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Introducton
We consider the nonlinear matrix equation

where A and X are real or complex square  matrices of the same size and I is an identity 
matrix. The nonlinear matrix equation has important applications in structural dynam-
ics, numerical analysis theory, stability and robust stability analysis of control theory 
([1–6]).

In the literature, various iterative methods and solutions to the matrix equations of the 
form X ± A∗F(X)A = Q have been extensively investigated (see [11–15]). In [28], Hajar-
ian developed the matrix form of the biconjugate residual (BCR) algorithm for finding 
the generalized reflexive solution and the generalized anti-reflexive solution of the gen-
eralized Sylvester matrix equation. It was further proven that the suggested BCR algo-
rithm scheme converges within a finite number of iterations in the absence of round-off 
errors.

Zhang et  al. [20] derived the necessary and sufficient conditions for the exist-
ence of Hermitian positive definite solution of the nonlinear matrix equation 

(1)X − A∗eXA = I ,

Abstract 

This work incorporates an efficient inversion free iterative scheme into Newton’s 
method to solve Newton’s step regardless of the singularity of the Fréchet derivative. 
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X − A∗XqA = Q(q > 1) and proposed two fixed point iterative methods for obtaining 
the solution. Peng et  al. [21] applied Newton’s method to solve the nonlinear matrix 
equation X + A∗X−nA = Q and provided sufficient conditions for its convergence. 
For F(X) = −Xn, where n ≥ 2, authors in [22] proved that under mild conditions the 
iterations converged monotonically to the elementwise minimal nonnegative solutions. 
Chacha and Naqvi [23] derived the explicit expressions for mixed and componentwise 
condition numbers for the nonlinear matrix equation Xp − A∗eXA = I , where p is a pos-
itive integer.

This work is inspired by the work by Gao [16] who explored the solution of (1) and 
proposed a fixed point method to obtain the Hermitian positive definite solution.  How-
ever, to the best of our knowledge, no study has been conducted to explore symmetric 
solution and perturbation estimates of Eq.(1). This motivates us to study new solution 
and iterative method for Eq. (1).

This paper makes the following contributions. First, an inversion free iterative method 
that can be incorporated into Newton’s method to find symmetric solution of Eq. (1) is 
presented and necessary conditions for the existence of symmetric solution of (1) based 
on the proposed Algorithm  2 are derived. Newton’s step is computed by Algorithm  2 
even if the Fréchet derivative is singular and it ensures the existence of symmetric solu-
tion of (1). Algorithm 2 is developed by extending the variant of the conjugate gradient 
method presented by Hajarian and Deghan in [27]. Second, fixed point method pro-
posed in [16] is utilized to obtain the solution and the explicit expressions of the pertur-
bation and error bound estimates for the approximate positive definite solution of Eq. 
(1) are derived. The motivation for studying symmetric solution of Eq. (1) is due to its 
vast practical applications and it has attracted the attention of many researchers (see [17, 
19, 24] and the references therein).

This paper is organized as follows. In “Methods” section, we first introduce some 
notations, definitions and lemmas that will be applied in our proofs. Furthermore, we 
provide Newton’s method and propose an inversion free iterative method to solve the 
Newton’s step. Also, necessary conditions for the existence of symmetric solution and 
perturbation and error estimates for the symmetric positive definite solution of Eq. (1) 
are derived. In “Results and discussion” section, the proposed method is examine exper-
imentally to illustrate the accurateness of the established theoretical results. Finally, a 
brief conclusion is presented in “Conclusion” section.

Methods
In this section we derive Newton’s method and propose an inversion free method to 
solve Eq. (1 ).

Preliminaries

In this subsection provide some important notations, definitions and lemmas that will 
be exploited in our proofs.

The notation ρ(•) stand for spectral radius; AT and A∗ denotes the transpose and con-
jugate transpose of matrix A, respectively; �A�F = trace(ATA) denotes the Frobenius 
norm of matrix A induced by the inner product; for A = [aij] ∈ C

m×n and B ∈ C
p×q , 
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then A⊗ B = [aijB] ∈ C
mp×nq denotes the Kronecker product of matrices A and B; 

vec(A) = [a1, a2, · · · , an]
T stands for the vec operator on matrix A,   where ai is the ith 

column of the matrix A.

Definition 1  [7, 8] Let f : Cn×n �→ C
n×n be a matrix function. The Fréchet derivative 

of matrix function f at A in the direction E is the unique linear operator Lf  that maps E to 
Lf (A,E) such that

Definition 2  [9, 10] Fréchet derivative of a matrix function   eX at X0 in the direction Z 
is

Definition 3  Let a matrix A be m×m square matrix. A is a Z- matrix if all its off-
diagonal elements are non-positive.

Definition 4  A matrix A ∈ R
n×n is an M-matrix if A = sI − B for some nonnegative B 

and s with s > ρ(B).

