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2010 MATHEMATICS SUBJECT CLASSIFICATION:

In this paper, the sampled measurement is used to estimate the neuron states, instead of
the continuous measurement, and a sampled-data estimator is constructed. Leakage delay is used to
unstable the neuron states. It is a challenging task to develop delay dependent condition to estimate
the unstable neuron states through available sampled output measurements such that the error-state
system is globally asymptotically stable. By constructing Lyapunov—Krasovskii functional (LKF), a
sufficient condition depending on the sampling period is obtained in terms of linear matrix inequal-
ities (LMIs). Moreover, by using the free-weighting matrices method, simple and efficient criterion
is derived in terms of LMIs for estimation.
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1. Introduction

Cellular neural networks (CNNs), proposed by Chua and
Yang in [1,2] have been extensively studied both in theory
and in applications. Based on traditional CNN, the fuzzy cel-
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lular neural networks (FCNNs) have been introduced at the
first time in 1996, proposed by Yang in [3.4]. The FCNN is
a fuzzy neural networks which integrates fuzzy logic into the
structure of traditional CNN. It is a very useful tool in image
processing and pattern recognition. However, the existence of
time delays may lead to the instability or bad performance of
systems [5-7]. So, it is of prime importance to consider the
delay effects on the dynamical behavior of systems. Recently,
FCNNs with various types of delay have been widely investi-
gated by many authors; see [8-12] and references therein.
However, so far, there has been very little existing work on
FCNNs with time delay in the leakage (or “forgetting”) term
[13—17]. In fact, time delay in the leakage term also has great
impact on the dynamics of FCNNs. As pointed out by
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2014.07.003&domain=pdf
mailto:balugru@gmail.com
http://dx.doi.org/10.1016/j.joems.2014.07.003
http://www.sciencedirect.com/science/journal/1110256X
http://dx.doi.org/10.1016/j.joems.2014.07.003

144

M. Kalpana, P. Balasubramaniam

Gopalsamy [18], time delay in the stabilizing negative feedback
term has a tendency to destabilize a system. Moreover, the
time delay involving in the first term of the state variable of
dynamical networks known as leakage delay on FCNNs can-
not be ignored.

It is well known that the knowledge about the system state
is necessary to solve many control theory problems; for exam-
ple, stabilizing a system using state feedback. In most practical
cases, the physical state of the system cannot be determined by
direct observation. Instead, indirect effects of the internal state
are observed by the way of the system outputs. A simple exam-
ple is that of vehicles in a tunnel: the rates and velocities at
which vehicles enter and leave the tunnel can be observed
directly, but the exact state inside the tunnel can only be esti-
mated. If a system is observable, it is possible to fully recon-
struct the system state from its output measurements using
the state observer. Also, the state estimation problem for neu-
ral networks has attracted some attention in the recent years,
see [19-21].

For the state estimation problem, normally the periodic
type constant vector is used in the existing literatures for get-
ting the unstable behavior in the system. Without having such
constant vector the given system should be stable, see for
example [19-21]. In this regard there is no meaningful idea
behind for designing the estimator gain matrix H. Motivating
this reason, in this paper, leakage delay in the leakage term is
used to unstable the neuron states without constant vector. On
the other hand, the sampled-data control technology has
developed largely as the rapid development of computer hard-
ware. The measurements used to estimate the neuron states are
sampled by samplers. Based on the sampled measurements, in
this paper a sampled-data estimator is constructed. By con-
verting the sampling period into a time-varying but bounded
delay, the error dynamics of the considered FCNN is derived
in terms of a differential equation with two different time-
delays [22]. To the best of authors’ knowledge, there was no
results available in any of the existing literature dealing the
state estimation for FCNNs with time delay in the leakage
term, discrete and unbounded distributed delays based on sam-
ple-data.

Motivated by the above discussion, in this paper leakage
delay in the leakage term is used to unstable the neuron states.
It is challenging to develop delay dependent condition to esti-
mate the unstable neuron states through available sampled
output measurements such that the error-state system is glob-
ally asymptotically stable. Based on the LKF which contains a
triple-integral term, an improved delay-dependent stability cri-
terion is derived in terms of LMIs. However using the free-
weighting matrices method, simple and efficient criterion is
derived in terms of LMIs for estimation. Finally, numerical
examples and its simulations are provided to demonstrate
the effectiveness and merits of the derived result.

