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Introduction

Let R” be the n-dimensional Euclidean space with » > 1 and 2 C R” be an unbounded
domain with uniform C? boundary. We consider the Cauchy—-Dirichlet problem for the
convection—diffusion equation in amalgam spaces:

u—Au=a -V(uPlu), t>0x€e9,
u(t,x) =0, t>0,xe€0%Q, (1.1)
u(0,x) = up(x), x € Q,

where a € R"\ {0} and p > 1, u = u(t,x); Ry x @ — R is the unknown function and
uy = uo(x); 2 — Ris given initial condition. Problem (1.1) has been considered by many
authors (see, e.g., [2-12, 21, 22, 26, 32, 33]). Among others, for 2 = R”, Escobedo and
Zuazua [9] showed that, for any initial data uo € L'(R"), there exists a unique global
classical solution u € C([0, 00); L} (R™)) of (1.1) in

u € C((0,00); W*1(R™)) N C1((0,00); L1(R™)),

for every q € (1, 00). They also studied the large-time behavior of solutions to (1.1) and
obtained decay estimates for L!(R") initial data. Haque, Ogawa and Sato [21] showed
the existence and uniqueness of weak solutions in uniformly local Lebesgue spaces. One
of the main reasons to study problem(1.1) in amalgam spaces is that they allow us to sep-
arate the global behavior from the local behavior. In applications, this makes amalgam
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spaces more applicable than to Lebesgue spaces and uniformly local Lebesgue spaces
because the Lebesgue and uniformly local Lebesgue norm does not distinguish between
local and global properties. Amalgam space has a long history and has been studied by
many authors, [4-7, 16, 20, 25], etc. Amalgam spaces arise naturally in harmonic analy-
sis. In 1926, Norbert Wiener, who was the first one to introduce the amalgam spaces,
considers some special cases in [29-31]. Amalgams have been reinvented many times in
the literature; the first systematic study appears by Holland in [23]; an excellent review
article is [17]. H. Feichtinger [13-15] introduced a far-reaching generalization of amal-
gam spaces to general topological groups and general local/global function spaces.

Definition (Amalgam spaces). Let 1 < r,v < 0o. The amalgam spaces on 2 denoted by
L7¥(S2) are defined by

L@ = {f : Il < oo},

where for p > 0

<=

iz ={ D Wlirewone | (1.2)

kapZ”

where Z" stands for the lattice points in R” . If r = v, then L:;”(Q) = L"(2). As well as
if v = oo, then L:;“(Q) =1L
defined in (1.2).

The Sobolev spaces W/]f’r’“(Q) forl <r,v <o00,p>0andk =1,2,...are analogously
introduced. We defined by

(2). The space L:;" (€2) is a Banach space with the norm

’
uloc,p

WY (Q) = {f Nyt < OO}’

where for p > 0,

W lyggr = W e + D 192 -
lee| <k

We denote WA'Z’Z(Q) as H; () for simplicity and Hol'p (2) be the closure of the C§°(£2) in
H(Q).

To this end, we introduce the notion of weak solutions to (1.1) in amalgam spaces
L7"(€2) as follows.

Definition (Weak L™ (2)-solutions) Let 1 < r,v < oo and p > 0. For an initial data
ug € L:;”(Q) and T > 0, we say that u is a weak L (Q2)-solution of (1.1) in (0, T') x €, if

(1) u € C(0, T) : LY (R)) N L*(0, T : Hy ,(2) N LY (RQ)),

(2) u(t) = ugin *-weakly in L;"’ (),
(3) u satisfies

T
/ /{—ua,¢+w-v¢+a|u|P—1u-v¢}dxdt=0
0 Q

forallg € C5°((0, T) x Q).
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We now state our main results concerning the existence and uniqueness of this problem.

Theorem 1.1 (Existence of a weak solution) Let p > 1,1 < r,v < coandv > r with

rnp-1 if p>1+31,
r>1 if p=1+1, (1.3)
r>1 if 1<p<1+%.

There exists a positive constant yy, depending only on n, p and r, such that, if for any ini-
tial condition ug € L};" () satisfies

p?= 1 ol < vo (1.4)

1 _n
r

for some p > 0, then there exists a unique weak L™ (Q2)- solution u of (1.1) in (0, up?) x Q
such that

sup u(®)ll = Cluoll,
O<t<up?

where C and p are independent of u. Besides the solution has a uniform estimate

1
uo? . r
el oty < C /0 o

and hence u € L™ ((O, wp?) x Q)for some . > 0.