Lemma 1  [2] For a Z-matrix A the following are equivalent: 

	(i)	 A is a nonsingular M-matrix.
	(ii)	 A−1 is nonnegative.
	(iii)	 Av > 0 (≥ 0) for some vector v > 0 (≥ 0).

	(iv)	 All eigenvalue of A have positive real parts.

Lemma 2  [17] For any symmetric matrix X it holds that

where Y is any arbitrary n× n real matrix.

Lemma 3  [18] Let A,B ∈ C
n×n, then 

∥∥eA − eB
∥∥ ≤ �A− B�emax(�A�, �B�).

Newton’s method for Eq. (1)

In this subsection, we derive Newton’s method for Eq. (1). Let define a map

Before applying Newton’s method, we need to evaluate the Fréchet derivative of F(X). 
From (2) and (4), we have

f (A+ E)− f (A)− Lf (A,E) = O(�E�2), for all A,E ∈ C
n×n.

(2)Lf (X0,Z) =

∫ 1

0
etX0Ze(1−t)X0dt ≈ eX0/2ZeX0/2.

(3)trace

[
1

2

(
Y + YT

)T
X

]
= trace(YTX),

(4)F(X) = X − A∗eXA− I = 0.
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We see that the Fréchet derivative is a linear operator, F ′

X (Z) : C
n×n → C

n×n, defined by

Applying the vec operator in (6) we have

where    DX = In2 −
(
eX/2A

)T
⊗

(
A∗eX/2

)
 is the Kronecker Fréchet derivative of F(X).

Lemma 4  Suppose that 0 ≤
(
eX/2A

)T
⊗

(
A∗eX/2

)
< In2 . Then,

Proof
The proof is straight forward from Definitions 3, 4 and Lemma 1. Thus it is omitted here. 
�

Since In2 −
(
eX/2A

)T
⊗

(
A∗eX/2

)
 is invertible under assumptions made in Lemma 4. 

Then, Newton’s step is computed in the iteration

and the solution of (1) is given by the Newton’s iteration

The analysis lead to Algorithm 1.

Remark 1

Newton’s method for (1) is not applicable if the Kronecker Fréchet derivative F ′
X in step 

3 of Algorithm 1 is singular. Also, Algorithm 1 does not ensure the existence of the sym-
metric solution. Moreover, when the size of the coefficient matrix A in Eq. (1) is large, 

(5)

F(X + Z) = X + Z −
[
A∗

(
eX+Z − eX

)
A+ A∗eXA

]
− I

= X + A∗eXA− I + Z −
[
A∗

(
eX+Z − eX

)
A
]

= F(X)+ Z − A∗eX/2ZeX/2A+ O(�Z�2).

(6)F
′

X (Z) = Z − A∗eX/2ZeX/2A.

(7)vec(F
′

X (Z)) = DXvec(Z),

In2 −
(
eX/2A

)T
⊗

(
A∗eX/2

)
is a nonsingularM-matrix.

(8)Z − A∗eX/2ZeX/2A = −F(X)

(9)Xi+1 = Xi −
[
F ′
Xi

]−1
F(Xi) for all i = 0, 1, 2 · · · .
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Algorithm 1 consume more computer time and memory. To overcome these complications 
and drawbacks, we extend the idea of conjugate gradient method to Algorithm 2 which 
works even if the Kronecker Fréchet derivative F ′

X is singular and ensures the existence of 
the symmetric solution of (1).

Consider the linear algebraic system

where A isa real square matrix, b is a vector of scalar real numbers and x is a unknown 
vector. For solving system (10), we have the following conjugate gradient method.

Conjugate gradient algorithm [27] 

(i)	Choose xi from a set of real numbers and set r0 = b− Ax0,α0 = �r0�
2, d0 = r0;

(ii)	 for i = 0, 1, · · · until convergence do:
(iii)	si = Adi;
(iv)	

ti = αi/(d
T
i
si); xi+1 = xi+tidi; ri+1 = ri−tisi; βi+1 = �ri+1�

2/�ri�
2; di+1 = ri+1+βi+1di

;

(v)	 end for.

Generally, the conjugate gradient method is not desirable for solving the non-square sys-
tem Bx = c , where matrix B is non-square. This motivates us to explore new iterative 
methods like the conjugate gradient algorithm which can be represented as

where parameter ti and vector di are to be obtained. It is clear that (11) cannot be imple-
mented directly to solve Newton’s step Z in its present form. Thus, the conjugate gradi-
ent method is refined and extended to solve symmetric Newton’s step Z. The details of 
algorithm are presented as follows.

(10)Ax = b,

(11)xi+1 = xi + tidi,
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Remark 2

In Algorithm 2, the sequence of matrices Qk and Zpk are symmetric for all k = 0, 1, · · · .

We have the following results from Algorithm 2.