Notations R" denotes the n-dimensional Euclidean Space. For
any matrix 4 = [a;], ., let A" and A~ denote the transpose and
the inverse of A, respectively. |4| = [|a],.,- Let 4 >0 (4 < 0)
denotes the positive-definite (negative-definite) symmetric
matrix, respectively. 7 denotes the identity matrix of appropriate
dimension. A ={1,2,...,n} and 5= {1,2,...,m}. * denotes
the symmetric terms in a symmetric matrix.

2. Model formulation and preliminaries

Consider the following FCNNs with leakage delay, discrete
and unbounded distributed delays

Xi(t) = —aix;(t— o) + Zn:bo,,g,-(x_/(t))
+§jjbl,.,g_,-<x/<t7n<z>>>+/f\ocufiwk,-ufs>g_,-<x,v<s>>ds

+\n/ﬁ!'/'jioo ki(t—s)g;(x;(s))ds, i€ A,
j=1

xi(‘y) = u,-(s),

5 € (—00,0],

(1)
where u;(-) € C((—o0,0],R);a; and B; are the elements of
fuzzy feedback MIN template, fuzzy feedback MAX
template, respectively; by, and b, are the elements of feedback
template; A, \/ denote the fuzzy AND and fuzzy OR opera-
tion, respectively; x; denotes the state of the ith neuron; a; is
a diagonal matrix, a; represents the rates with which the ith
neuron will reset their potential to the resting state in isolation
when disconnected from the networks and external inputs; g;
represents the neuron activation function; k;(s) > 0 is the feed-
back kernel and satisfies

/oc ki(s)ds=1, i€ A. (2)
0

(4,) The transmission delay t,(¢) is a time varying delay,
and it satisfies 0 < 7y(¢) < 1), where 7, is a positive
constant;

(4>) The leakage delay satisfies ¢ > 0. Also, it is assumed
that the neuron activation function g(-) satisfies the follow-
ing Lipschitz condition

8(x) — g < [L(x = y)l; (3)
where L € R™" is a known constant matrix.

Our aim in this paper is to investigate an efficient estima-
tion algorithm in order to observe the neuron states from the
available network outputs. Therefore, the network measure-
ments are assumed to satisfy y,(f) = c¢;x;(t), [€ &, i,j€ A,
where y, € R" is the measurement output of the 1" neuron
and c;; is the element of a known constant matrix with appro-
priate dimension.

In this paper, the measurement output is sampled before it
enters the estimator. The sampled measurement is assumed to
be generalized by a zero-order hold function with a sequence
of hold times 0 = f) <), < -+ - < < -~

() = epxi(t), e <t <ty 4)
where 1, denotes the sampling instant and satisfies
0=t <t << - <t <--<lim_ oty =4+c0. More-

over, the sampling period under consideration is assumed to be
bounded by a known constant 7,, thatis 7, | — #; < o fork > 0.

The full order state estimation of system (1) is given as
follows
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£ g (- (1)

J=1

0 = (1-0)+ > g 5(0)

+/\ac,,f ki(t

$)&;(X;(s))ds

+\/[iy Ik

+h,-1 (1) — epi(t)], 1€E,ij€ A,
Xi(s) =wis), s€(—00,0],

$)g;(%;(s))ds

(5)

where v,(-) € C((—00,0], R); %(¢) is the estimation of the i
neuron state; /; is the element of an estimator gain matrix to
be designed.

