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Abstract Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed

in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of

elasticity. Three displacement potential functions are introduced to uncouple the equations of

motion, electric and magnetic induction. The frequency equations that include the interaction

between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel

functions. The numerical calculations are carried out for the non-dimensional frequency, phase

velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves.

The results reveal that the proposed method is very effective and simple and can be applied to other

bar of different cross section by using proper geometric relation.
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1. Introduction

The smart composite material such as a magneto-electro-
elastic material exhibits the desirable coupling effect between elec-
tric and magnetic fields and has gained considerable importance

since last decade. These materials have the capacity to convert
one form of energy namely, magnetic, electric and mechanical
energy to another form of energy. The composite consisting of

piezoelectric and piezomagnetic components has found
increasing application in engineering structures, particularly
in smart/intelligent structure system. In addition, magnetoelec-

troelastic materials have been used extensively in the design of
light weighted and high performance sensors and transducers
due to direct and converse piezoelectricity effects. The direct

piezoelectric effect is used in sensing applications, such as in
force or displacement sensors. The converse piezoelectric
effects are used in transduction applications, such as in motors

and device that precisely control positioning, and in generating
sonic and ultrasonic signals. This study may be used in appli-
cations involving nondestructive testing (NDT), qualitative
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nondestructive evaluation (QNDE) of large diameter pipes and
health monitoring of other ailing infrastructures in addition to
check and verify the validity of FEM and BEM for such

problems.
Pan [1] and Pan and Heyliger [2] have discussed the three-

dimensional behavior of magnetoelectroelastic laminates

under simple support. An exact solution for magnetoelectro-
elastic laminates in cylindrical bending has also been obtained
by Pan and Heyliger [3]. Pan and Han [4] derived the exact

solution for functionally graded and layered magneto-
electro-elastic plates. Feng and Pan [5] discussed the dynamic
fracture behavior of an internal interfacial crack between
two dissimilar magneto-electro-elastic plates. Buchanan [6]

developed the free vibration of an infinite magneto-electro-
elastic cylinder. Dai and Wang [7,8] have studied thermo-
electro-elastic transient responses in piezoelectric hollow

structures and hollow cylinder subjected to complex loadings.
Later Wang with Kong et al. [9] presented the thermo-

magneto-dynamic stresses and perturbation of magnetic field

vector in a non-homogeneous hollow cylinder. Annigeri et al.
[10–12] studied respectively, the free vibration of clamped-
clamped magneto-electro-elastic cylindrical shells, free vibration

behavior of multiphase and layered magneto-electro-elastic
beam, free vibrations of simply supported layered and multi-
phase magneto-electro-elastic cylindrical shells. Hon et al.
[13] analyzed a point heat source on the surface of semi-infinite

transversely isotropic electro-magneto-thermo-elastic materials.
Sharma and Mohinder Pal [14] developed the Rayleigh-Lamb
waves in magneto-thermo-elastic homogeneous isotropic plate.

Later Sharma and Thakur [15] studied the effect of rotation on
Rayleigh-Lamb waves in magneto-thermo-elastic media. Gao
and Noda [16] presented the thermal-induced interfacial

cracking of magnetoelectroelastic materials. Bin et al. [17]
studied the wave propagation in non-homogeneous magneto-
electo-elastic plates.

Sinha et al. [18] made an investigation about the axisym-
metric wave propagation in circular cylindrical shell immersed
in a fluid, in two parts. In Part I, the theoretical analysis of the
propagation modes is discussed and in Part II, the axisymmet-

ric modes excluding tensional modes are obtained both
theoretically and experimentally and are compared. Berliner
and Solecki [19] investigated wave propagation in a fluid

loaded transversely isotropic cylinder. In that paper, Part I
consists of the analytical formulation of the frequency equa-
tion of the coupled system consisting of the cylinder with inner

and outer fluid and Part II gives the numerical results.
Ponnusamy [20] has studied the wave propagation in a gen-

eralized thermoelastic cylinder of arbitrary cross-section
immersed in a fluid using the Fourier expansion collocation

method. Recently, Ponnusamy and Selvamani [21,22] have
studied respectively, the three dimensional wave propagation
of transversely isotropic magneto thermo elastic and general-

ized thermo elastic cylindrical panel in the context of the linear
theory of thermo elasticity.