Local well-posedness problem for Fujita-type nonlinear heat equation was discussed
by many authors: For1 < p < oo,

o — Au = uP, t>0,x¢eQ,
(1.5)

u(0,x) = up(x), x € Q.

In particular, Weissler [28] obtained the sharp well-posedness result in Lebesgue spaces:

If
r>=5p-1 if p>1+%,
r>1 if p=1+2,
r>1 if 1<p<1+%,

then solution exists and well-posed in Lebesgue spaces L"(2). The exponent appears
naturally from the invariant scaling equipped with the equation itself;

(8, %) = AT u(i2t, Jx), (1.6)

where u; also solves equation (1.5). The threshold scaling space appears when the expo-
nent of the coefficient ;7°7 of the scaled function (1.6) coincides the L! invariant scaling.
The corresponding result to the convection—diffusion equations (1.1) also holds for the
critical exponent p =1+ % (cf. [9]). Our main finding is that even in amalgam spaces
decouple the connection between local and global properties that is inherent in Leb-
esgue spaces, the well-posedness threshold coincides with the usual Lebesgue spaces
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case. Furthermore, amalgam spaces are a space between usual Lebesgue spaces and uni-
formly local Lebesgue spaces. We compare our result with the result of [21] and obtain
stronger conclusion even though our initial data class smaller than that of [21].

This paper is organized as follows. In “Preliminaries” section, we will state some prop-
erties of amalgam spaces. In “A priori estimates” section, we will prove our key estimates:
a priori estimates, difference estimates and L* estimates for a weak solution in amalgam
spaces. In “Proof of Theorem” section, we will prove our main Theorem 1.1 using the
estimates that proved in “A priori estimates” section.

Preliminaries
In this section, we present important properties for functions belonging to amalgam
spaces that will be used later.

Proposition 2.1 (Properties of amalgam spaces)

(i) Ifr1 = roandvy < vy then for any p > 0, we have L:}'”l () C L;}"’Z(Q).
(i) Letl<r<oo.Iff € L:;”(Q)forsome,o > 0, then forany p' > 0, f € L:)’,V(Q) and

“f“L;‘,” = Clifligzy (2.1)

for some constant C depending only on 7, p and p’ if o’ > p.
For the proof, see ([25]).

Proposition 2.2  The class of compact-supported smooth functions; C5°(R2) is dense in
L;"’(Q), 1<rv<oo

For the proof, see ([25]).

Proposition 2.3 (Gagliardo—Nirenberg’s inequality) Let Q CR”, 1<r <oo,
1 <p,q <o0,and0 € [0, 1] satisfying

1 1 11
:(1—9)+9<—>.
q p r n

Then, there exists a constant Cgn > 0, depending only on p, q, r and n such that for any
feLlr( Q)N wy (),

Ifllze < Canllf 5 IVEN- (2.2)

For the proof, see ([18]).

Proposition2.4 Letn>1,Q2CR", % € Q,p >0andl <p,q,r < oo with



Haque Journal of the Egyptian Mathematical Society (2022) 30:22 Page 5 of 19

1 1-60 260 (1 1)

iR (T

q p r\2 mn
Then, there exists a constant C >0 such that for any function f satisfying
f € LP(B,(x0) N Q) with|f|2 € H} (B, (x0) N ),

1 1-0 [
1 p r
(/ lflqdy> < C</ 1f|de> (/ |V[f|2|2dy> . (2.3)
B, (x0)N B, (x0)N2 B, (x0)N2

For the proof, see [21]

A priori estimates

In this section, we give some a priori estimates for a weak solution to (1.1). All the esti-
mates hold for the weak solutions to (1.1) if we assume that the solutions exist. In the
remainder of this paper, we denote B,(x) N Q2 for x € ©, p > 0 by simply B, (x) unless

otherwise specified.