Define the error ei(f) = x;i(f) — %i(1), ¢;(t) = g;(x;(t))—
gi(X;(1)), i,j € A; then it follows from (1), (4), and (5) that

é;([) = —a,e;(l — O') — /’l;[C[/E;(lk) =+ iboi/(i) t
+Zb1” (t—1i (1) + /\oc,jf ki(t — 5)g;(x;(s))ds
f/\ocl/ I Het = )g (s (s)) s
+\/.Hyf ky(t g] (x;(s5))ds
\/ﬁt;f k g/(‘C/( ))dsv
i,jeAdA, leZ,
ei(s) = ui(s) — vi(s) = @,(s), s€ (—00,0].
(6)

Clearly, it is difficult to analyze the state estimation for
FCNNSs based on error system (6) because of the discrete term
e(t). Therefore, the input delay approach [23] is applied, so
that (1) =t— 4,4 <t <ty It is easily seen that
0 < 15(¢) < 1. Therefore, the error estimator takes the follow-
ing form

e(ty) ==ei(t — (1), t<t<ty, i€ (7
Consequently, connecting (7) to system (6) yields
é,’(l‘) = 7d,’€,’(l — O') - /’l,’/C[jG,'(l‘ — Tz(f))
+Zboi,(/’,(f) + Zblu ¢;(t — (1))
/\%f kj(t — 5)g,(x;(s))ds
—/\au S kil = )8, ()ds -
+\/ﬁl/f k gj xl( ))dS
\/ﬁl}f k g/(x/( ))dsa
i,jeA, le &,
8,'(5) = QD,-(S), s (_0070]'

Using a simple transformation, system (8) leads the following
equivalent form

4 [e;(t) — alj ' ei(s)ds] = —ae;(1) — hycyei(t—1a(t +Zb0u
+ib1v¢j(t
+/\o<,/f Jei(1 = 5)g;(x(s))ds
*/\%f k(1 —s)g;(%;(s))ds
+\/ﬁ1/f k gj Xf/( ))ds
\/ﬁr/f k g/ xj( ))d&‘,
,]EA, le &,
E,'(S) = (/)i(s)7 RS (_0070]'
9)
It is clear from (3) that
o' (1)p(1) = |g(x(1) — g(R(D) < [Le(t)]?
=e"(t)L Le(t). (10)

3. Main results

Theorem 3.1. Assume that assumptions (Ay) — (A2) and the
Lipschitz condition (3) hold. The error dynamical system (8) is
globally asymptotically stable, if there exist n x n positive
diagonal matrices P, Q, some n X n positive definite symmetric
matrices R, W, N, M|, M,, three scalars u>0, ¢ >0,

T, T
* T22) s O’

e >0, and a 2nx2n matrix (
Vit V2N S0 such that the following LMI has feasibl
£V >0 suc at the following has feasible

solution

y 7
<0,
x  —un'I

where (V)35 with

Q= (11)

Y, =-2PA+P+W+d’N—-2M, —2M, + ¢ LTL,

Vi, =T, Wa4=—-RC+V],
2 2
V= A"PA, 'Pm:T—Mu ‘1'178:1_— M,
1 1
2 2
Vigo=— My, ¥iww=— M,, Wi =PB,
(%) Ty
Vin=PB, WVyp=-W, WVs=-A"P,

'1/3_3 = ‘L']T]] — 2T]T2 + EzLTL7 l1/4,4 = T2V11 — 21/17-27

'{l4‘5 7CTRT T46 CTRTA T5?5 = 72P+ T1T22
2
+T2V72+ ) M, +—= > M27 Y511 = PBy,
Vsio=PB), Wss=A"PA—N, We, =—A"PB,
2
Vo120 = —A"PBy, W5 = _r_le’
1
2 2 2
Vig=—5M, ¥ss=—5M, Wo=—5M,
7] 7 5
2 2
Yoro=—5My, ¥io=——5M,
15 15
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qll3513 = 2}’ISTPS+ ﬂ]— Q7

n
72‘“in| ’

i=1

aZ:Bin|}a
i=1

Piun=0 —e,

o], = diag{zml l, Z\zx,ﬂ, .
i=1 i=1

1B, = diag{Zlﬁnl, > IBal,---
i=1 i=1

S = lal, + 1Bl
=[0 0 0 0 (PS)"

E1’12,12 = —é,

0000000 0]

Moreover, the estimation gain is H = P~'R.