In this problem, the wave propagation in a transversely

isotropic magneto-electro-elastic solid bar immersed in an
inviscid fluid is studied using Bessel function. Three displace-
ment potential functions, electric field vector and magnetic

fields are used to uncouple the equations of motion. The
frequency equations are obtained from the perfect slip bound-
ary conditions. The computed non-dimensional frequencies,
phase velocity and attenuation coefficient are plotted in the
form of dispersion curves and their characteristics are
discussed.
2. Formulation of the problem

The constitutive equations of a transversely isotropic linear

magneto-electro-elastic material, involving stresses rj, strain
Sij, electric displacements Dij, electric field Ek, magnetic induc-
tion Bj and magnetic field Hk are considered in the lines of

Buchannan [6],

rj ¼ CjkSk � ejkEk � qkjHk ð1Þ
Dj ¼ ejkSk þ ejkEk þmjkHk ð2Þ
Bj ¼ qjkSk þmjkEk þ ljkHk ð3Þ

where Cjk,ejk and ljk are the elastic, dielectric and magnetic
permeability coefficients respectively; ekj, qkj and mjk are the

piezoelectric, piezomagnetic and magnetoelectric material
coefficients.

The strain Sij is related to the displacements corresponding
to the cylindrical coordinates (r,h,z) which are given by

Srr ¼
@ur
@r

; Shh ¼
1

r
ur þ

@uh

@h

� �
; Szz ¼

@uz
@z

Srh ¼
1

r

@ur
@h
þ @uh

@r
� uh

r

� �
;Srz ¼

@uz
@r
þ @ur
@z

� �
;

Shz ¼
1

r

@uz
@h
þ @uh

@z

� �
ð4Þ

where ur,uh and uz are the mechanical displacements corre-

sponding to the cylindrical coordinate directions r, h and z.
The relation between the electric field vector Ei and the electric
potential / is given by

Er ¼ �
@/
@r
; Eh ¼ �

1

r

@/
@h

and Ez ¼ �
@/
@z

ð5Þ

Similarly, the magnetic field Hi is related to the magnetic
potential w as

Hr ¼ �
@w
@r
; Hh ¼ �

1

r

@w
@h

and Hz ¼ �
@w
@z

ð6Þ

The basic governing equations of motion, electrostatic dis-

placement Dj and magnetic induction Bj in cylindrical co-ordi-
nates (r,h,z) system, in the absence of volume force are

@rrr
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@2uz
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ð7cÞ

@Dr
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þDr

r
þ @Dh

@h
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@z
¼ 0 ð7dÞ

@Br

@r
þ Br

r
þ @Bh

@h
þ @Bz

@z
¼ 0 ð7eÞ

where the stress strain relation for the transversely isotropic
medium is given by
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rrr ¼ c11Srr þ c12Shh þ c13Szz � e31Ez � q31Hz ð8aÞ
rhh ¼ c12Srr þ c11Shh þ c13Szz � e31Ez � q31Hz ð8bÞ
rzz ¼ c13Srr þ c13Shh þ c33Szz � e33Ez � q33Hz ð8cÞ
rrh ¼ c66Srh ð8dÞ
rhz ¼ c44Shz � e15Eh � q15Hh ð8eÞ
rrz ¼ c44Srz � e15Er � q15Hr ð8fÞ

The electric displacement and magnetic induction are related
in terms of strain, electric field and magnetic field in the follow-
ing form.

Dr ¼ e15Srz þ e11Er þm11Hr ð9aÞ
Dh ¼ e15Shz þ e11Eh þm11Hh ð9bÞ
Dz ¼ e31ðSrr þ ShhÞ þ e33Szz þ e33Ez þm33Hz ð9cÞ

Br ¼ q15Srz þm11Er þ l11Hr ð10aÞ
Bh ¼ q15Shz þm11Eh þ l11Hh ð10bÞ
Bz ¼ q31ðSrr þ ShhÞ þ q33Szz þm33Ez þ l33Hz ð10cÞ