Proposition 3.1 (A priori estimate) Let r satisfy (1.3) andr > 1. Let ugy € L;’” (Q) and u
be a LV (2)- solution of (1.1) in (0, T) x 2, where T > 0. There exists a positive constant
y1 such that, if

1 1
n

pr=t sup |lu(s)lpy =n (3.1)

0<s<T

for some p > 0, then there exists a constant (v > 0 depending only on p, r, n and y1 such
that

sup [[u(s)llzp < Cluoll
O<s<t

for0 < t < min{up?, T}, where C is a positive constant depending only on n, p and r.
Proof of Proposition 3.1 Letx € Qand ¢ be a smooth function in C§°(2) such that

0<¢<land|Ve| <20 'ing,
{ =1lonB,(x), ¢ =0inQ\ By,(x).

For any 0 < 7 <t < T, multiplying (1.1) by (sgnu)|ul"~'¢¥ and integrating it in
(0,7) x 2, we have that,

1 ’ 1 r
L uesleof—1 [ (uon]cory
By (x) T JBy, (%)

r

+ /O /Q Vu(s,y) - V((sgn u(s,y))\u(s,y)y’*lg(y)k)dyds (3.2)

_ /0 /Q a - V(s ) uls, ) (sgn (s, 9 |u(s,) | ¢ (5 dyds.
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As the relations

Vi - V((sgnuw)|ul 1K) = — D)l 72| Vul®ck — [k(sgnuw)|u " eF1Vu - Ve

k
>{(r — 1) — ke}ul" 2| Vul*¢k - £|u|’ck—2|w|2

(3.3)
and
. 2 2 kZ
VAul2e D[ < Sl Vulet + S 2 ve (3.4
are hold. Hence, by inequalities (3.3) and (3.4), we have that,
Vu - V((sgn u)|u|’_1(;k)
2 r k|2 k2 _
z{(r—l)—ek}{rz\V(|u|zu) - et 2|V¢|2}
k - (3.5)
= e
&
rok_ |2 _
=Ci|V(use D[ = Colur 2 ve
Moreover, by Young’s inequality, we have that,
T
b p+r—1 k
————a- V| |us,y) Z(»)"dyds
/0 /sz(x)p-f-r—l (’ ‘ )
kp /T/ ptr—1, k-1
- a-|u(s,y) T VE(ndyds
p+r—1J Bap(@) ‘ )’| O O)dy
T ) (3.6)
r —
<G [ sl eor Ve as

0 By (x)

T
4G / / (s, )PP+ 2¢ () dyds.
0 sz(x)

Hence, by inequalities (3.2), (3.5) and (3.6), we have that,

1 o 1
f/ lu(z,y)| ¢ dy — */
7 JBy,(x) T JB,

T
+ Cl/ /
0 By, (x)

T r ‘s ) (3.7)
< Cz/ / u(s, »)| ¢ | Ve ()| dyds
0 BZp(x)

T 2p+r—2
+ Cs / / |us, »)| £ (y)Fdyds.
0 JByy(x)

y |u(0, )| ¢ (nkdy

0

r k|2
V(|u(s,9)|2¢()2)| dyds

Page 6 of 19
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We now estimate the last term of the right hand side of (3.7) using Gagliardo—Niren-
bergs inequality (Proposition 2.4). In partlcular, choosing g = f(p —1)+2 and
1= =1, and setting g(s,y) := |u(s, )| () 21’*’ 2, we have using Holder’s inequality for
r z n(p — 1) that

T
/ / (s, )12 () dyds
0 JBy)

2
no et
<C sup < / |g(s,y)|"<”‘“dy> / / IV1g(s,9)|2 [2dyds
0<s<T By, (%) 0 JBy,(x)

2p=1)

<C sup ,0!’%1_”/ lu(s, y)|"dy
By (x)

O<s<t
o -2 r
)| dy+p lus, pI"dy |ds
BZp(x)

T
“J UL
0 \/By)

Hence, by Proposition 2.1, we conclude from (3.7) and (3.8) that

1 1
! / (e, DITE iy — - / (0, ) " () dy
By, (x) r By, (%)

r
T
+ C1/ /
0 By, (x)

<G / / (s, DI"E )21V () Pdyds
0 'BZp(x)

. 2
V(lu(s,y)|2 dyds

2(p=1)
r

B I / (s, 9)I"dy
0<s<T By (%)
T 2
x/ / 2 dy—i—pfz/ lu(s,y)|"dy | ds
0 ng(x) BZp(x)
T
sCzp*Z// |u(s, y)|"dyds
0 JB,x)
2(p=1)
+ Cs sup plﬁ_n/ lu(s, y)|"dy
O<s<T B, (x)
2 _2 .
dy+p |u(s, y)I"dy | ds
B,(x)