Proof. Consider the following LKFs

V() = in(f)y (12)
where
Vi(r) = [ (1)y—4 /{:( e(s)ds} TP {e(l) — A /t; e(s)ds]

Vz(t):/[J T(s)We(s)ds, Vi(t —O'/ A s)dsdo,

= ;qj/o k;(0) /H) ; (5)dsd0,

// 0 —1,(0)) ! Ty Ti
0—1,(0) é(s) * Ty
y [e(e r(e))]dde
é(s)
e(0 — 1,(0)) ! Vi Vi

e(0 — 12(0))
x  Vyn é(

0
V(,(l) :/ / é ( Tzze dédﬁ-’-/ / szé’ dbd@
-1 t

0/ el (s)M,é(s)dsdrd0

s

By calculating the time derivation of V;(7) along the trajectory
of system (9), one can obtain

Vi(t)= 22‘05 <e,-(t) —a; /[;e,-(s)ds)

x%{ei(z)—ai/‘z e,-(s)ds], (13)
Va(t) =e () We(t) — e (1 — o) We(t — ) (14)

V() < o2 (1) Ne(t) — / §)ds N / 3 (15)

o= ([ e )

x Q ([w K(l—s)¢(s)ds)7 (16)

5 (s)

N

|
\o
q\

)dsdAdb.

V4(l> =

] dsdo,

V5(Z) < @T(l — T ([)) [’L’] T11 — 2T1T2} @(l — T (l))
+2e7(1) TITQe(l—n(t))—l—/’i éT(s) Toré(s)ds
+€T(t — ’Cz(l)) [72 V“ — 2V1T2}€(l — 'L'z(l))

+ 2T (1) Vet = (1)) + / T Vmes)ds,  (17)
V(,(Z)Z‘CIC:'T(Z)TQQG.(Z)*/F éT(S)Tzzé(S)dS
06T (1) Vrné(1) — / T () Vasds)ds, (18)

V() 2 ()M, é(r) / / s)M é(s)dsd0

—5—5 eT(t)M,é(t) / / §)M,é(s)dsd0, (19)
On the other hand, it is clear from (10) that the following is

true for ¢, >0, j=1,2

0<er[e" (LT Le(r) = ¢ (1)(1)]

; (20)
0<exfe”(t—11 (1)L Le(t—1,(2)) —

o (1= ()dli—n ()] 21)
Hence, from (13)—(21) we have
V(1) < &) + T 'nl) (1) =
where

&)= [e"(1), e"(1—0), " (t—1/(1)), €"

t t
/ e’ (s)ds, / e’ (s)ds,
t—a 1—1y (1)

t—1y(1) t 1—15(1)
[ e [ de [ s o',
-1y t—1(1) -1
o' (1= (1),

/t K(tfs)d)r(s)ds} ,
Q=¥+ Ty ur.

&0 2 &, (22)

(t— (1), ¢'(),

By (1), it yields ¥(r) < —&"(1) Q &(1), t>0, where
Q* = —Q > 0. Thus, it can be deduced that
ot
V(1) +/ ET()Q*E(s)ds < V(0) < o0, t =0, (23)
0
where

7(0) < {2)Lmax(P) (1+ o‘zme}lxa,-) + G imax (W) + 6 dpax(N)
ic
+Zq/k/rl;16%1lez / Ok/(o)dg + T%/lnmx(Tﬂ) + Tgflmax( V22)

“I’T )maxc(Ml) + TQ “max }HQD(, ‘ < o0.

(M
From the definition of Vz( ) and Jensen’s inequality lemma
<

[24], we have || [/ e dsH < =% V(1) < =7 V(0), which
together with the definition of V(¢) yields
Vl(l)
| < A
et < |4 [ p—

)bmm v mm }

<{ S
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(a) The state x y and its estimation (b) The state X, and its estimation
20 50
10
m‘
© -10 ®© ‘
-20 -50
0 50 100 50 100
time t time t
(c) (C) The error states ei(t)
40 40
ea(t)
g 2 o 20 es(t)
2 il 3 { m
2 ol 2 of H“\‘ u\ Hrl il
-20 © -20
-40 -40
50 100
time t

Fig. 1

(a) the true state x; () and its estimate state X, (¢) when ¢ = 0.2, with estimator gain matrix (31), (b) the true state x,(¢) and its

estimate state %,(#) when o = 0.2, with estimator gain matrix (31), (c) the true state x;(¢) and its estimate state X3(¢) when ¢ = 0.2, with
estimator gain matrix (31), and (d) the error trajectories of system (8) when ¢ = 0.2 with estimator gain matrix (31).

