
Journal of the Egyptian Mathematical Society (2014) 22, 524–528
Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org
www.elsevier.com/locate/joems
ORIGINAL ARTICLE
Finding all real roots of a polynomial by matrix

algebra and the Adomian decomposition method
* Corresponding author at: Center for Separation Processes Modeling

and Nano-Computations, School of Chemical Engineering, College of

Engineering, University of Tehran, P.O. Box 11365-4563, Tehran,

Iran. Tel.: +98 21 66954048; fax: +98 21 66498984.
E-mail addresses: hfatoorehchi@gmail.com (H. Fatoorehchi), abol-

ghasemi.ha@gmail.com, hoab@ut.ac.ir (H. Abolghasemi).

Peer review under responsibility of Egyptian Mathematical Society.

Production and hosting by Elsevier

1110-256X ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

http://dx.doi.org/10.1016/j.joems.2013.12.018

Open access under CC BY-NC-ND l

Open access under CC BY-NC-N
Hooman Fatoorehchi a, Hossein Abolghasemi a,b,*
a Center for Separation Processes Modeling and Nano-Computations, School of Chemical Engineering,
College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran, Iran

b Oil and Gas Center of Excellence, University of Tehran, Tehran, Iran
Received 30 June 2013; revised 18 December 2013; accepted 29 December 2013
Available online 5 February 2014
KEYWORDS

Polynomial zeroes;

Adomian decomposition

method;

Adomian polynomials;

Matrix algebra;

Gershgorin’s theorem;

Eigenvalue
Abstract In this paper, we put forth a combined method for calculation of all real zeroes of a poly-

nomial equation through the Adomian decomposition method equipped with a number of devel-

oped theorems from matrix algebra. These auxiliary theorems are associated with eigenvalues of

matrices and enable convergence of the Adomian decomposition method toward different real roots

of the target polynomial equation. To further improve the computational speed of our technique, a

nonlinear convergence accelerator known as the Shanks transform has optionally been employed.

For the sake of illustration, a number of numerical examples are given.
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1. Introduction

Finding the roots of a polynomial equation has been among
the oldest problems of mathematics. The solution of quadrat-
ics was known to the Arab and Persian scholars of the early

Middle Ages, for example Omar Khayyam [1]. The cubic poly-
nomial equation was first solved systematically by Cardano in
mid-16th century. Soon afterward, the solution to quadratics

was formulated [2]. In the early 19th century, Abel and Galios
ingeniously proved that there exists no general formula for zer-
oes of a polynomial equation of degree five or higher. This is

nowadays referred to as the Abel’s impossibility theorem [3].
Since then, iterative schemes began to arise, of which mention
can be made of the Newton–Raphson method of the 17th cen-
tury, Bernoulli’s method of the 18th, and Graeffe’s method of

the early 19th century. A superabundance of new algorithms
has been emerged in the mathematical literature since the
20th century especially due to the advent of electronic comput-

ers [4]. For an extensive account on the history and progress of
polynomial root-finding see [5–9] and the references therein.
icense.
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It is the objective of this paper to postulate a polynomial
equation zero-finder by synergistic combination of the Adomi-
an decomposition method and ideas from matrix algebra.

Advantageous use of the companion matrix concept and the
Gershgorin circle theorem will be made. In the final section,
a number of numerical examples are included for the sake of

illustration.

2. The Adomian decomposition method

For the ease of the reader, who is new to this method, we
briefly review the basics of the Adomian decomposition meth-
od (ADM) in this section.