T
< U
0 B,a(x) 14

By taking, the supremum for v € (0, t) in the right hand side of (3.9) and using (3.1), we
have that,

V(|u(s,)|%)
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)
V(|u(s,y)|2)| dyds

T
/ (T, )I'dy + C1 / /
B, (x) 0 JB,x)

< Cotp™? sup / lu(s, )|"dy + SUP/ |u(0, y)|"dy
B,(x) By (%)

O<s<t xeR”

2(p—1)
r

O<s<t By (x)

S

< Cotp™? sup / lu(s, |"dy + SUP/ |u(0, y)|"dy
B,(x) B,(x)

O<s<t xeR”

_ i 2
+C3V12(" 1)/ / dy+p‘2/ lu(s,y)"dy | ds.
0 B, (x) B, (x)

for0 < t < t < T. Taking a sufficiently small 1 and £ p~? if necessary, and by taking the-
supremum for t € (0, t), we deduce from (3.10) that

+ C3 sup (p”rl_n/ |M(S,y)|rd)’)
* (3.10)
V(|u(s,)|7)

B,

2
dy +p72 / ) Iu(s,y)l’dy> ds
X

V(lu(s,y)?)

SUP/ lu(z,y'dy < Ctp2 sup/ Iu(s,y)l’dde/ lu(0, )|"dy
B,(®) By(x) B,(®)

O<t<t O<s<t

for0 < v < ¢t < T. This implies that,

(1—Ctp™®)" sup </ Iu(s,y)lrdy) < </ Iu(O,y)I’dy) :
O<s<t B, (x) By (x)

Taking summation on both sides on the lattice point x; € Z”, we have that,

v

1—Ctp~? v sup (/ |u(s,3/)|rdy> r
( ) O<s<t Z By (xx)

et (3.11)
<> ( / |u(o,y>|’dy> :
X €pZt B (xx)
Hence, from (3.11), we have that,
sup [1u(s)llz» < ClluO)l .
O<s<t
for 0 < t < min{up2, T). U

Proposition 3.2 (Difference estimate) Let r satisfy (1.3), r > 1 and T > 0. Let ug and
vo € L;"(2) be two initial data and suppose that u and v be a corresponding L™"(S2)-
solution of (1.1) in (0, T) x R, respectively. There exists a positive constant yo such that, if

1

SN

pr=1 7 sup |u()llyy < 2

0<s<T
ey (3.12)
pr1T sup ()l < va

0<s<T
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for some p > 0, then there exists a constant | > 0 depending only on p, r, n and y, such
that

sup [lu(s) —v(s) gz < Clluo — voll
O<s<t

for 0 < t < min{up?, T}, where C and 1 are positive constants depending only on n, p
andr.

Proof of Proposition 3.2

Let x € Q and ¢ be a smooth function in C°(Q2) defined in (1.1) Suppose that u and
v are two strong solutions of (1.1) in (0,T) x Q and let w=u —v. Then multiply
|w|"~L(sgn w)¢* for k € N to the difference of equation

w—Aw=a-V(ulu— P v
and integrate it over Q2 we obtain that
1d rok r—1 k
*f/ w(s)"¢ dy+/ Vw(s) - V(Iw(s)|"™ " (sgnw(s))¢"dy
rdt Q Q
=— / (ulP ™ u — Pty (a - Vsgnw(s)lw(s) ™) ¢kdy (3.13)
Q
— / (ulP~u — P~ ) (sgnw(s)w(s)"ta - Vikdy.
Q
Observing that

r—1 k rok2 k=22
V- V(wl " sgnw)ch) = C1|V(wiEe D[ = Colwl e 2 ve . (3.14)

By mean value’s theorem, we know that

[P~ — Pty

1
=‘ /0 a%(lv 0w —P v+ 0 — V)))de‘

1
§P|M—V|/O (|v+9(u—v)|P1)d9 (3.15)

<plwl|(max(ul, |v))? .

