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Abstract In this paper, the fractional-order model that describes HIV infection of CD4+ T cells

with therapy effect is given. Generalized Euler Method (GEM) is employed to get numerical solu-

tion of such problem. The fractional derivatives are described in the Caputo sense.
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1. Introduction

HIV is a retrovirus that targets the CD4+ T lymphocytes,
which are the most abundant white blood cells of the immune

system [2,3,26,27]. Although HIV infects other cells also, it
wreaks the most havoc on the CD4+ T cells by causing their
decline and destruction, thus decreasing the resistance of the

immune system [20–25]. Mathematical models have been
proven valuable in understanding the dynamics of HIV infec-
tion [5,6,15,18,19]. Anti-viral drug treatment for human immu-

nodeficiency virus (HIV) infections causes rapid reduction in
plasma virus load. Reverse transcriptase inhibitors (RTIs)
are a class of antiretroviral drug used to treat HIV infection
[23,24]. RTIs inhibit [23] activity of reverse transcriptase, a

viral DNA polymerase enzyme that retroviruses need to
reproduce. In HIV-1, reverse transcriptase inhibitors block
the infection of uninfected cells [25,26]. The authors in [25], as-

sumed that The drug may not be 100% effective, so a part of
infected cells in pre-RT class will revert back to uninfected
class and the remaining will progress to complete reverse tran-
scription and become productively infected and then produce

virus. They developed a mathematical model for primary infec-
tion with RT inhibitor under the above mentioned assump-
tions. In view of this, the following model is a generalization

of the model presented in [25]:

DaðTÞ ¼ s� kLT� lTþ ðg�þ bÞI
DaðIÞ ¼ kLT� ðl1 þ �þ bÞI
DaðVÞ ¼ ð1� gÞ�I� dV

DaðLÞ ¼ NdV� cL

ð1Þ

where 0 < a 6 1.
icense.
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In the above model, T represents density of susceptible
CD4+ T cells, I represents density of infected CD4+ T cells be-
fore reverse transcription (pre-RT class), V represents density

of infected CD4+ T cells in which reverse transcription is
completed (post-RT class) and they are capable of producing
virus. V is virus density. After infection, infected cells progress

to pre-RT after infection, infected cells progress to pre-RT
class I and then they leave pre-RT class at a rate e to produc-
tively infected (post-RT) class. These infected cells are capable

of producing virus particles. In view of the above discussion,
we consider that due to the presence of RT inhibitor a fraction
of cells g eI in pre-RT class reverts back to uninfected class and
remaining (1 � g)eI proceeds to post-RT class and become

productively infected, where 0 < g < 1 is the efficacy of RT
inhibitor. The parameter s is the inflows rate of CD4+ T cells,
l its natural death rate, k is interaction infection rate of CD4+

T cells, l1 is death rate of infected cells, e is the transition rate
from pre-RT infected CD4+ T cells class to productively in-
fected class (post-RT), b is the reverting rate of infected cells

to uninfected class due to non-completion of reverse transcrip-
tion [23,25]. The parameter d represents death rate of actively
infected cells and includes the possibility of death by bursting

of infected T cells, c is the clearance rate of virus and N is the
total number of viral particles produced by an infected cell.
The rest of the paper is organized as follows. In Section 2,
the idea of the fractional calculus is presented, while General-

ized Euler method (GEM) is presented in Section 3.Non-nega-
tive solutions of the presented system are discussed in Section
4.The equilibrium points and stability are discussed in Section

5. Section 6 is devoted for the numerical results of the
presented problem (1).
2. Fractional calculus

Fractional calculus (FC) has been extensively applied in many
fields [4,7]. Many mathematicians and applied researchers have

tried to model real processes using the fractional calculus.
Jesus, Machado and Cunha analyzed the fractional-order
dynamics in botanical electrical impedances [11,12]. Petrovic,

