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Abstract This article contributes a matrix approach by using Taylor approximation to obtain the

numerical solution of one-dimensional time-dependent parabolic partial differential equations

(PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary

conditions to the main problems and then reach to the associated integro-PDEs. By using opera-

tional matrices and also the completeness of the monomials basis, the obtained integro-PDEs will

be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a

famous technique in Krylov subspace iterative methods. A numerical example is considered to show

the efficiency of the proposed idea.
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1. Introduction

One dimensional parabolic partial differential equations

(PDEs) have an extensive application in the study of problems
in engineering and applied sciences. It should be mentioned
that, such PDEs together with classical boundary conditions
have received considerable attention in research works. How-
ever, these PDEs with nonlocal boundary conditions were
studied by researchers in the literature, but extensions and

modifications of the existing methods should be explored to
obtain more accurate solutions. The usual numerical methods
for PDEs subject to the nonlocal boundary conditions are

finite difference methods [1–3], Galerkin techniques [4], collo-
cation approaches [5], Tau schemes [6] and reproducing kernel
space methods [7]. Moreover, some other new methods were

considered in [8–11].
It should be noted that, in all of the research works that are

based on the operational matrices, the basic PDEs (with clas-

sical boundary conditions) were finally transformed into the
matrix–vector algebraic system Ax ¼ b, which can be solved
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by robust iterative solvers such as Krylov subspace iterative
methods (e.g., restarted GMRES and Bi-CGSTAB methods).
For this purpose, one can use simple MATLAB commands

for applying these iterative solvers. On the other hand, if the
PDEs contain nonlocal boundary conditions, they may be
transformed into the associated generalized Sylvester equa-

tions by using operational matrices. Since for solving such gen-
eralized Sylvester equations, there is no MATLAB commands,
we should extend Krylov subspace iterative methods. More-

over, Taylor matrix approaches have had no results for solving
PDEs subject to non-classical boundary conditions. These are
basic motivations of the paper. In this paper, we present a new
matrix method for solving one-dimensional parabolic time-

dependent diffusion equation

@u

@t
¼ @2u

@x2
þ Kðx; tÞ; 0 < x < 1; 0 < t 6 1; ð1Þ

with the initial condition

uðx; 0Þ ¼ fðxÞ; 0 < x < 1; ð2Þ

and the nonlocal boundary conditions

uð0; tÞ ¼
Z 1

0

qðxÞuðx; tÞdx; 0 < t 6 1;

uð1; tÞ ¼
Z 1

0

wðxÞuðx; tÞdx; 0 < t 6 1;

ð3Þ

where K; f; q and w are known functions, while the function u
should be determined. It should be mentioned that we develop
a new matrix approach, which was previously examined in [12–

15], for solving one-dimensional parabolic PDEs with nonlocal
boundary conditions. Some straightforward manipulations,
enable us to impose the initial and boundary conditions (2)

and (3) to the main problem. Thus, completeness of monomi-
als basis together with the operational matrices of differentia-
tion and integration can be used to reduce the main problem to

the associated generalized Sylvester equations. Actually this is
the first operational matrix approach for which the final asso-
ciated algebraic system (i.e., generalized Sylvester equations)
will be considered with more details.

2. Method of the solution

In this section, the basic Eq. (1) subject to the initial and

boundary conditions (2) and (3) will be transformed into the
associated integro-PDE by some straightforward manipula-
tions. Then, completeness of monomials basis together with

the operational matrices of differentiation and integration
can be used to reduce the main problem to the associated gen-
eralized Sylvester equations. For this purpose, we should recall

the operational matrices as follows

X0ðxÞ ¼

1

x

..

.

xN�1

xN
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37777777775

0

¼

0 0 0 � � � 0
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ð4Þ
Z x
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Z x
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x0

..

.

x0N�1
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xN
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3777775;
ð5Þ

where M and P are operational matrices of differentiation

and integration, respectively. It should be recalled thatR 1

0
XðxÞXTðxÞdx ¼ Q, where Q ¼ hilbðNþ 1Þ is the Hilbert

matrix of dimension Nþ 1. Throughout of the paper, Q
denotes the hilbert matrix of dimension Nþ 1 and we do not

show its index for clarity of presentation. Now, one can rewrite
the basic Eq. (1) in the form

uxxðx; tÞ ¼ utðx; tÞ � Kðx; tÞ:
So direct integration from both sides of the above equation

with respect to x in the interval ½0; x� yields

uxðx; tÞ ¼ uxð0; tÞ þ
Z x

0

uxxðx0; tÞdx0

¼ uxð0; tÞ þ
Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0: ð6Þ

On the other hand, by assuming uð0; tÞ ¼ AðtÞ, one can
write

uðx; tÞ ¼ AðtÞ þ
Z x

0

uxðx0; tÞdx0: ð7Þ

From (6) and (7) one can conclude that

uðx; tÞ ¼ AðtÞ þ xuxð0; tÞ þ
Z x

0

Z x0

0

utðx00; tÞ �Kðx00; tÞð Þdx00dx0:

ð8Þ

We suppose that uð1; tÞ ¼ BðtÞ, and hence

BðtÞ ¼ uð1; tÞ

¼ AðtÞ þ uxð0; tÞ þ
Z 1

0

Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0dx:

The above equation can be rewritten in the form

uxð0; tÞ ¼ BðtÞ

� AðtÞ þ
Z 1

0

Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0dx
� �

: ð9Þ

Replacing (9) into (8) yields

uðx; tÞ ¼ ð1� xÞAðtÞ þ xBðtÞ � x

Z 1

0

Z x

0

utðx0; tÞð

�Kðx0; tÞÞdx0dxþ
Z x

0

Z x0

0

utðx00; tÞð

�Kðx00; tÞÞdx00dx0: ð10Þ
For imposing the initial condition (2), we should differenti-

ate both sides of (10) with respect to t in the following form

@uðx; tÞ
@t

¼ @

@t
ð1� xÞAðtÞ þ xBðtÞ½

� x

Z 1

0

Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0dx

þ
Z x

0

Z x0

0

utðx00; tÞ � Kðx00; tÞð Þdx00dx0
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and then integrating both sides of the above equation with

respect to t in the interval ½0; t� as follows

uðx; tÞ � uðx; 0Þ ¼
Z t

0

@

@t
ð1� xÞAðtÞ þ xBðtÞð

� x

Z 1

0

Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0dx

þ
Z x

0

Z x0

0

utðx00; tÞ � Kðx00; tÞð Þdx00dx0

In other words

uðx; tÞ ¼ fðxÞ þ
Z t

0

@

@t

 
ð1� xÞAðtÞ þ xBðtÞ

� x

Z 1

0

Z x

0

utðx0; tÞ � Kðx0; tÞð Þdx0dx

þ
Z x

0

Z x0

0

utðx0; tÞ � Kðx00; tÞð Þdx00dx0
!
dt: ð11Þ

In this stage, we should approximate all the existing (known

and unknown) functions in terms of their truncated Taylor
expansions in the form

uðx; tÞ � XTðxÞUXðtÞ; ð12Þ
fðxÞ � XTðxÞFXðtÞ;
Kðx; tÞ � XTðxÞKXðtÞ;
qðxÞ � qTXðxÞ;
wðxÞ � wTXðxÞ;
1� x ¼ XTðxÞb;
x ¼ XTðxÞa:

It should be noted that F 2 RðNþ1Þ�ðNþ1Þ, K 2 RðNþ1Þ�ðNþ1Þ,

qT 2 R1�ðNþ1Þ, wT 2 R1�ðNþ1Þ, a 2 RðNþ1Þ�1 and b 2 RðNþ1Þ�1

are known, in which Fi;j ¼ 1
i!j!

@iþj fð0;0Þ
@xi@tj

, Ki;j ¼ 1
i!j!

@iþjKð0;0Þ
@xi@tj

, qT
1;j ¼

qjð0Þ
j!
, wT

1;j ¼
wjð0Þ
j!

for all i; j ¼ 0; 1; . . . ;N; b ¼ ½1 � 1 0 � � � 0�T

and a ¼ ½0 1 0 � � � 0�T. However, U 2 RðNþ1Þ�ðNþ1Þ is an

unknown matrix and should be determined.
By using (12), one can approximate the boundary condi-

tions (3) as follows

AðtÞ ¼ uð0; tÞ ¼
Z 1

0

qðxÞuðx; tÞdx ¼
Z 1

0

qTXðxÞXTðxÞUXðtÞdx

¼ qTQUXðtÞ; ð13Þ

BðtÞ ¼ uð1; tÞ ¼
Z 1

0

wðxÞuðx; tÞdx ¼
Z 1

0

wTXðxÞXTðxÞUXðtÞdx

¼ wTQUXðtÞ:

By using approximation terms (12) and (13) and replacing

in (11) we have
XTðxÞUXðtÞ � XTðxÞFXðtÞ þ
Z t

0

@

@t
XTðxÞ bqTQUþ awTQU� awPTðUM� KÞ þ ðPTÞ2ðUM� KÞ

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Y

XðtÞ

264
375dt; ð14Þ
where w ¼
R 1

0
XTðxÞdx ¼ 1 1

2
� � � ; 1

Nþ1

h i
. Now, one can apply

operational matrices of differentiation and integration (see
(4) and (5)) for obtaining

XTðxÞUXðtÞ � XTðxÞFXðtÞ þ XTðxÞYMPXðtÞ:
In other words
XTðxÞ eUXðtÞ ¼ XTðxÞFXðtÞ þ XTðxÞ eYMPXðtÞ: ð15Þ

where eU is an approximation of U and eY ¼ bqTQ eUþ
awTQ eU � awPTð eUM� KÞ þ ðPTÞ2ð eUM� KÞ. Since monomi-

als form a complete basis, one can factorize both of the vectors
XTðxÞ and XðtÞ from (15) for obtaining the following equation

eU ¼ Fþ bqTQ eUMPþ awTQ eUMP� awPT eUM� K
� �

MP

þ ðPTÞ2 eUM� K
� �

MP:

The above equation can be rewritten in the following formeU ¼ Cþ bqTQ eUMPþ awTQ eUMP� awPT eUM2P

þ ðPTÞ2 eUM2P; ð16Þ

where C ¼ Fþ awPTKMP� ðPTÞ2KMP.

By assumptions A1 ¼ �bqTQ, B1 ¼MP, A2 ¼ �awTQ,
B2 ¼MP, A3 ¼ awPT, B3 ¼M2P, A4 ¼ �ðPTÞ2, B4 ¼M2P,
Eq. (16) can be rewritten as followseU þ A1

eUB1 þ A2
eUB2 þ A3

eUB3 þ A4
eUB4 ¼ C; ð17Þ

which is a generalized Sylvester equation. For solving this gen-

eralized Sylvester equation, we use the global GMRES method
that is selected from [17].

We note that the Sylvester Eq. (17) has a unique solution if

the matrix INþ1 � INþ1 þ
P4

i¼1B
T
i � Ai

� �
is nonsingular.

Throughout this paper, we assume that this condition is veri-
fied. As [16], we use the modified global Arnoldi algorithm

to construct an F-orthonormal basis V1;V2; � � � ;Vk of the cor-
responding matrix Krylov subspace. This algorithm is
described as follows:

Algorithm 1. Modified Global Arnoldi algorithm for matrix
equation eU þP4

i¼1Ai
eUBi ¼ C.

1. Set V1 ¼ V=kVkF
2. For j ¼ 1; 2; . . . ; k, Do:

3. Compute W ¼ Vj þ
P4

i¼1AiVjBi

4. For i ¼ 1; 2; . . . ; j, Do

5. hij ¼ hW;ViiF
6. W ¼W� hijVi

7. End Do

8. hjþ1;j ¼ kWkF. If hjþ1;j ¼ 0 then Stop

9. Vjþ1 ¼W=hjþ1;j
10. End Do
Let Vk ¼ ½V1;V2; � � � ;Vk� 2 RðNþ1Þ�kðNþ1Þ and eHk 2 Rðkþ1Þ�k

denotes the upper Hessenberg matrix with nonzero entries hij,
which are defined by the modified global Arnoldi algorithm,
and also Hk 2 Rk�k is the matrix obtained from eHk by deleting

its last row.

As seen in [17], to save memory and CPU-time require-

ments, the Global GMRES method should be used in a



Table 1 Absolute values of the error jeNðx; tÞjð¼ juðx; tÞ � uNðx; tÞjÞ at the selected points of numerical example.

ðx; tÞ N ¼ 6 N ¼ 10 N ¼ 14 N ¼ 18 N ¼ 22 N ¼ 26

(0,0) 0 0 0 0 0 0

(0.1,0.1) 5.187e�002 3.499e�004 7.722e�007 6.420e�010 2.431e�013 1.110e�016
(0.2,0.2) 9.538e�002 6.652e�004 1.478e�006 1.234e�009 4.696e�013 2.220e�016
(0.3,0.3) 1.300e�001 9.398e�004 2.103e�006 1.764e�009 6.723e�013 5.551e�016
(0.4,0.4) 1.553e�001 1.168e�003 2.635e�006 2.220e�009 8.495e�013 0