Therefore, by (3.14) and (3.15), we obtain from (3.13) that
1d

r dt sz (%)

—c / () eV Pdy
BZp(x)

rok ro k|2
w(s)|"¢ dy+C/ V(w(s)[2¢2)| dy

By (%)

1 (3.16)
< C/B  (max(u) D) [Viws [say

e /B  (maxL D)o 195"y

Page 9 of 19
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Now we estimate the first and last term of the right hand side of (3.16) using the Young
and the Holder inequalities. The first term of the right hand side of (3.16) follows:

Let U (s) = max(|u(s)], |v(s)]), then
/B “ (max(lu(s)], vs)D)? " | VIws)I"| ¥ dy
—cC /B U ol Fwio (3.17)

<C / U)X w(s) ¢k dy + C /
By (x) .

sz (x

) |VIw(s)|? [*cXdy.

Now we estimate the first term of the right hand side of (3.17) using the Holder and the
Sobolev inequalities and obtain that

/ / 1L (s, ) 2 w(s, )¢ () dyds
0 BZ/) (x)

n—

T n
<c / / U (s, "®Vdy /
0 sz (%) BZ/) (%)

2p—1)

7

2 n

n—n2 _kn_
{(y)n2 dy> ds

lw(s, y)|2

<C sup [pr / U (s,p)["dy
B2p(x)

O<s<t

T
b U
0 Bsp (%)

V(iw(s,)?)

2
dy+p~? / |w(s,y>|’dy> ds.
BZp(x)

(3.18)
Therefore, by (3.17), (3.18), we obtain from (3.16) that
1 r k 1 r k
- w(T, )I"c dy — = lw (0, )" (»)"dy
T JBy,(x) T JBy,(x)
T r 2
+a | / V(iws Iic eS| ayas
0 JBy,(x)
<G, / / (s, I"E )<V () 2dyds
0 JBy,) (3.19)

2(p—1)
r

+ C3 sup pzﬁfn/ ‘max(|u|,|v|)|rdy
By (%)

O<s<t

T
v/
0 By (%)

By the Gagliardo—Nirenberg inequality, we obtain from (3.19) that

V(w(s,»)?)

2
dy+p~? / |w<s,y>|’dy> ds.
BZp(x)

Page 10 of 19
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1 1
= / w(T, "¢ dy — - / lw(0, 1" ¢ (»)kdy
sz(x) r BZp(x)

r
T
+C1/ /
0 By, (%)
T
< Cz/ / [w(s, y)|"dyds
0 JBy(x)

+cs<ﬂ'”‘" sup/ |lu(s, )| + 1v(s, 91| dy
Bp(x)

O<s<t
T
“J UL
0 B, (x)
T
Sczﬂiz// [w(s,y)|"dyds
0 JB,(x)

+C3p1ﬁ_" sup / |u(s,y)|rdy+/ [v(s, y)|"dy
Bp(x) B,a(x)

O<s<t

S (L

forall0 <7t <t <T.

. 2
V(Iwis,»IE() )| dyds

2(p=1)
r

V(w(s,y)|?)

2
o [ |w<s,y>|*dy> ds
x)

B,

2(p=1)
r

V(w(s,»)?)

2
dy+p~? / |w<s,y>|’dy> ds.
x)

0

(3.20)

By taking the supremum for v € (0, ¢) in the right hand side of (3.20) and using (3.12), we
obtain that

T
/ Wz, )Idy + i / /
B, 0o JB,w

< Cotp? SUP/ IW(s,y)I’der/ lw(0,)|"dy
B, () B, ()

O<s<t
2(p—1) t
+ C3y, / /
0 JB,(x)

for 0 < t < t < T. Taking a sufficiently small y; and £p~?2 if necessary, and by taking the

;12
V(lw(s,»)12)| dyds

V(|w(s,y)|?)