Substitution of Eqs. (4)–(6) along with Eqs. (8)–(10) into Eqs.
(7) we obtain the following set of governing equations in terms

of displacements, electric potential and magnetic potential as

c11 ur;rr þ r�1ur;r � r�2ur
� �

þ c66r
�2ur;hh þ c44ur;zz

þ ðc66 þ c12Þr�1uh;rh � ðc11 þ c66Þr�2uh;h þ ðc44 þ c13Þuz;rz
þ ðe31 þ e15Þ/;rz þ ðq31 þ q15Þ/;rz ¼ qur;tt ð11aÞ

ðc66þ c12Þr�1ur;rhþðc11þ c66Þr�2ur;hþ c66 uh;rrþ r�1uh;r� r�2uh

� �
þ c44uh;zzþ c11r

�2uh;hhþ c44þ c13ð Þr�1uz;hz
þ e31þ e15ð Þr�1/;hzþ q31þq15ð Þw;hz¼ quh;tt ð11bÞ

c44 þ c13ð Þ ur;rz þ r�1ur;z þ r�1uh;hz

� �
þ c44 uz;rr þ r�1uz;r þ uz;hh

� �
þ c33uz;zz þ e33/;zz þ q33w;zz þ e15 /;rr þ r�1/;r þ /;hh

� �
þ q15 w;rr þ r�1w;r þ w;hh

� �
¼ quz;tt ð11cÞ

e15 uz;rrþ r�1uz;rþ r�2uz;hh

� �
þ e31þ e15ð Þ ur;rzþ r�1ur;zþ r�1uh;hz

� �
þ e33uz;zz� e33/;zz�m33w;zz� e11 /;rrþ r�1/;rþ/;hh

� �
�m11 w;rrþ r�1w;rþw;hh

� �
¼ 0 ð11dÞ

q15 uz;rr þ r�1uz;r þ uz;hh

� �
þ q31 þ q15ð Þ ur;rz þ r�1ur;z þ r�1uh;hz

� �
þ q33uz;zz � l33w;zz �m33/;zz � l11 w;rr þ r�1w;r þ w;hh

� �
�m11 /;rr þ r�1/;r þ /;hh

� �
¼ 0 ð11eÞ
3. Method of solution of the solid medium

Eqs. (11a)–(11e) are coupled with both odd ordered and even
ordered derivatives of three displacements, electric potential
�c11r2 þ X2 � 12 �1 1þ �c13ð Þ �1 �e31 þ �e15ð Þ �1 �q31ð
1 1þ �c13ð Þr2 r2 þ X2 � 12�c33

� �
�e15r2 � 12
� �

�q15r
�

1 e31 þ �e15ð Þr2 �e15r2 � 12
� �

12�e33 � �e11r2
� �

�m3312 �
�

1 �q31 þ �q15ð Þr2 �q15r2 � 12
� �

�m3312 � �m11r2
� �

�l3312 �
�

										
and magnetic potential components with respect to one specific
coordinate variable. To uncouple Eq. (11) we seek the solution
in the following form:

ur r; h; z; tð Þ ¼ /;r þ r�1w;h

� �
þ �/;r þ r�1�w;h

� �� �
eiðkzþxtÞ

uh r; h; z; tð Þ ¼ r�1/;h � w;r

� �
þ r�1�/;h � �w;r

� �� �
eiðkzþxtÞ

uzðr; h; z; tÞ ¼
i

a
ðWþWÞei kzþxtð Þ

U r; h; z; tð Þ ¼ i

a

c44
e33

� �
Uþ U
� �

ei kzþxtð Þ

W r; h; z; tð Þ ¼ i

a

c44
e33

� �
WþW
� �

eiðkzþxtÞ ð12Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

; k is the wave number, x is the angular fre-
quency, /(r,h), w(r,h), W(r,h), U(r,h) and W(r,h) are the dis-
placement potentials for symmetric modes of vibrations and

the bared quantities �/ðr; hÞ; �wðr; hÞ;Wðr; hÞ;Uðr; hÞ and

Wðr; hÞ represents the displacement potentials for anti symmet-
ric modes of vibration, a is the geometrical parameter of the

cylindrical bar.
Introducing the dimensionless quantities such as

1 ¼ ka; x ¼ r

a
; X ¼ xa=c21; �cij ¼

cij
c44

;

