIs by constructing the LKF which contains a triple-integral
term and the free-weighting matrices method. Further, the dif-

ferentiability of the time-varying delay s1ðtÞ is not required in
this paper. Finally, the effectiveness of the proposed sampled-
data estimation approach has been verified by demonstrating

numerical simulations of the derived results.
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