2
dyds—}—t,o_2 sup/ [w(s,»)I"dy |.
B, (x)

O<s<t

(3.21)

supremum for 7 € (0, t), we deduce from (3.21) that

sup/ w(r,p)l'dy < Ctp~? sup/ IW(s,y)I’dyder/ lw(0,»)|"dy
By (@) By (@) By (@)

O<t<t O<s<t

for0 < v < ¢ < T. This implies that

(1—Ctp™2)" sup (/ IW(s,y)I’dy> < (/ IW(O,y)I’dy> .
O<s<t B, (x) By (x)

Taking summation on both sides on the lattice point x; € Z”, we have

v

(1—Ctp‘2)7 sup Z </ |w(5,y)|’dy> < Z </ Iw(O,y)I’dy> .
O<s<t By (xy) By (%)

xXpEPL? X EPL?
(3.22)

Page 11 of 19
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Hence, from (3.22), we obtain that

sup [lw(s)llp» < Clw(O)llgry,
O<s<t

for 0 < ¢ < min{up2, T). O

To obtain the critical existence of the weak solutions, the L°° a priori estimate for the
weak solutions is essential. For related results, see ([1, 24]).

Proposition 3.3 (L°°-a priori estimate) Let u be a L™V (Q2)-solution of (1.1) in
(0,T) x 2, where0 < T < occandr > 1. For some positive constant ys, if

1

pr1-

SIS

sup [|u(s)llz < v3 (3.23)
0<s<T

for some p > 0, then there exists a constant C > Q such that

1
n+2 ¢ r
lull, . 5@n<// MHQ, (3.24)
1 (1008, ) o Jog
t t
/ / |Vul’dyds < CD / / |u|>dyds, (3.25)
t1 JBp, (x) ty JBp, (x)

forallx € 2,0 <Ry < Ryand0 < ty < t1 < T, where
D=C(Ry—R) >+ (1 — )"

Proof of Proposition 3.3 let x€Q, 0<R <Ry, O<th<ty<t<T. For
j=0,1,2,.. set

=R+ R —R)27, =t —(-0)27, Q=) xB,®.

Let ¢j be a piecewise smooth function in Q; satisfying

0=<¢x) <1 inQ,
git,x) =1 onQji1,
(=0 mnear [75£]X BBr/.(x) U {g;} x B,j(x),

2+l . (3.26)
Vgl < 7or O Qj
22(j+1)
0 <0y < in Q.
th —

Multiplying (1.1) by |u(¢, y) 1B=2u(t, y)¢ ks, y) and integrating it in 2, we obtain that
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1d 228 -k —2 2
B dt By, (x) B By, (x)
pklal® 2W+B-2 5. k
St E-D . lu(t, y)] gt y) dy
+ k(p + 1) / 1t 1P (6, ) 21V G (8, ) Py
2\p+B-1 )
k
B JB, )
(3.27)

For the highest-order term, using the Holder and the Sobolev inequalities, we obtain that

/ (e, )PP Dt 1Py
Brj(x)

J

«(/ <)|u<t,y>|”<””dy> ([, tmes) ) (3:28)
Vj X r
B
SCSZ</ lu(t,)|"?" ”dy> </ V (lut )¢t y)§)2|2dy>'
By () Bry )

Since

1 kB 2 k2 _ B 2
S|IVagh?| - Tl gk vg R < |vut gk

and using (3.28), integrating (3.27) over t € I;, we obtain that

2B —k—2
sup / (s 1P g5 pkdy + LK =2 / /
tel JB,, (x) B 5 /B, @

wials c [{( 1) )/ S
21 B-DC ) d \Y NIci(s,v) 8) 2 |*dy bd
0t =00 Jy Uy "B ), TG00y pds

k k2B —k —2
( P ip+ M) / / 145, 8515, 9" V(5. 9) Py
+B - B 5 JB )

[ e e a6
5 /By

k g2
MNIEi(s,9)#)2 | dyds

(3.29)
Let ys > Obe taken as
2 p-1
R S
2p0+p—-1) ¢ = ap-1)
Then, under the assumption (3.23), we estimate the first term of the right hand side of

(3.29) and it cancels by the second term of the right hand side. Thus from (3.29) and
using the estimate for the derivatives ¢; in (3.26), that
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k g2
V(ugi?)z| dyds

sup/ u(s)ﬁzj(s)kdy—i—//
telj J By (x) 1j JBr; (%)

L 2j 2j
SZkK pB k@B —k 2)) 2% 2%

+B+ +
pt+B-—1 g B Ry —R)?> t—1t

(3.30)
// |u(s,y)|ﬁdyds
5 JBy )

