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Abstract In the present article, we have analyzed the Reiner-Rivlin fluid model for blood flow

through a tapered artery with a stenosis. The constitutive equations for a Reiner-Rivlin fluid have

been modeled in cylindrical coordinates. A perturbation series in dimensionless Reiner-Rivlin fluid

parameter ðk1 � 1Þ have been used to obtain explicit forms for the velocity, resistance impedance,

wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of

tapered arteries (i.e converging tapering, diverging tapering, non-tapered artery) have been exam-

ined for different parameters of interest.
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1. Introduction

In the arterial systems of humans or animals, it is quite com-
mon to find localized narrowings, commonly called stenosis,
caused by intravascular plaques. These stenosis disturb the
normal pattern of blood flow through the artery [1]. Pulsatile

flow of blood through a stenosed porous medium under the
influence of body acceleration has been studied by El-Shahed
[2]. He mentioned that the investigations of blood flow
through arteries are of considerable importance in many car-
diovascular diseases particularly atherosclerosis. The effects

of pulsatility, stenosis and non-Newtonian behavior of blood,
assuming the blood to be represented by Herschel–Bulkley
fluid, are simultaneously considered by Sankara and Hemala-

tha [3]. Among the various arterial diseases the development of
arteriosclerosis in blood vessels is quite common which may be
attributed to accumulation of lipids in the arterial wall or path-

ological changes in the tissue structure [4].
The mathematical modeling of non-Newtonian nature of

blood flow through a stenosed tube has been studied by Shukla
et al. [5,6] and Chaturani and Ponnalagar Samy [7]. Blood flow

in a stenosed tube has been modeled for couple stress fluid by
Pralhad and Schultz [8]. Hall [9] and Porenta et al. [10] pointed
out that most of the vessels could be considered as long and

narrow, slowly tapering cones. Thus the effects of vessel
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tapering together with the non-Newtonian behavior of the
streaming blood seem to be equally important and hence cer-
tainly deserve special attention [11,12]. Some recent studies

which have been made to study the blood flow properties are
cited in the refs. [13–20].

With the above motivation, an attempt is made in the pres-

ent investigation to develop a mathematical model in order to
study the characteristics of the Reiner Rivlin fluid model for
blood flow through a tapered arteries in the presence of steno-

sis. The governing equations are solved analytically by regular
perturbation method. The expression for velocity, resistance
impedance, wall shear stress and shearing stress at the stenosis
throat has been calculated. At the end, the physical features of

various emerging parameters have been discussed by plotting
the graphs. Trapping phenomena have been discussed at the
end of the article.

2. Mathematical formulation

Let us consider an incompressible flow of Reiner Rivlin fluid

having constant viscosity l and density q in a tube having
length L. We are considering cylindrical coordinate system
ðr; h; zÞ such that �u and �w are the velocity component in �r
and �z direction respectively. Further we assume that r ¼ 0 is
taken as the axis of the symmetry of the tube. The geometry
of the stenosis which is assumed to be symmetric can be

described as [11]

hðzÞ ¼dðzÞ½1� g1ðbn�1ðz� aÞ � ðz� aÞnÞ�;
a 6z 6 aþ b; ð1Þ
¼dðzÞ; otherwise dðzÞ ¼ d0 þ nz; ð2Þ

where dðzÞ is the radius of the tapered arterial segment in the

stenotic region, d0 is the radius of the non-tapered artery in
the non-stenoic region, n is the tapering parameter, b is the
length of stenosis, ðn P 2Þ is a parameter determining the

shape of the constriction profile and referred to as the shape
parameter (the symmetric stenosis occurs for n ¼ 2) and a indi-
cates its location as shown in Fig. 1. The parameter g is defined
as

g ¼ d�n
n

n�1

d0b
nðn� 1Þ ; ð3Þ
Figure 1 Geometry of an axially nonsymmetrical stenosis in the

artery.
The equations governing the steady incompressible Reiner-

Rivlin fluid are given as
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The Cauchy stress �sij for a Reiner Rivlin fluid is given by

[12]

�sij ¼ ��pdij þ leij þ lceikekj; i; j ¼ �r; �z; �h; ð7Þ

where �sij is the stress tensor, eij is the rate of strain tensor, dij is

the Kronecker delta, l is the coefficient of viscosity and lc is

the coefficient of cross viscosity.
We introduce the non-dimensional variables

r ¼ �r

d0
; z ¼ �z

b
; w ¼ �w

u0
; u ¼ b�u

u0d
; p ¼ d20�p
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ð8Þ

where u0 is the velocity averaged over the section of the tube of
the width d0.