Spasic and Atanackovic developed a fractional-order mathe-
matical model of a human root dentin [20]. In biology, it has
been deduced that the membranes of cells of biological organ-
ism have fractional-order electrical conductance [4] and then

are classified in groups of non-integer order models. Fractional
derivatives embody essential features of cell rheological behav-
ior and have enjoyed greatest success in the field of rheology

[7]. Also, it has been shown that mathematical modeling by
fractional ordinary differential equations (FODE) has more
advantages than classical integer order modeling [9]. The ma-

jor reason of using is that fractional differential equations
are naturally related to systems with memory which exists in
most biological and systems [1–4]. In other words, Calculating
time-fractional derivative of a function f(t) at some time t = t1
requires all the previous history, i.e. all f(t) from t= 0 to
t= t1. Also, using fractional-order differential equations can
help us to reduce the errors arising from the neglected param-

eters in modeling real life phenomena [6]. FODE are naturally
related to systems with memory which exists in most biological
systems. Also, they are closely related to fractals, which are

abundant in biological systems [8]. Fractional-order differen-
tial equations are, at least, as stable as their integer order coun-
terpart [1]. Hence, we propose a system of FODE for modeling
HIV infection. We first give the definition of fractional-order
integration and fractional-order differentiation [10]. For the

concept of fractional derivative, we will adopt Caputo’s
definition, which is a modification of the Riemann–Liouville
definition and has the advantage of dealing properly with ini-

tial value problems.

Definition 2.1. Riemann–Liouville fractional integration of
order a is defined as:

JafðxÞ ¼ 1

CðaÞ

Z x

0

ðx� tÞa�1fðtÞdt; a > 0; x > 0

J0fðxÞ ¼ fðxÞ

Definition 2.2. Riemann–Liouville and Caputo fractional
derivatives of order a can be defined respectively as follows:

DafðxÞ ¼ DmðJm�afðxÞÞ; ð2Þ
Da
�fðxÞ ¼ Jm�aðDmfðxÞÞ ð3Þ

where

m� 1 < a 6 m; m 2 N

Properties of the operator Ja can be found in [4,5], we men-

tion only the following:

ð1Þ JaJbfðxÞ ¼ JaþbfðxÞ ð4Þ
ð2Þ JaJbfðxÞ ¼ JbJafðxÞ ð5Þ

ð3Þ Jatc ¼ Cðcþ 1Þ
Cðaþ cþ 1Þ t

aþc; a > 0; c > �1; t > 0 ð6Þ
3. Generalized Euler Method (GEM)

Most non-linear fractional differential equations do not have
analytic solutions [16,17], so approximations and numerical
techniques must be used. The decomposition method (ADM)

and the variational iteration method (VIM) are relatively
new approaches to provide an analytical approximate solution
to linear and non-linear problems, and they are particularly

valuable as tools for scientists and applied mathematicians, be-
cause they provide immediate and visible symbolic terms of
analytic solutions, as well as numerical approximate solutions
to both linear and non-linear differential equations. In recent

years, the application of the ADM, VIM, in linear and non-
linear problems has been developed. On the other hand, these
methods are effective for small time, i.e. t 1 [9,10], however the

standard homotopy perturbation method (HPM) [14] cannot
solve the problem for larger time and in fact the solution of
the chaotic system using HPM is an open problem. Neverthe-

less by chance, there are cases at which these methods give
good approximation for a large range of time (t). A few
numerical methods for fractional differential equations have
been presented in the literature. However many of these meth-

ods are used for very specific types of differential equations, of-
ten just linear equations or even smaller classes. In [16,17],
Odibat and Momani derived the generalized Euler’s method

that we have developed for the numerical solution of initial
value problems with Caputo derivatives. The method is a
generalization of the classical Euler’s method. Consider the

initial value problem
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Da
�yðtÞ ¼ fðt; yðtÞÞ; yð0Þ ¼ y0; 0 < a 6 1; t > 0 ð7Þ