. B 1
=C22/{ + }// u(s, y)|Pdyds,
Ry —R)*  t—ta) Jy B,I,(x)l G

for any j=0,1,2,.. and B >r. Now applying the Gagliardo—Nirenberg inequal-

ity, Proposition 2.4, for any function f € C& (By; (%)) and 0 € (0,1) with choosing
r=2+4 % =21+ %),p = 2, g = 2. we obtain for lettingy = 1—1—%

2
[fFIPrdy < C2y< lflzdy) / V£ 2dy. (3.31)
By, (o) B,

By (%)

Integrating (3.31) with respect to time ¢ € I;, we have

2
n k
L[ owrrgras e (s [ widin)” [ [ waghieae
5 B tel; JB, () 5B, @

Hence, we obtain the reversed Holder estimate:

(// |u(t,y>|ﬂydyds)y
Qj+1

1
Y
S( / / Iu(t,y)lf’yéj(t,y)kydyds> (3.32)
I JBy @)

. B 1
5(:22/{ + }// u(t,y)|Pdyds,
Ry —R)*  t—ta) Jj B,I,(x)l ENFdy

where Q; = I; x By, (x) = (7j,£) X By; (%) and ¢j = 1 on Qj1. Furthermore, by (3.30) with
B =2 and k = 2 we have (3.25). We use the estimate (3.32) iteratively with choosing
B=p= ry/, wherey =1+ %andj =1,2,--- Since it holds

1

vB;

<// |u(t,y)|ﬂ“’dyds>y}
Qi1

[ B L Y
2j\ B J B
S (Cz ) / |:(R2 _RI)Z + tl _ t2:| </A/ |”(t,y)| ’dyd5> ’

we see that

. 1
My <(C27 f’f[ - } M;
11 =(C27) Ry —R1)?  t1—t ! (3.33)

A 1
=C’ (CD)" Mj,
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where
D=Ci(R—R) >+ (11 —t2) "
The inequality (3.33) implies that
j k 1
Mj1 < Mo [ CPe(CD) .
k=0

This follows that

lim M; < =0 ] (CD)Z’ 0 ﬁ/M 0. (3.34)

]*)OO

Since y =1+%

Ioryl r(y — 1) 2r

o0 .
and Z L < 00. We obtain from (3.34)
j=0 "7

nt+2
letll Lo Qo) < CD 2 |lttll1r (Qp)-

Hence, we have that

n+2
. =% <// . dyds)
L ((tl,t)xBRl(x) ty JBg, (x)

Proof of Theorem

Proof of Theorem 1.1 Let ug € LZ’" (R2). As C§°(2) is dense in L;'” (). Then, there
exists a sequence {u o} in C§°(£2) such that

Ugo — up in L:;”(Q).

For each k, u;p in C3°(2) as an initial data, we obtain a unique L"(£2)-strong
solution, ug(¢) = ur(t,x) € C([0,T); L"(2)) for the Cauchy problem (1.1) by
[9]. As L"(Q2) C L:;”(Q)(v >r), it follows that for any 0 < T’ < T such that
C([0,T); L"(R)) C C([0, T'); L;"(R)). Hence, we have that u; € C([0, T"); L' ().
Secondly u € L*(0, T'; Hy ,(22) N L;*(2)) by combining with Proposition 3.1 and Prop-
osition 3.3. Then, the weak form of equation (1.1) is satisfied, and therefore, u; (¢)is a LY
-weak solution to (1.1).

We then claim that {u (¢)} satisfies the assumption (3.1). Indeed, since uy o — uo in
LY (2) as k — oo, we regard, by taking ko sufficiently large if necessary, that
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letkollrre < 2luollpry (4.1)

for all k > ko. Let 1y () be the corresponding strong solution in L"(2) to iy, and choose
o such that

11 ,
Yo < min {2, Zc}m, ya = min{y1, y2, y3} (4.2)

and y1, y2 and y3 are the constants appeared in Proposition 3.1, Proposition 3.2 and
Proposition 3.3. By the assumption (1.4) on the data ug;

-

.3
r

|

PPt T luolly < vo

(4.1) and (4.2) , it follows that

pr!

1 n 1
ugoll g < 2070

SN

luoll < va

for all k > k. Since the strong solution u; € C([0, T"); L"(R2)) C C([O, T'); LYY (Q)), one
can find a time 0 < T} < T” such that

pr T

L _n
7osup u (Sl < va
0§S§Tk

According to Proposition 3.1 and (4.1), we see that

sup [l < Cllugollz < 2C ol
OSSSTk

for all k > k.