This implies that the error system (8) is locally stable. Next,
one can prove that |le(z)|| — 0 as t — oco. First, for any con-
stant 0 € [0, 1], it follows from (12) and Jensen’s inequality
lemma [24] that

1

gm/ & (5)Q*E(s)ds — 0

as t — oo,

le(z +0) — e(n]”

which implies that for any e > 0,0 € [0, 1], there exists a

T, = T](E) > 0 such that
le(t+0) = e <5, > T, (24)
On the other hand, from (12) we have
t+1 2 1 41 - .
e(s)ds éﬂi/ EN ()27 E(s)ds — 0
H/ ( ) /“min(Q*) t ( ) ( )
as t — oo,
which implies that for any ¢ > 0, there exists a 7> = T>(e) > 0

such that ‘

ft+1
t

ous on [t, ¢+ 1], £ > 0. Applying the integral mean value theo-

dsH <%, t > T,. Note that e(s) is continu-

rem, there exists a vector &, = (d4,0n, " -,5,n)T e R",
d, € [t,t+ 1], such that
1
lle(o.)|| = ‘/ e(s)ds , t>T,. (25)
t
By (24), (25) and for any e >0, there exists a
T =max{Ty, T»} > 0 such that ¢ > T implies
lle(D)Il' < lle(r) = e(@n)ll + lle(d)ll < 5 +§ =e.

This proves that ||e(f)|| — 0 as 1 — oo. Therefore, one can con-
clude that the error dynamical system (8) is globally asymptot-
ically stable. As a result, the full order sampled state estimation

FCNNs with time delay in the leakage term, discrete and
unbounded distributed delays (5) is globally estimated with
the FCNNs (1). This completes the proof. [

Remark 3.1. It is evident from the Fig. 2(a)—(c), the true state
x;i(f) is stable when ¢ =0 and its estimated state is
Xi(?), i=1,2,3. Further through Fig. 1(a)—(c), it is clear that
the true state x;(¢) is unstable when ¢ = 0.2 and its estimated
state is X;(¢), i =1,2,3. Moreover, the error trajectories of
Figs. 1(d) and 2(d) converges to 0. The time delays which is
called leakage delay o exists in the negative feedback term of
system (1), which is different from the time-varying delays in
other terms. It has been shown in [18,25] that the time delay
in the leakage term has great impact on the dynamics of neural
networks and often has a quick tendency to destabilize a sys-
tem. This motivates to consider the leakage delay effects on
the state estimation of FCNNs with discrete time-varying
delays and continuously unbounded distributed delays. How-
ever, this paper deals for the constant leakage delay; to
improve and extend the results for time-varying leakage delay
may lead a challenging problem. In the near future, some fur-
ther research on this topic will be investigated.

When there is no time delay in the leakage term, that is
o = 0, the error dynamical FCNNs (8) becomes the following

+Zb0 +Zb1

dv—/\oc,,f (1 —5)g;(%;(5))ds

j=1

\/ﬂuj (1

éi(1) = —ae;(t) — hicyei(t — (¢ (t—7 (¢

+/\oc,,f kit —5)g;(x;(s)
j=1

+\/ﬁuf (e

i,jeA, €&,

g; x/ 5)) g/ 1‘/(Y))d"a

ei(s) = ¢,(s), s€(=00,0].
(26)
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(a) The state x, and its estimation
3
1(t)
g 25 i (t)
2
3 2
E U
© i
15
1
0 5 10
time t
(¢)  Thestate x, and its estimation
4
z3(t)
3(t)
S 2
2
2
s O
-2
0 5 10