Let [0, a] be the interval over which we want to find the solu-

tion of the problem (7). In actuality, we will not find a function
y(t) that satisfies the initial value problem (7). Instead, a set of
points {(tj, y(tj)} is generated, and the points are used for our

approximation. For convenience we subdivide the interval [0,
a] into k subintervals [tj, tj+1] of equal width h= a/k by using
the nodes tj = jh, for j= 0, 1, . . ., k. Assume that yðtÞ;Da

�yðtÞ,
and D2a

� yðtÞ are continuous on [0, a] and use the generalized
Taylor’s formula to expand y(t) about t= t0 = 0. For each
value t there is a value c1 so that

yðtÞ ¼ yðt0Þ þ Da
�yðtÞ

� �
ðt0Þ

ta

Cðaþ 1Þ þ D2a
� yðtÞ

� �
ðc1Þ

� t2a

Cð2aþ 1Þ ð8Þ

When Da
�yðtÞ

� �
ðt0Þ ¼ fðt0; yðt0ÞÞ and h = t1 are substituted

into Eq. (8), the result is an expression for y(t1):

yðt1Þ ¼ yðt0Þ þ fðt0; yðt0ÞÞ
ha

Cðaþ 1Þ þ D2a
� yðtÞ

� �
ðc1Þ

h2a

Cð2aþ 1Þ

If the step size h is chosen small enough, then we may neglect
the second-order term (involving h2a) and get

yðt1Þ ¼ yðt0Þ þ
ha

Cðaþ 1Þ fðt0; yðt0ÞÞ

The process is repeated and generates a sequence of
points that approximates the solution y(t). The general
Fig. 1 The densities of the susceptible CD4+ T cells T(t), infected C

V(t) in post-RT class, and the virus density L(t) when a = 1. The gray

the dotted line (g = 0.9).
formula for generalized Euler’s method (GEM) when

tj+1 = tj + h is

yðtjþ1Þ ¼ yðtjÞ þ
ha

Cðaþ 1Þ fðtj; yðtjÞÞ ð9Þ

for j= 0, 1, . . ., k � 1. It is clear that if a = 1, then the gener-
alized Euler’s method (9) reduces to the classical Euler’s
method.

4. Non-negative solutions

Denote R4
þ ¼ fX 2 R4 : X P 0g, and X(t) = (T, I, V, L)T. For

the proof of the non-negative solution, consider the following

theorem and corollary:

Theorem 1 (Generalized mean value theorem). Let f(x) 2
C(0, a] and Daf(x) 2 C(0, a], for 0 < a 6 1. Then we have

fðxÞ ¼ fð0þÞ þ 1

CðaÞ ðD
afÞðnÞðxÞa

with 0 6 n 6 x, "x 2 (0, a].

Proof. Proof is given in [16]. h

Corollary 1.1. Suppose that f(x) 2 C[0, a] and Daf(x) 2 C(0,

a] for 0< a 6 1. It is clear from theorem 1.1 that if
Daf(x) P 0, "x 2 (0, a), then f(x) is non-decreasing and if
Daf(x) 6 0, "x 2 (0, a) then f(x) is non-increasing for all

x 2 [0, a].
D4+ T cells I(t)in pre-RT class, density of infected CD4+ T cells

line (g = 0.6), the dashed line (g = 0.7), black solid line (g = 0.8),
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Proof. This is clear from Theorem 1.1 [6]. h

Theorem 2. There is a unique solution X(t) = (T, I, V, L)T for

(1) at t P 0 and the solution will remain in R4
þ.