Therefore, for each fixed solution u; (£), we obtain that

1 n 1 n
r r

pr 1

sup |lu(s)lgrp @) < 2Cp#~1 " lluolly < va
OESETk

for all k > ko.

Applying Proposition 3.2, for any m and £ € Nwithm > ¢ > 1it follows that

sup  |lum(s) — ue(S)lgny < Cllumo — ueollzzy-
0<s<up?

(4.3)

This estimate (4.3) shows that {u(¢)}32 is a Cauchy sequence in C([O, wp?); L/’O"’(Q))
since {uy0}x is the Cauchy sequence in L};” (). Noticing the fact that L> ([0, Th; Ly (Q))
is complete and u; € C ([0, wp): L;;“(Q)), there exists a limit function

u € BUC([0, up™); L ()
such that

up — u € C([0,up”); L"(Q)  ask — oo, (4.4)
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Besides uy satisfies the equation in the weak sense, Proposition 3.3 yields that {u}; is
uniformly bounded under the condition (3.23). Hence by taking subsequence if neces-

sary, we see that

u € BUC([0, up®); L" () N L®((0, up?) x Q)
and

we — uweak* in L ((0, up®) x Q) as k — oo.

Since uy is a L"""-weak solution, it satisfies equation (1.1) in the weak form. Namely, for
each¢ € C{°((0, T) x Q) withT < o

T
/ / { —uk8t¢+Vuk-V¢+a|uk|p71uk'qu}dxdt:O.
0 Q

By (4.4) and using Proposition 2.1 finitely many times depending on the support of the

test function ¢,

T T
/ /ukamdxdt—/ /uatqﬁdxdt
0 Jo 0o Ja

and we obtain that

T T
/ /ukatqbdxdt—)/ /uBgf)dxdt (4.5)
0o Ja 0o Ja

as k — oo. Analogously using (3.25) we have

T T
/ /Vuk~V¢>dxdt:—/ /ukA¢dxdt
0o Ja 0o Ja
T T
— —/ /uAd)dxdt:/ /Vu-qudxdt.
0o Ja o Ja

Furthermore, by applying (3.15) and Proposition 3.3, we see that

T
< C@) /0 e (©) = @)l 1969 10t — O,

(4.6)

T T
/ /|uk(t)|1"1uk(t)a~V¢>(t)dxdt—/ /|u(t)|1”‘1u(t)a-v¢(t)dxdt
0 Q 0 Q

T
< lal / /Q g () — w(®)|(max(lug (D), [1(®)))? " [V (8)|dade
0
< CT max (lux ) 0y @) llpo))” ™" sup (VOO sup g (t) — @)l o
0<t<T h 0<t<T 4
< CT max ([lue (&) |0 4O l1i0))" ™ supuge(t) — u(®)ll

0<t<T

where K = supp¢ and p > 0 is taken such that K C B;(x) for some x € Q. Hence

T T
/ / alug P Luy - Vodadt — / / alulP~u - Vpdxdt (4.7)
0 Ja 0 Ja

as k — oo. Passing k — 00, we obtain from (4.5)-(4.7) that
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T
/ / { —udp+Vu Vo +aluf'u-Ve}dxdt = 0.
0o Ja
This proves the existence of an L™” (€2)-weak solution for ug € L;"(S2).

To see the uniqueness of weak solution, let # and v be two L (£2)-weak solutions of
(1.1) with the same initial data uo € L};” () satisfying the condition (1.4). Then, it holds
in a similar observation that both # and v satisfy the condition (3.12). Then, Proposi-
tion 3.2 now implies # = v in C([0, T"); L7;"(<2)). Finally, the solution u is approximated
from compact-supported smooth function u; uniformly in ¢, and it belongs to the class
C([0, T'); L7V (S2)).

This completes the proof of Theorem 1.1. O

Conclusion

In this paper, we consider existence and uniqueness problem for a convection—diffusion
equation in amalgam spaces. We proved the local existence and uniqueness of solution
for a convection—diffusion equation with initial condition in amalgam spaces. Moreover,
we identified the Fujita—Weissler critical exponent for the local existence and unique-
ness found by Escobedo and Zuazua [9] is also valid for the amalgam function class.
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