time t

Fig. 2

(b) The state x, and its estimation

-0.5
w2(t)
io (t
8 fL 0
=2
g
S 15
-2
0 5 10
time t
(d) The error states
2
L ol
2 ®
= eyt
(_El B ()
€2
T 4
es(t)
-6
0 5 10

time t

(a) the true state x(¢) and its estimate state X,(¢) when ¢ = 0, with estimator gain matrix (34), (b) the true state x,(¢) and its

estimate state X,(7) when ¢ = 0, with estimator gain matrix (34), (c) the true state x;(¢) and its estimate state %;(¢) when ¢ = 0, with
estimator gain matrix (34), and (d) the error trajectories of system (26) with estimator gain matrix (34).

In the following Corollary 3.1, global asymptotic stability cri-
teria for error dynamical FCNNs (26) is discussed.

Corollary 3.1. Assume that assumptions (A,) — (Az), the Lips-
chitz condition (3) hold. The error dynamical system (26) is
globally asymptotically stable, if there exist n X n positive
diagonal matrices P, Q, some n X n positive definite symmetric
matrices R, My, M», three scalars u >0, €, >0, e >0, and

T11 T12 Vll V12
N T22> > 0,( . V22> >0, such

that the following LMI has feasible solution

a 2n X 2n matrices (

VA
Q= <o, (27)
*  —un—1
where (W),y,;, with
Y, =-2PA+P-2M,-2My+¢L"L, ¥\, =T},
Y 3=—RC+ V1T27 Via= —A"P,
2 2 2
Vis=— M, Vis=— M, ¥1,=— My,
T T T2

2
Vg = P My, ¥19=PBy, ¥10=PBi,
2

Y’z‘z =T T11 — 2T1T2 =+ 62LTL7 T}J =T V]] — 2V]T2,
l1/3‘4 = —CTRT,

2 i
Vya=-2P+1Tn+10Vn +51M1 +52M2, Y49 = PB,
2
Yi10=PBy, ¥s5= _r_le’
1
2

2 2
lPSﬁZ_?Mh VYoo =——M, T77__T_M27
1

)

7 2
2 2

Vig=——5M,, Psgs=——5Ms,
5] 5]

Yoo=0—¢€1, Yioro=—€, o1 =0,
Vi =nS"PS+ul—Q,

o, —dlag{Zw Z|o<,2| Dam}
IBI, diag{Zﬁnl,Zlﬁn7-~-»Z|ﬂm|}7
i=1 i=1 i=1

S=lal,+ Bl I'" =

[000 @S 000000 0]

Moreover, the estimation gain is H = P~'R.

Proof.

Consider the following LKFs

(28)

=eT()Pe(t)= p,e (1),

i=1

) =_iq,- [ w0 [ g,

71—1

))}T{Tn Tn} {e(eg(fl(e))

//{)r,(){ x Ty 5(s)

L e
1+0

} dsd0

é(s)

&(s) } dsd0,

S)M é(s)dsdAdO

:[11 / éT(sv)Tzzé(s)dsd0+[iz /HtaéT(S) Vysé(s)dsdl),
o=/,

[
ANV

§)Myé(s)dsdAdo.
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The proof of this Corollary 3.1
Theorem 3.1. O

is immediately follows from

Remark 3.2. In this paper, delay rate independent stability
conditions have been derived without involving the time-vary-
ing delay 7,(¢) in the LKFs. Moreover, the conditions that the
time-varying delay is differentiable and the derivative is
bounded or smaller than one are not required.