Making use of Eqs. (7) and (8), Eqs. (4)–(6), the appropri-
ate equations describing the steady flow of an incompressible

Reiner Rivlin fluid in the case of mild stenosis d�

d0
� 1

� �
,

subject to the additional conditions [11] i.e
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b
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can be written as
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The corresponding boundary conditions are

@w

@r
¼ 0 at r ¼ 0; w ¼ 0 at r ¼ hðzÞ; ð13Þ

where

hðzÞ ¼ ð1þ nzÞ 1� g1ððz� rÞ � ðz� rÞnÞ½ �;
r 6 z 6 rþ 1;

ð14Þ

and

g1 ¼
dn

n
n�1

ðn� 1Þ ; d ¼ d�

d0
; r ¼ a

b
; n0 ¼ nb

d0
ð15Þ

in which ðn ¼ tan/Þ;/ is called tapered angle and for converg-
ing tapering ð/ < 0Þ, non-tapered artery ð/ ¼ 0Þ and the
diverging tapering ð/ > 0Þ.
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Figure 2 Variation of velocity profile for Q ¼ 0:3;r ¼ 0:0;

z ¼ 0:5; n ¼ 2; k1 ¼ 0:3.
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3. Solution of the problem

Since Eq. (12) is non-linear equation. Therefore, we are seek-
ing the perturbation solutions, for perturbation solution, we

expand w, Q and p by taking k1 as perturbation parameter.
The solutions for velocity and pressure gradient, satisfying
boundary conditions take the form

w¼ r2�h2

4
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The pressure drop ðDp ¼ p at z ¼ 0 and Dp ¼ �p at z ¼ LÞ
across the stenosis between the section z ¼ 0 and z ¼ L is

obtain from (19) as done by [11]

Dp ¼
Z L

0
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dz: ð18Þ
−1 −0.5 0 0.5 1
0

1

2

3

4

5

r

w
 (r

,z
)

Converging tapering

 Non−tapered artery
 Diverging tapering

λ1 = 0.1

λ1 = 0.3

λ1 = 0.2
3.1. Resistance impedance

The resistance impedance is obtain from Eq. (18) as
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Q
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where
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Figure 3 Variation of velocity profile for Q ¼ 0:3;r ¼ 0:0;

z ¼ 0:3; n ¼ 2; d ¼ 0:3.

0 0.2 0.4 0.6 0.8 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

z

τ r
z

λ1 = 0.1

λ1 = 0.2

λ1 = 0.3

Converging tapering

 Non−tapered artery
Diverging tapering

Figure 4 Variation of wall shear stress for Q ¼ 0:3; n ¼ 2;

r ¼ 0:0; d ¼ 0:3.
3.2. Expression for the wall shear stress

The nonzero dimensionless shear stress is given by
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The expression for shearing stress at the stenosis throat
i.e. the wall shear at the maximum height of the stenosis

located at z ¼ a
b
þ 1

n
n
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The final expression for the dimensionless resistance to k, wall
shear stress srz and the shearing stress at the throat ss by

k ¼ 1
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srz ¼
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where

k ¼
~k
k0

; srz ¼
~srz
s0
; ss ¼

~ss
s0
; k0 ¼ 3L; s0 ¼ 4Q;

and k0; s0 are the resistance to flow and the wall shear stress for
a flow in a normal artery (no stenosis). Where a1 to a5 are

obtained using Mathematica.

4. Numerical results and discussion

The quantitative effects of the Reiner Rivlin fluid parameter
k1, the stenosis shape n and maximum height of the stenosis
d for converging tapering, diverging tapering and non-tapered
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Figure 5 Variation of wall shear stress for Q ¼ 0:3; k1 ¼ 0:2;

r ¼ 0:0; d ¼ 0:3.
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arteries for Reiner Rivlin fluid Figs. 2–8 are prepared. The var-
iation of axial velocity for k1, n, and d for the case of a con-
verging tapering, diverging tapering and non-tapered arteries

are displayed in Figs. 2 and 3. In Figs. 2 and 3 we observed
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Figure 7 Variation of shear stress at the stenosis throat for

Q ¼ 0:3.
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Figure 8 Stream lines for different values of k1: (a) k1 ¼ 0:1, (b)

k1 ¼ 0:3 other parameters are Q ¼ 0:3; d ¼ 0:1; n ¼ 2.
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that with an increase in k1 and d velocity profile decreases. It is
also seen that for the case of converging tapering velocity gives
larger values as compared to the case of diverging tapering and

non-tapered arteries. Figs. 4 and 5 show how the converging
tapering, diverging tapering and non-tapered arteries influence
on the wall shear stress srz. It is observed that with an increase

in k1 and n shear stress increases, the stress yield diverging
tapering with tapered angle / > 0, converging tapering with
tapered angle / < 0 and non-tapered artery with tapered angle

/ ¼ 0. In Fig. 6 we notice that the impedance resistance
increases for converging tapering, diverging tapering and
non-tapered arteries when we increase k1. We also observed
that resistive impedance in a diverging tapering appear to be

smaller than those in converging tapering because the flow rate
is higher in the former than that in the latter, as anticipated
and impedance resistance attains its maximum values in the

symmetric stenosis case ðn ¼ 2Þ. Finally, Fig. 7 is prepared
to see the variation of the shearing stress at the stenosis throat
ss with d. It is analyzed through figures that shearing stress at

the stenosis throat decreases with an increase in k1. Fig. 8
shows the stream lines for different values of k1. It is depicted
that the size of the trapping bolus increases with an increase in

Reiner Rivlin fluid parameter, while decreases with an increase
in the height of the stenosis shape.
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