To illustrate the ADM, consider the following general func-
tional equation:

u�NðuÞ ¼ f; ð1Þ

where N is a nonlinear operator, which maps a Hilbert spaceH
into itself, f is a given function and u designates an unknown
function. The ADM decomposes the solution u as an infinite

summation u ¼
P1

i¼0 ui and N as NðuÞ ¼
P1

i¼0 Ai, where Ai

are called the Adomian polynomials [10]:

Ai ¼ Aiðu0; u1; . . . ; uiÞ ¼
1

i!

di

dki N
X1
k¼0

ukk
k

 !�����
k¼0

: ð2Þ

By letting u0 = f, the ADM permits the following recursive
relation to generate components of the solution,

u0 ¼ f;

uiþ1 ¼ Ai; i P 0:

�
ð3Þ

The convergence and reliability of the ADM have been ascer-

tained in prior works (e.g. [11,12]). In [13], Fatoorehchi and
Abolghasemi have developed a completely different algorithm
to generate the Adomian polynomials of any desired nonlinear
operators mainly based on string functions and symbolic pro-

gramming. For more background on the ADM and its appli-
cations, see [14–22] and the references mentioned therein.

3. The proposed method

Suppose that we are after the roots of the following polyno-
mial equation,

PðxÞ ¼ anx
n þ an�1x

n�1 þ � � � þ a2x
2 þ a1xþ a0 ¼ 0: ð4Þ

Without loss of generality, we can convert Eq. (4) to its monic

polynomial equation analog as,

QðxÞ ¼ xn þ bn�1x
n�1 þ � � � þ b2x

2 þ b1xþ b0 ¼ 0: ð5Þ

By definition, the companion matrix associated with Q(x)
reads,

K ¼

0 0 � � � 0 �b0
1 0 � � � 0 �b1
0 1 � � � 0 �b2
..
. ..

. . .
. ..

. ..
.

0 0 � � � 1 �bn�1

2
66666664

3
77777775
: ð6Þ

Denote by eig( ) and roots( ) the operators returning eigen-
values and zeroes of their matrix and polynomial arguments,
respectively.
It holds true that,

eigðKÞ ¼ rootsðQðxÞÞ: ð7Þ

In view of Eq. (7), the problem of zero finding for our polyno-
mial equation is converted to a problem of determining the

eigenvalues of a companion matrix.
Before we proceed, we need to state a few theorems that will

come in handy in the sequel.

Definition 3.1. Let A be a complex n-by-n matrix, with entries
aij. Let Ri ¼

Pn
j–ijaijj, for i e {1, . . . ,n}, be the sum of absolute

values of the non-diagonal entries in the ith row. Also, let
D(aii, Ri) be the closed disk centered at aii with radius Ri Such a

disk is dubbed as Gershgorin disk.

Theorem 3.1 (Gershgorin circle theorem). Every eigenvalue of
A lies within at least one of the Gershgorin disks D(aii, Ri).

Proof. For brevity, we exclude the proof and refer the reader

to [23,24]. h

Theorem 3.2. Let A and B be n · n matrices, I represent identity
matrix in n dimensions, a denote a real number, and eig( ) stand

for an operator returning an eigenvalue of its matrix argument.
If B= A+ aI, then it holds that eig(B) = eig(A) + a.

Proof. Let eigðAÞ ¼ k. This necessitates detðA� kIÞ ¼ 0.
Replacing A with its equivalent gives detðB� aI� kIÞ ¼ 0 or

obviously detðB� ðkþ aÞIÞ ¼ 0. This asserts that the quantity
kþ a is an eigenvalue for the matrix B or in other words
eig(B) = eig(A) + a. h

Theorem 3.3. Denote by k1; . . . ; kn the eigenvalues of an n-by-n

matrix A. It holds true that traceðAÞ ¼
Pn

i¼1 ki.

Proof. Due to space limitation, we suffice to refer the reader to
[25] for the proof of this theorem. h

Theorem 3.4. The characteristic polynomials of two similar

matrices are identical.