(0.5,0.5) 1.705e�001 1.347e�003 3.065e�006 2.595e�009 9.965e�013 2.220e�016
(0.6,0.6) 1.741e�001 1.468e�003 3.385e�006 2.882e�009 1.110e�012 4.440e�016
(0.7,0.7) 1.639e�001 1.502e�003 3.560e�006 3.070e�009 1.190e�012 4.440e�016
(0.80.8) 1.369e�001 1.372e�003 3.423e�006 3.061e�009 1.214e�012 8.881e�016
(0.9,0.9) 8.971e�002 8.860e�004 2.237e�006 2.145e�009 9.225e�013 2.220e�016
(1.0,1.0) 1.900e�002 3.745e�004 2.650e�006 3.812e�009 2.076e�012 1.554e�015
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Figure 1 Error history eNðx; tÞð¼ uðx; tÞ � uNðx; tÞÞ of numerical example for N ¼ 12.
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Figure 2 Error history eNðx; tÞð¼ uðx; tÞ � uNðx; tÞÞ of numerical example for N ¼ 16.
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restarted mode. This means that we have to restart the algo-
rithm every k inner iterations, where k is a fixed integer. The
restarted Global GMRES algorithm for solving the linear

matrix Eq. (17), denoted by GlGMRES(k) and summarized
as follows: (we note that ckþ1 is the last component of the
vector gk ¼ kR0kF eQke1).

Algorithm 2. Global GMRESðkÞ algorithm for matrix equa-
tion eU þP4

i¼1Ai
eUBi ¼ C.
1. Choose eU0, a tolerance e and itr ¼ 0, and compute

R0 ¼ C� eU0 �
P4

i¼1Ai
eU0Bi

2. Compute h ¼ kR0kF, and V1 ¼ R0=h
3. Construct the F-orthonormal basis V1;V2; . . . ;Vk by modified

global Arnoldi algorithm

4. Determine yk as solution of the least square problem:

miny2Rkkhe1 � eHkyk2
5. Compute eUk ¼ eU0 þ Vkðyk � INþ1Þ
6. Compute Rk ¼ ckþ1Vkþ1ð eQT

k ekþ1 � INþ1Þ, and kRkkF ¼ jckþ1j
7. If kRkkF < e Stop

8. eU0 ¼ eUk;R0 ¼ Rk; itr ¼ itrþ 1, go to 2.
3. Numerical experiments

In this part of paper, a numerical example is provided to show
the effectiveness of the presented method. In this example, the
associated Sylvester matrix equations are solved by using

Global GMRES(10) algorithm. It should be noted that this
algorithm is written in MATLAB 7:12:0 software with the
Digits environment variable assigned to be 20 to determine
the unknown matrix eU and hence the approximated solution

XTðxÞ eUXðtÞ. All calculations are run on a Pentium 4 PC lap-
top with 2 GHz of CPU and 2 GB of RAM. The proposed
scheme obtain high order accuracy for dealing with the men-

tioned PDEs which are enough smooth. The readers can see
the efficiency of the proposed method from the provided fig-
ures and table in the following example.

3.1. Numerical example

We consider the PDE (1) together with the initial conditions

(2) and (3) with the assumptions

fðxÞ ¼ sinðpxÞ þ cosðpxÞ;
Kðx; tÞ ¼ ðp2 � 1Þe�t sinðpxÞ þ cosðpxÞð Þ;
qðxÞ ¼ 2 sinðpxÞ;
wðxÞ ¼ � cosðpxÞ;

which has the exact solution uðx; tÞ ¼ e�t sinðpxÞ þ cosðpxÞð Þ.
For solving this problem, we use different values of N such
as 6, 10, 12, 14, 16, 18, 22 and 26 and obtain the numerical

solution uNðx; tÞ ¼ XTðxÞ eUXðtÞ. It should be mentioned that,
the tolerance in all of these values of N for solving the associ-
ated generalized Sylvester equation via GMRES(10) is chosen

to be 10�16. Moreover, the initial matrix is taken to be the zero
matrix. The numerical results are provided in Table 1 and
Figs. 1 and 2. These results confirm the efficiency of the pro-
posed idea.
4. Conclusions and future works

Operational matrices of differentiation and integration
together with the completeness of monomials basis have been

utilized to numerically solve a class of one-dimensional para-
bolic partial differential equations (PDEs) by a new frame-
work. The proposed approach reduces the main problem to

the generalized linear Sylvester matrix equations. By using
the idea of global GMRES(10) method, an iterative algorithm
is proposed to solve the obtained Sylvester matrix equations. A
numerical example has illustrated to show the efficiency and

applicably of the presented method. In our future research
works, we will solve two-dimensional equations with nonlocal
boundary conditions.
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