�eij ¼
eij
e33

; �qij ¼
qij
q33

; �mij ¼
mijc44
e33q33

�eij ¼
eijc44
e233

;

�lij ¼
lijc44

q233
; c21 ¼

c44
q
; Ta ¼

ffiffiffiffiffiffiffiffiffiffiffi
c11=q

p
=a; �z ¼ z=a ð13Þ

and substituting Eqs. (12) and (13) into Eqs. (11a)–(11e), we
obtain

½�c11r2 þ ðX2 � 12Þ�/� 1 1þ �c13ð ÞW� 1 �e13 þ �e15ð ÞU
� 1 �q31 þ �q15ð ÞW ¼ 0 ð14aÞ

1 1þ c13ð Þr2/þ r2 þ X2 � 12c33
� �

Wþ e15r2 � 12
� �

U

þ q15r2 � 12
� �

W ¼ 0 ð14bÞ
1 e31 þ e15ð Þr2/þ e15r2 � 12

� �
W� e11r2 � 12e33

� �
U

� m11r2 � 12m33

� �
W ¼ 0 ð14cÞ

1 q31 þ q15ð Þr2/þ q15r2 � 12
� �

W� m11r2 � 12m33

� �
U

� l11r2 � 12l33

� �
W ¼ 0 ð14dÞ

and

r2 þ
X2 � 12
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c66

 !
W ¼ 0 ð15Þ

where r2 ¼ @2

@x2
þ 1

x
@
@x
þ 1

x2
@2

@h2

For the existence of non-trivial solution of Eqs. (14a)– (14d),
the determinant of the coefficient of the system is set to zero
þ �q15Þ
2 � 12

�
�m11r2

�
�l11r2

�

										
ð/;W;U;WÞ ¼ 0 ð16Þ
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The above determinant Eq. (16) results in an ordinary
differential equation as follows

ðAr8 þ Br6 þ Cr4 þDr2 þ EÞð/;W;U;WÞ ¼ 0 ð17Þ

where the coefficients occurring in Eq. (17) are

A ¼ �c11g1

B ¼ �c11 g2 þ g3g4 � g5 � 2�e15g6 þ 2�q15g7 þ 212�e15�q15 �m33

� �
þ g8g2 þ g29g4 þ 21g9g10g11 þ 21g9g12g13 þ 12g210g14

þ 212g10g12g15 � 12g212g16

C ¼ �c11 12g17 þ g3g2 � 2�e151
2g18 þ 12 g6 � g7ð Þ � 212�q15g19

� �
þ g8 g2 þ g3g4 � g5 � 2e15g6 þ 2�q15g7 þ 212�e15�q15 �m33

� �
þ g29g2 þ 21g9g10 g6 � g20ð Þ þ 21g9g12 g7 þ g21ð Þ þ 14g210g22

� 214g10g12g23 � 12�e15g
2
10g3 þ 212 �m11g10g12g3 þ 14g212g25

� 12�e11g
2
12g3

D ¼ �c11 12g17g3 þ 14 g18 � g19ð Þ
� �

þ g8 12g17 þ g2g3 � 2�e151
2g18 þ 12 g6 � g7ð Þ � 212�q15g19

� �
þ 14g29g24 � 213g10g9g18 � 213g9g12g19 þ 14�l33g

2
10g3

� 214 �m33g10g12g3 � 16g210 þ 216g10g12 þ 14�e33g
2
12g3 � 16g212

E ¼ g8 12g17g3 þ 14 g18 � g19ð Þ
� �

ð18Þ

where

g1 ¼ �e11�l11 � �m2
11 þ �e215�l

2
11 þ �q215�e11 � 2�e15�q15 �m11;

g2 ¼ 12 2 �m11 �m33 � �e33�l11 � �e11�l33ð Þ; g3 ¼ X2 � 12�e33;

g4 ¼ �e11�l11 � �m2
11; g5 ¼ 12 �e215�l

2
33 þ �q215�e33

� �
; g6 ¼ 12 �l11 � �m11ð Þ;

g7 ¼ 12 �m11 � �e11ð Þ; g8 ¼ X2 � 12; g9 ¼ 1 1þ �e13ð Þ;
g10 ¼ �e31 þ �e15; g11 ¼ �e15�l11 � �q15 �m11; g12 ¼ �q31 þ �q15;