Proof. Suppose A and B be n-by-n and similar to each other.
Since A and B are similar, i.e. A � B, it is essential that

A= QBQ�1 for some invertible matrix Q. Take a(x) =
det(A � xI), b(x) = det(B � xI) as the characteristic equations
of A and B, respectively. Hence, a(x) = det(QBQ�1 � xI). It
follows that,

aðxÞ ¼ det �x I� 1

x
QBQ�1

� �� �

¼ ð�xÞn det I� 1

x
QBQ�1

� �
: ð8Þ

Take C= �1/xQB and D= Q�1. Applying the Sylvester
determinant theorem [26], we have

aðxÞ ¼ ð�xÞn detðIþ CDÞ ¼ ð�xÞn detðIþDCÞ: ð9Þ

So,

aðxÞ ¼ ð�xÞn det IþQ�1 � 1

x
QB

� �� �
: ð10Þ
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Equally,

aðxÞ ¼ ð�xÞn det I� 1

x
Q�1QB

� �

¼ ð�xÞn det I� 1

x
B

� �
¼ detð�xIþ BÞ

¼ detðB� xIÞ ¼ bðxÞ; ð11Þ

which concludes the proof. h

Back to our method, we let C = K + aI such that a is lo-
cated in one of the Gershgorin disks of K. At this step, special
use can be made of Theorem 3.4 to create smaller Gershgorin

disks to optimize the choice of a through testing different
matrices similar to K. By Faddeev–Leverrier’s algorithm, see
[27,28], we obtain the characteristic polynomial equation of
C expressed as,

xn þ cn�1x
n�1 þ � � � þ c2x

2 þ c1xþ c0 ¼ 0: ð12Þ

Now, we need to construct a fixed-point type equation out of
Eq. (12). This is possible through many ways; for example,

provided that c1 „ 0, we get

x ¼ � 1

c1
xn � cn�1

c1
xn�1 � � � � � c2

c1
x2 � c0

c1
: ð13Þ

In keeping with the methodology of the ADM, we get the first
eigenvalue of C as k1 ¼

P1
i¼0 xi, or approximately as

k1 �
Pm

i¼0 xi, with

x0 ¼ � c0
c1
;

xiþ1 ¼ � 1
c1

Hðn;iÞ � cn�1
c1

Hðn�1;iÞ � � � � � c2
c1

Hð2;iÞ; i P 0;

(

ð14Þ
where Hðn;iÞ;Hðn�1;iÞ; . . . ;Hð2;iÞ denote the Adomian polynomials
decomposing the nonlinearities xn; xn�1; . . . ; x2 present in
Eq. (13). In light of Theorem 3.2, the first eigenvalue of K, denoted
by l1, is given by l1 ¼ k1 � a. In fact, as noted above, l1 is the first
root ofQ(x) = 0 or equally P(x) = 0. By repeating this procedure
for n times, i.e. choosingndifferent values for a from theGershgorin

disks of K, one readily obtains the n real roots of P(x) = 0.
The Shanks transform, which is due to the genius mathema-

tician Daniel Shanks (1917–1996), constitutes a nonlinear

transform that can covert a slowly converging sequence to its
rapidly converging counterpart effectively [29]. The Shanks
transformation Sh(Un) of the sequence Un is defined as,

ShðUnÞ ¼
Unþ1Un�1 �U2

n

Unþ1 � 2Un þUn�1
: ð15Þ

Further speed-up may be achieved by successive implementa-
tion of the Shanks transformation, that is Sh2(Un) = -
Sh(Sh(Un)), Sh3(Un) = Sh(Sh(Sh(Un))), etc. For more on

application of the Shanks transform one is referred to [30].
The Shanks transform can optionally be applied to a lim-

ited sequence of {x0, . . . ,xm} obtained from Eq. (14), to further

improve the convergence speed.