Proof. The existence and uniqueness of the solution of the ini-
tial value problem (2.2) in (0, 1) can be obtained from [13,

Theorem 3.1 and Remark 3.2]. Now we will show that R4
þ is

positively invariant domain:

DaTjT¼0 ¼ Sþ ðg�þ bÞI P 0

DaIjI¼0 ¼ kLT P 0

DaVjV¼0 ¼ ð1� gÞ�I P 0

DaLjL¼0 ¼ NdV P 0

From Corollary 1.1, the solution will remain in R4
þ. h
5. Equilibrium points and stability

The authors in [25] deduced the equilibrium Points of the inte-

ger system of the given system (1), i.e. when a = 1. To evaluate
the equilibrium points of the fractional-order system (1), let

DaðTÞ ¼ 0

DaðIÞ ¼ 0

DaðVÞ ¼ 0

DaðLÞ ¼ 0

Then we will have the same results in [20] as follows
Fig. 2 The densities of the susceptible CD4+ T cells T(t), infected C

V(t) in post-RT class, and the virus density L(t) when a = 1. The gray
E1 ¼
s

l
; 0; 0; 0

� �
and E2 ¼ ðT; I;V;LÞ

where

T ¼ ðl1 þ �þ bÞc
NK�ð1� gÞ ; I ¼ s� Tl

�ð1� gÞ þ l1

; V ¼ ð1� gÞ�T�1
d

;

L ¼ NT�d
c

A sufficient condition for the local asymptotic stability of the

equilibrium points is that the eigenvalues ki of the Jacobian
matrix of E1 and the Jacobian matrix of E2 satisfy the condi-
tion j arg kij > a p

2
. This confirms that fractional-order differen-

tial equations are, at least, as stable as their integer order

counterpart.

6. Numerical results

We will solve the system (1) by using (GEM). Consider that
s= 10, k= 0.000024, d = 0.26, and c= 2.4. We choose
l = 0.01 and l1 = 0.015 (since death rate of cells with viral

particle will be slightly higher than those of uninfected cells)
and N= 1000. The drug efficacy g, e and b vary with initial
condition T(0) = 300, I(0) = 10, V(0) = 10, L(0) = 10.

7. Conclusion

In this paper we employed the Generalized Euler method

(GEM) as a reasonable basis for studying the solution of
human T-cell lymphotropic virus (HIV-I) infection of
D4+ T cells I(t) in pre-RT class, density of infected CD4+ T cells

line (e = 0.5), the dashed line (e = 0.4), black solid line (e = 0.3).



Fig. 3 The densities of the susceptible CD4+ T cells T(t), infected CD4+ T cells I(t) in pre-RT class, density of infected CD4+ T cells

V(t) in post-RT class, and the virus density L(t) when a = 1. The gray line (b= 0), the dashed line (b= 0.05), black solid line (b= 0.075),

the dotted line (b= 0.1), keeping e = 0.4 and g = 0.6.

Fig. 4 The densities of the susceptible CD4+ T cells T(t), infected CD4+ T cells I(t) in pre-RT class, density of infected CD4+ T cells

V(t) in post-RT class, and the virus density L(t) for a = 1 (the gray line) a = 0.99, (the dashed line), a = 0.98 (the black solid line).

542 A.A.M. Arafa et al.
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CD4+ T cells. As g increases from 0.6 to 0.8 the viral level
decreases and in case when g = 0.9 it approaches to zero
(see Fig. 1), while the level of CD4+ T cells increases with

increase in g. variation in e does not have much difference in
viral level, though increase in a increases the viral level (see
Fig. 2). For b = 0 to 0.1 again for same set of parameters as

above. Keeping g = 0.6 and e = 0.4. The results are plotted
in Fig. 3. It can be easily seen that increase in b shows increase
in CD4+ T cells and decrease in viral level. The concentration

of susceptible CD4+ T cells T(t), infected CD4+ T cells I(t),
and free HIV virus particles V(t) in the blood have been ob-
tained, therefore when a fi 1 the solution of the fractional
model (1) Ta(t), Ia(t), Va(t), La(t), reduce to the standard solu-

tion T(t), I(t), V(t), L(t), (see Fig. 4). Finally, the recent
appearance of fractional differential equations as models in
some fields of applied mathematics makes it necessary to inves-

tigate methods of solution for such equations(analytical and
numerical) and we hope that this work is a step in this
direction.
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