4. Numerical examples

Example 4.1. Consider the following simple three-dimensional
FCNNs with leakage delay, discrete and unbounded distrib-
uted delays

0 :—a,-xl(z—a)+ibo,.,g,-<x,-<z>>+ib1,,gj<x,-<z—n<r>>>
—|—/\oc,,f (1

$)&;(x;(s))ds

+\/m (e

g] (x;(s))ds, i€ A,

X,’(S)—M,‘(é% s€ (_0070]7
(29)
with parameters defined as ¢ =02, 7,(f) =0.1 |sin(¢)|,
u(s) = (2,=1,-1.7)", s € (—00,0], and g;(x;) =4 (|l + 1|~

|x; —1]), j=1, 2, 3, which satisfy the Lipschitz condition
(3), we get L =1,
6 0 0 5 -1.2 -1
A=10 6 0|, By=| -3 .1 -4,
0 0 6 -032 1.7 095
1.5 —-0.7 =26
B -33 12 -05],

-09 15 -23
131 —1/31 1/31
o= |1/31 —1/31 1/31],
L 1/31 —1/31 1/31

[—1/31 1/31  1/31 500
B=| 1/31 —1/31 1/31 |, C=|0 5 0
131 131 —1/31 005

The corresponding full order sampled state estimation of
system (29) is defined as follows

X(1) =—a%i(t— o) +2”:b0,,g/(«‘3f(l)) +Zn:b1,,g/(ffj(f—fl )

+/\oc,,f ki(t—5)g;(%;(s dv—l—\/ﬁ”f Ki(t—5)g;(%;(s))ds

+h,~1b/,(tk)—cg,-x,-(tk)}, leu, i€ A,
X’,’(S):V,‘(S% SE(*O0,0],

(30)
where y,(#;) is given by (4) and the initial condition is
v(s) = (3,-2,4)", s € (—00,0]. Moreover, the sampling per-
iod is taken as 1, = 0.05. By using the Matlab LMI toolbox
to solve the LMI (11) in Theorem 3.1, it can be found that

the LMI is feasible. Consequently, the estimator gain matrix
H is designed as follows

0.0865  0.0235 —0.0010
H=P'R= 00264 0.0611 —0.0165|. (31)
—0.0007 —0.0095 0.0925

By Theorem 3.1, systems (29) and (30) are asymptotically esti-
mated. The simulation results are depicted in Fig. 1(a)—(d) by
applying the estimator designed in (31) for this Example 4.1 by
choosing the time step size # = 0.1, and time segment 7" = 100.

Example 4.2. Consider the following simple three-dimensional
FCNNs without time delay in the leakage term, discrete and
unbounded distributed delays

+ Zbol,g] xl
+/\oc,,f ki(t

Xi(1) = —ax;(

)+ Zbl,,g, (= (1))

=1

= 5)g;(x;(s))ds

+\//>:,f k(1

xi(s) = u,-(s)7 s €

— 5)&;(x;(s))ds,

_007 0]7

i€ 4,

(32)

with parameters defined as in Example 4.1 and ¢ = 0. The cor-
responding full order sampled state estimation of system (32) is
defined as follows

%i(1) = —aiki(t

)+ Zboug/ x;(t
/\oc,,f ki(t
+\//3,, [ k(1

+/’l,'/[ ,(l‘k) — cljx,-(tk)},
Xi(s) = vi(s), s € (—00,0],

D+ b (1)
g (5(6))ds

= 5)&;(%5(s))ds

leZE ie A,

(33)

By using the Matlab LMI toolbox to solve the LMI (27) in
Corollary 3.1, it can be found that the LMI is feasible. Conse-
quently, the estimator gain matrix H is designed as follows

0.0523  0.0187 —0.0127
H=P'R=1 00228 00471 —0.0275|. (34)
—0.0078 —0.0138  0.0603

By Corollary
estimated.

The simulation results are depicted in Fig. 2(a)—(d) by using
the above estimator (34) for this Example 4.2 by choosing the
time step size 4 = 0.1, and time segment 7" = 10.

3.1, systems (32) and (33) are asymptotically

5. Conclusion

In this paper, state estimation for FCNNSs is considered with
time delay in the leakage term, discrete and unbounded
distributed delays based on sampled-data. The sampled mea-
surements have been used to estimate the neuron states. Also
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simple and efficient estimation criterion is derived in terms of
LMIs by constructing the LKF which contains a triple-integral
term and the free-weighting matrices method. Further, the dif-
ferentiability of the time-varying delay t,(7) is not required in
this paper. Finally, the effectiveness of the proposed sampled-
data estimation approach has been verified by demonstrating
numerical simulations of the derived results.
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