4. Numerical examples

Example 1. Consider
x5 � 4x4 � 13x3 þ 46x2 þ 11x� 43 ¼ 0: ð16Þ

.It is hopeless to find the roots of Eq. (16) by the ADM alone as
the formula (14) forms an immediately diverging sequence as
f3:9090; 8:6231; 19:2338;�796:3356;�10023:8875; 90519:7325;
3605264:6398; . . .g:

Hence, we have to apply our improved method. The compan-
ion matrix associated with Eq. (16) reads,

K ¼

0 0 0 0 43

1 0 0 0 �11
0 1 0 0 �46
0 0 1 0 13

0 0 0 1 4

2
6666664

3
7777775
: ð17Þ

There are five Gershgorin disks namely D1(0, 43), D2(0, 12),
D3(0, 47), D4(0, 14) and D5(4, 1) distinguishable for matrix
K.By the help of Theorem 3.4 we can make the above Gersh-

gorin disks smaller so that the choice of a would become easier.
Let

Q ¼

0:1 0 0 0 0

0 0:2 0 0 0

0 0 0:1 0 0

0 0 0 0:2 0

0 0 0 0 0:9

2
6666664

3
7777775
: ð18Þ

By definition, a similar matrix to K equates

W ¼ QKQ�1 ¼

0 0 0 0 4:7778

2 0 0 0 �2:4444
0 0:5 0 0 �5:1111
0 0 2 0 2:8889

0 0 0 4:5 4

2
6666664

3
7777775
: ð19Þ

The Gershgorin disks obtained from W are D1(0, 4.7778),
D2(0, 4.4444), D3(0, 5.6111), D4(0, 4.8889) and D5(4, 4.5).By
choosing a = �5, i.e. C = W � 5I, we get the following char-

acteristic polynomial equation for the matrix C.

x5 þ 21x4 þ 157x3 þ 501x2 þ 621xþ 162 ¼ 0: ð20Þ

By the ADM, specifically Eq. (14), the first root to Eq. (20), or
in other words, the first eigenvalue to C is l1 �

P25
i¼0 ki ¼

�0:34877. By Theorem 3.2, the first eigenvalue of matrix K,

or equally the first root of Eq. (16), corresponds to
r1 � 5 � 0.34877 = 4.65123. In a similar fashion, by setting
a = �3, one achieves the second root to Eq. (16) as

r2 � 3 � 0.4032 = 2.65968. Similarly, by choice of a = �0.5
we are led to r3 � 0.5 + 0.53794 = 1.03794. For a = 4, we
get r4 � �4 + 0.53794 = �3.34885. By Theorem 3.3, we easily
obtain r5 ¼ traceðKÞ �

P4
i¼1 ri � �1:00000.

Example 2. Given

2x6 � 4x5 � 50x4 þ 70x3 þ 246x2 � 30x� 106 ¼ 0 ð21Þ

We first convert Eq. (21) to its monic analog by dividing its
both sides by two,

x6 � 2x5 � 25x4 þ 35x3 þ 123x2 � 15x� 53 ¼ 0 ð22Þ

Due to Theorem 3.4, there exist six Gershgorin disks viz.
D1(1, 5), D2(2, 4), D3(0, 6), D4(�1, 8), D5(0, 2) and D6(0, 3)
associated with Eq. (22).Similar to what was followed in Exam-
ple 1, one obtains r1 � 1 � 0.31493 = 0.68507 by choosing
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a = �1. The other remaining five roots can be determined as

follows,

a ¼ �3! r2 � 3þ 0:37775 ¼ 3:37775

a ¼ �5! r3 � 5� 0:43464 ¼ 4:56536

a ¼ 2! r4 � �2þ 0:30132 ¼ �1:69868

a ¼ 5! r5 � �5þ 0:76843 ¼ �4:23157

The sixth root to Eq. (22) can easily be obtained by the help of
Theorem 3.3 as

r6 ¼ 2�
X5
i¼1

ri � �0:69793

Example 3. Let us consider

x7 � 5x6 � 37x5 þ 120x4 þ 223x3 � 639x2 þ 240xþ 88

¼ 0 ð23Þ

Similar to the previous examples, different choices of a leads to
different roots of Eq. (23) as