g13 ¼ �q15�e11 � �e15 �m11; g14 ¼ �l11 þ �q215; g15 ¼ �m11 þ �e15�q15;

g16 ¼ �e11 þ �q215; g17 ¼ 12 �e33�l33 � �m2
33

� �
; g18 ¼ 12 �m33 � �l33ð Þ;

g19 ¼ 12 �m33 � �e33ð Þ; g20 ¼ 12 �e15�l33 � �m33�q15ð Þ;

g21 ¼ 12 �e15 �m33 � �e33�q15ð Þ; g22 ¼ �l33 þ 2�q15;

g23 ¼ �m33 þ �q15 þ �e15; g23 ¼ �m33 þ �q15 þ �e15;

g24 ¼ �e33�l33 � �m2
33; g25 ¼ �e33 þ 2�e15

Solving the partial differential equation given in Eq. (17), we
obtain the solution as

/ ¼
X4
j¼1

AjJn ajr
� �

cos nh

W ¼
X4
j¼1

ajAjJn ajr
� �

cos nh

U ¼
X4
j¼1

bjAjJn ajr
� �

cos nh

w ¼
X4
j¼1

cjAjJn ajr
� �

cos nh ð19Þ
Hence, (ajr)
2(j= 1,2,3,4) are the non-zero roots of the

equation

ðAa8 � Ba6 þ Ca4 �Da3 þ EÞ ¼ 0 ð20Þ

The solutions corresponding to the root (aja)
2 = 0 are not con-

sidered here, since Jn(0) are zero, except for n = 0. The Bessel
function Jn is used when the roots (aja)

2(j = 1, . . . , 4) are real
or complex and the modified Bessel function In is used when
the roots (aj a)

2(j = 1,2,3,4) are imaginary.

The constants aj, bj and cj defined in Eq. (19) can be calcu-
lated from the following equations.

1 1þ �c13ð Þajþ 1 �e31þ �e15ð Þbjþ 1 �q31þ �q15ð Þcj¼X2� 12� �c11 aja
� �2

aja
� �2þ 12�c33�X2

 �

ajþ aja
� �2

�e15þ 12

 �

bj

þ aja
� �2

�q15þ 12

 �

cj¼�1 1þ �c13ð Þ aja
� �2

aja
� �2

�e15þ 12

 �

aj� �e11 aja
� �2þ 12�e33


 �
bj

� �m11 aja
� �2þ 12 �m33


 �
cj¼�1 �e31þ �e15ð Þ aja

� �2 ð21Þ

Solving Eq. (15), we obtain

W ¼ A5Jn a5rð Þ sin nh ð22Þ

where (a5a)
2 = X2 � f2. If (a5a)

2 < 0, the Bessel function Jn is

replaced by the modified Bessel function In.

4. Equations of motion of the fluid

In cylindrical polar coordinates r,h and z the acoustic pressure
and radial displacement equation of motion for an invicid fluid
are of the form Berliner and Solecki [19].

pf ¼ �Bf ufr;r þ r�1 ufr þ ufh;h


 �
þ ufz;z


 �
ð23Þ

and

�c2f u
f
r;tt ¼ D;r ð24Þ

respectively, where Bf is the adiabatic bulk modulus, qf is the

density, cf ¼
ffiffiffiffiffiffiffiffiffiffiffi
Bf=qf

q
is the acoustic phase velocity in the fluid,

and

D ¼ ufr;r þ r�1 ufr þ ufh;h


 �
þ ufz;z


 �
ð25Þ

Substituting

ufr ¼ /f
;r; ufh ¼ r�1/f

;h and ufz ¼ /f
;z ð26Þ

and seeking the solution of Eq. (24) in the form

/f r; h; z; tð Þ ¼
X1
n¼0

/fðrÞ cos nhei 1�zþXTað Þ ð27Þ

The fluid that represents the oscillatory wave propagating

away is given as

/f ¼ A6H
ð1Þ
n ða6axÞ ð28Þ

where ða6aÞ2 ¼ X2=qRB
f � f2, in which qR ¼ q=qf;Bf ¼

Bf=c44;H
ð1Þ
n is the Hankel function of first kind. If (a6a)