a ¼ 5! r1 � �5þ 0:27887 ¼ �4:72113

a ¼ 3! r2 � �3þ 0:09121 ¼ �2:90879:

a ¼ 1! r3 � �1þ 0:77602 ¼ �0:22398

a ¼ �1! r4 � 1� 0:07506 ¼ 0:92494

a ¼ �2! r5 � 2� 0:68497 ¼ 1:31503

a ¼ �4! r6 � 4� 0:84791 ¼ 3:15209

By invoking Theorem 3.3, one easily obtains

r7 ¼ 5�
X6
i¼1

ri � 7:46184

Example 4. Consider

x9 � 25:9482x8 þ 198:3492252x7 � 66:1875854x6

� 4564:770046x5 þ 10843:57135x4 þ 18666:50729x3

� 36585:66886x2 � 39223:05552xþ 5426:085179

¼ 0 ð24Þ

Like what discussed above, we obtain the following results:

a ¼ �7! r1 � 7� 0:18981 ¼ 6:81019

a ¼ �12! r2 � 12� 0:44570 ¼ 11:55430

a ¼ �0:5! r3 � 0:5� 0:37521 ¼ 0:12479

a ¼ 1! r4 � �1� 0:23419 ¼ �1:23419

a ¼ �2! r5 � 2þ 0:32480 ¼ 2:32480

a ¼ �5! r6 � 5þ 0:21239 ¼ 5:21239

a ¼ 2! r7 � �2þ 0:64330 ¼ �1:35670
a ¼ 4! r8 � �4� 0:11119 ¼ �4:11119

Due to Theorem 3.3, r9 ¼ 25:94819�
P8

i¼1ri � 6:62380.
5. Conclusion

An advantageous approach based on a set of theorems from

matrix algebra together with the Adomian decomposition
method was developed for attaining all real roots of a univar-
iate polynomial equation of arbitrary degree. The method was

shown to be conceptually and computationally simple and
straightforward. The reliability of the aforementioned scheme
was demonstrated by a number of illustrative numerical exam-

ples. To conclude, the proposed method holds a great deal of
promise for application in different areas of mathematics,
especially in numerical analysis and control theory, due to its
superiorities.
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Appendix A. First five components of the Adomian polynomials

for some nonlinear operators appeared in Section 4

Nonlinearity Nu= u2

A0ðu0Þ ¼ u20; A1ðu0; u1Þ ¼ 2u0u1; A2ðu0; . . . ; u2Þ
¼ u21 þ 2u0u2; A3ðu0; . . . ; u3Þ ¼ 2u1u2 þ 2u0u3;

A4ðu0; . . . ; u4Þ ¼ u22 þ 2u1u3 þ 2u0u4

Nonlinearity Nu= u5

A0ðu0Þ ¼ u50; A1ðu0; u1Þ ¼ 5u40u1; A2ðu0; . . . ; u2Þ ¼ 10u30u
2
1 þ 5u40u2;

A3ðu0; . . . ; u3Þ ¼ 10u20u
3
1 þ 20u30u1u2 þ 5u40u3;

A4ðu0; . . . ; u4Þ ¼ 5u0u
4
1 þ 30u20u

2
1u2 þ 10u30u

2
2 þ 20u30u1u3 þ 5u40u4

Nonlinearity Nu= u9

A0ðu0Þ ¼ u90; A1ðu0; u1Þ ¼ 9u80u1; A2ðu0; . . . ; u2Þ ¼ 36u70u
2
1 þ 9u80u2;

A3ðu0; . . . ; u3Þ ¼ 84u60u
3
1 þ 72u70u1u2 þ 9u80u3;

A4ðu0; . . . ; u4Þ ¼ 126u50u
4
1 þ 252u60u

2
1u2 þ 36u70u

2
2 þ 72u70u1u3 þ 9u80u4
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