2 < 0,
then the Hankel function of first kind is to be replaced by

Kn, where Kn is the modified Bessel function of the second
kind. By substituting Eq. (27) in Eq. (23) along with Eq.
(26), the acoustic pressure for the fluid can be expressed as
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pf ¼
X1
n¼0

A6X
2�qHð1Þn ða6axÞ cos nheið1�zþXTaÞ ð29Þ
5. Boundary conditions and frequency equations

The continuity conditions in a solid–solid interface problem
and in case of real fluid problem require three traction free

stress component in its surfaces. But, in an ideal fluid-solid
interface the perfect slip boundary conditions imply the dis-
continuity in planar displacement component. That is, the

radial component of the displacement of the fluid and solid
must be equal at the interfaces; however, the circumferential
and longitudinal components are discontinuous and the three

surface stresses are equal to zero.
The solid fluid interfacial boundary conditions for infinite

cylindrical bar are given by

rrr þ pf ¼ rrh ¼ rrz ¼ u� uf ¼ 0; at r ¼ a ð30Þ

The electrical and magnetic boundary conditions for an infinite
cylindrical bar are,

Dr ¼ 0 and Br ¼ 0 ð31Þ

Using Eqs. (19), (22) and (29) in Eqs. (30) and (31), we can
obtain the frequency equation in the following form.

jMijj ¼ 0 i; j ¼ 1; 2; 3; 4; 5; 6: ð32Þ

where the elements in the determinant are given as

M1j¼ 2�c66½nðn�1ÞJnðajaxÞþðajaxÞJnþ1ðajaxÞ�
�x2½�c11ðajaxÞ2þ fðaj�c13þbj�e31þ cj�q31Þ�JnðajaxÞ; j¼ 1;2;3;4

M15¼ 2�c66½nðn�1ÞJnða5axÞþnða5axÞJnþ1ða5axÞ�
M16¼ qfX2Hð1Þn ða6aÞ
M2j¼ 2½nðn�1ÞJnðajaxÞ�nðajaxÞJnþ1ðajaxÞ�; j¼ 1;2;3;4

M25¼ ½2nðn�1Þ�ða5axÞ2�Jnða5axÞþ2ða5axÞJnþ1ða5axÞ
M26¼ 0

M3j¼ð1þajþbj�e15þ cj�q15Þ½nJnðajaxÞ�ðajaxÞJnþ1ðajaxÞ�;
j¼ 1;2;3;4

M35¼ n1Jnða5axÞ; M36¼ 0

M4j¼ ½ð1þajÞ�e15��e11bj� �m11cj�½nJnðajaxÞ�ðajaxÞJnþ1ðajaxÞ�
j¼ 1;2;3;4

M45¼ n1�e15Jnða5axÞ; M46¼ 0

M5j¼ðð1þajÞ�q15� �m11bj� �l11cjÞ½nJnðajaxÞ�ðajaxÞJnþ1ðajaxÞ�
j¼ 1;2;3;4

M55¼ n1�q15Jnða5axÞ; M56¼ 0

M6j¼ nHð1Þn ðajaÞ�ðajaÞHð1Þnþ1ðajaÞ
n o

; j¼ 1;2;3;4

M65¼ nJnða5aÞ

M66¼� nHð1Þn ða6aÞ�ða6aÞHð1Þnþ1ða6aÞ
n o

:

ð33Þ

6. Numerical discussion

In this problem, the free vibration of transversely isotropic

magnetoelectroelastic solid bar immersed in fluid is considered.
In the solid–fluid interface problems, the normal stress of the
bar is equal to the negative of the pressure exerted by the fluid
and the displacement component in the normal direction of the
lateral surface of the cylinder is equal to the displacement of
the fluid in the same direction. These conditions are due to

the continuity of the stresses and displacements of the solid
and fluid boundaries. Since the inviscid fluid cannot sustain
shear stress, the shear stress of the outer fluid is equal to zero.

The material properties of the electro-magnetic material based
on graphical results of Aboudi [23] are

c11 = 218 · 109 N/m2, c12 = 120 · 109 N/m2, c13 = 120 ·
109 N/m2, c33 = 215 · 109N/m2, c44 = 50 · 109 N/m2, c66 =
49 · 109 N/m2, e15 = 0, e31 =� 2.5 C/m2, e33 = 7.5 C/m2,
q15 = 200 C/m2, q31 = 265 C/m2, q33 = 345 C/m2, e11 =
0.4 · 10�9 C/Vm, e33 = 5.8 · 10�9 C/Vm, l11 = � 200 · 10�6

Ns2/C2, l33 = 95 · 10�6 Ns2/C2, m11 = 0.0074 · 10�9 Ns/VC,
m33 = 2.82 · 10�9 Ns/VC and q = 7500 Kg m�2 and for fluid
the density qf = 1000 Kg m�3, phase velocity cf = 1500 m s�1.

The velocity and density ratio between the fluid and solid
medium is defined as follows vR ¼ c1

cf
and qR ¼ q

qf.
The complex secular Eq. (33) contains complete informa-

tion regarding wave number, phase velocity and attenuation
coefficient and other propagation characteristics of the consid-
ered surface waves. In order to solve this equation we take

c�1 ¼ v�1 þ ix�1q ð34Þ

where k ¼ Rþ iq;R ¼ x
v
and R,q are real numbers. Here it may

be noted that v and q respectively represent the phase velocity
and attenuation coefficient of the waves. Upon using the rep-

resentation Eq. (34) in Eq. (33) and various relevant relations,
the complex roots aj(j= 1,2,3,4) of the quadratic Eq. (17) can
be computed with the help of Secant method. The characteris-
tic roots aj(j= 1,2,3,4) are further used to solve Eq. (33) to

obtain phase velocity (v) and attenuation coefficient (q) by
using the functional iteration numerical technique as given
below.

Eq. (33) is of the form F(C) = 0 which upon using repre-
sentation Eq. (34) leads to a system of two real equations
f(v,q) = 0 and g(v,q) = 0. In order to apply functional itera-

tion method, we write v= f*(v,q) and q = g*(v,q), where the
functions f* and g* are selected in such a way that they satisfy
the conditions

@f�

@v

				
				þ @g�

@q

				
				 < 1;

@g�

@v

				
				þ @f�

@q

				
				 < 1 ð35Þ

For all v, q in the neighborhood of the roots. If (v0,q0) be the
initial approximation of the root, then we construct a succes-
sive approximation according to the formulae

v1 ¼ f �ðv0; q0Þ q1 ¼ g�ðv1; q0Þ
v2 ¼ f �ðv1; q1Þ q2 ¼ g�ðv2; q1Þ
v3 ¼ f �ðv2; q2Þ q3 ¼ g�ðv3; q2Þ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vn ¼ f �ðvn; qnÞ qn ¼ g�ðvnþ1; qnÞ

ð36Þ

The sequence {vn,qn} of approximation to the root will con-

verge to the actual value (v0,q0) of the root provided (v0,q0)
lie in the neighborhood of the actual root. For the initial value
c= c0 = (v0,q0), the roots aj( j = 1,2,3,4) are computed from

Eq. (17) by using Secant method for each value of the wave
number k, for assigned frequency. The values of aj
(j = 1,2,3,4) so obtained are then used in Eq. (33) to obtain
the current values of v and q each time which are further used
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Figure 1 Dimensionless frequency X versus wave number Œ1 Œ of
longitudinal modes of vibration for a magneto-electro elastic solid

bar with vR = 0.5.
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Figure 2 Dimensionless frequency X versus wave number Œ1 Œ of
longitudinal modes of vibration for a magneto-electro elastic solid

bar with vR = 1.0.
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Figure 3 Phase velocity c versus wave number Œ1Œ of longitudinal
modes of vibration for a magneto-electro elastic solid bar with

vR = 0.5.
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Figure 4 Phase velocity c versus wave number Œ1 Œ of longitu-

dinal modes of vibration for a magneto-electro elastic solid bar

vR = 1.0.
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Figure 5 Attenuation coefficient q versus wave number Œ1 Œ of

longitudinal modes of vibration for a magneto-electro elastic solid

bar with vR = 0.5.
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to generate the sequence Eq. (36). This process is terminated as
and when the condition jvnþ1 � vnj < e; e being arbitrary small

number to be selected at random to achieve the accuracy level,
is satisfied. The procedure is continually repeated for different
values of the wave number (k) to obtain the corresponding val-
ues of the phase velocity(c) and attenuation coefficient (q).

6.1. Dispersion curves

The results of imaginary part and real part of longitudinal

modes are plotted in the form of dispersion curves. The nota-
tion used in the figures, namely IPlm and RPlm respectively
denotes the imaginary part of longitudinal mode and real part

of longitudinal, The 1 refers the first mode, 2 refers the second
mode and 3 for the third mode.

In Figs. 1 and 2 the variations in the non-dimensional fre-
quency X of a elastic cylindrical bar with respect to the wave

number Œ1Œ have been shown for first three modes of imaginary
and real part of longitudinal vibrations for the bar immersed in
fluid with the velocity ratio vR = 0.5, 1.0. From Fig.1, it is

observed that the non-dimensional frequency of the
electromagnetic bar shows almost linear variation with respect
to wave number for the velocity ration vR = 0.5. But in
Fig. 2 some oscillating nature is observed between 0 6 Œ1 Œ 6 2
from the linear behavior of frequency due to the damping

effect of surrounding fluid medium and increase in velocity
ratio is more prominent in lower wave number. From Figs. 1
and 2, it is observed that the imaginary part of the frequency

mode is less compared with real part due to damping of fluid
medium.
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Figure 6 Attenuation coefficient q versus wave number Œ1 Œ of

longitudinal modes of vibration for a magneto-electro elastic solid

bar with vR = 1.0.
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The variation in the phase velocity with respect to the wave
number of the cylindrical bar in with the velocity ratio

vR = 0.5, 1.0 is shown in Figs. 3 and 4, respectively. From
these curves it is clear that the phase velocity curves are disper-
sive only at the starting values of wave number in the range

0 6 Œ1 Œ 6 0.4 in Fig. 3 and 6Œ1 Œ 6 0.5 in Fig. 4, but for higher
values of wave number, these become non-dispersive for both
the values of the velocity ratio vR = 0.5 and vR = 1.0. But
there is a small dispersion of cutoff frequency in vR = 1.0

which might happen because of the radiation of the sound
energy in to the fluid produces damping in the system. The
phase velocity of real and imaginary modes of propagation

attains quite large values at vanishing wave number which
sharply slashes down to become steady and asymptotic with
increasing wave number.

The dispersion of attenuation coefficient q with respect to
the wave number Œ1 Œ is discussed for the two cases of
immersed and free magnetoelectro elastic solid bar in Figs. 5

and 6. The amplitude of displacement of the attenuation coef-
ficient increases monotonically to attain maximum value in
0.4 6 q 6 0.8 and slashes down to became asymptotically lin-
ear in the remaining range of the wave number in Fig. 5.

The variation in attenuation coefficient for different real and
imaginary parts of longitudinal modes is oscillating in the
maximum range of wave number as shown in Fig. 6. From

Figs. 5 and 6, it is clear that the attenuation profiles exhibit
high oscillating nature in the velocity ratio vR = 1.0 than
vR = 0.5 due to the combined effect of magnetic fields and

surrounding fluid. The crossover points in the vibrational
modes indicate the energy transfer between the solid and fluid
medium.

7. Conclusion

In this paper, the wave propagation in a magneto-electro-elas-

tic solid bar immersed in fluid is analyzed within the frame
work of three dimensional liner theory of magneto-electro elas-
tic by satisfying the traction free and perfect slip boundary
conditions. The frequency equation is obtained using Bessel

functions and numerically analyzed for the solid bar with dif-
ferent velocity ratios. The computed dimensionless frequency,
phase velocity and attenuation coefficient are plotted in graphs
for the real and imaginary part of longitudinal modes of vibra-
tions. From the numerical results, it is observed that the
increase in velocity ratio and the presence of fluid medium

influence all the modes of frequency, phase velocity and atten-
uation. Also it is observed that as wave number increases the
imaginary part of the vibration modes decreases, which exhib-

its the proper physical behavior. The obtained results are valu-
able for the analysis of design of magneto-electric transducer
and sensors using composite materials.
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