Lemma 5  Let Zp be a symmetric solution of pth Newton’s iteration (8), and the 
sequences {Mk},   {Rk},   

{
Zpk

}
 be generated by Algorithm 2. Then,

Proof
From Algorithm 2, we have

Hence the proof is completed.�  �

Lemma 6  Suppose that Zp is a symmetric solution of pth Newton’s iteration 
(8) and the sequences Rk , Qk are generated by Algorithm  2. Then, it holds that   
trace

[
QT

k

(
Zp − Zpk

)]
= �Rk�

2, for all k = 0, 1, · · · ; trace(RT
k Rj) = 0and trace

(QT
k Qj) = 0, for k > j = 0, 1, · · · , l, l ≥ 1.

Proof
We prove via mathematical induction. For k = 0, it follows from Algorithm 2, Lemma 2 
and Lemma 5 that

trace
[
MT

k

(
Zp − Zpk

)]
= �Rk�

2, for all k = 0, 1, · · · .

(12)

trace
[
MT

k

(
Zp − Zpk

)]
= trace

{[
Rk −

(
A∗eXp/2

)T
Rk

(
eXp/2A

)T]T (
Zp − Zpk

)
}

= trace
{
RT
k

[
Zp − Zpk −

(
A∗eXp/2

)(
Zp − Zpk

)(
eXp/2A

)]}

= trace
{
RT
k

[
−F(X)−

[
Zpk −

(
A∗eXp/2

)
Zpk

(
eXp/2A

)]]}

= trace
{
RT
k Rk

}
= �Rk�

2.

(13)

trace
[
QT

0

(
Zp − Zp0

)]
= trace

[
1

2

(
M0 +MT

0

)T (
Zp − Zp0

)]

= trace
[
MT

0

(
Zp − Zp0

)]

= �R0�
2.
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Now assume that trace
[
QT

k

(
Zp − Zpk

)]
= �Rk�

2, for all k = 0, 1, · · · hold true for 
k = h ∈ N, we need to show that the statement it also holds for k = h+ 1 ∈ N . From 
Algorithm 2, Lemma 2 and Lemma 5, we have

As requred, the lemma is proved.

Similarly, we prove that trace(RT
k Rj) = 0 and trace(QT

k Qj) = 0, for k > j = 0,

1, · · · , l, l ≥ 1 via mathematical induction.

Step 1: For l = 1, it follows that

and

(14)

trace
[
QT

h+1

(
Zp − Zph+1

)]
= trace

{[
1

2

(
Mh+1 +MT

h+1

)T
+ βhQh

]T (
Zp − Zph+1

)
}

= trace
[
MT

h+1

(
Zp − Zph+1

)]
+ βhtrace

[
QT

h

(
Zp − Zph+1

)]

=
∥∥Rh+1

∥∥2 + βhtrace
[
QT

h

(
Zp − Zph − αhQh

)]

=
∥∥Rh+1

∥∥2 + βhtrace
[
QT

h

(
Zp − Zph

)]
− βhαh�Qh�

2

=
∥∥Rh+1

∥∥2 + βh�Rh�
2 − βh�Rh�

2

=
∥∥Rh+1

∥∥2 +
∥∥Rh+1

∥∥2 −
∥∥Rh+1

∥∥2 =
∥∥Rh+1

∥∥2.

(15)

trace
[
RT
1 R0

]
= trace

{[
−F(Xp)−

[
Zp1 − A∗eXp/2Zp1e

Xp/2A
]]T

R0

}

= trace
{[

−F(Xp)−
[
Z0 − A∗eXp/2Z0e

Xp/2A

+ α0(Q0 − A∗eXp/2Q0e
Xp/2A)

]]T
R0

}

= trace

{[
R0 − α0

(
Q0 − A∗eXp/2Q0e

Xp/2A
)]T

R0

}

= �R0�
2 − trace

{
α0

(
QT

0

[
R0 −

(
A∗eXp/2

)T
R0

(
eXp/2A

)T])}

= �R0�
2 − α0trace

[
QT

0 M0

]

= �R0�
2 − α0trace

[
QT

0

1

2

(
M0 +MT

0

)]

= �R0�
2 − α0trace

[
QT

0 Q0

]
= 0,
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Now, assume that trace(RT
k Rj) = 0 and trace(QT

k Qj) = 0, for k > j = 0, 1, · · · , l,l ≥ 1 
holds for l = s ∈ N. We show that it holds for l = s + 1 ∈ N. From Algorithm 2, we have

Similarly, we have

(16)

trace
[
QT

1 Q0

]
= trace

[[
1

2

(
M1 +MT

1

)
+ β0Q0

]T
Q0

]

= trace
(
MT

1 Q0

)
+ β0trace

(
QT

0 Q0

)

= trace

[[
R1 −

(
A∗eXp/2

)T
R1

(
eXp/2A

)T]T
Q0

]
+ β0�Q0�

2

= trace
[
RT
1

[
Q0 −

(
A∗eXp/2

)
Q0

(
eXp/2A

)]]
+

�R1�
2

�R0�2
�Q0�

2

= trace

[
RT
1

[
1

α0
(Zp1 − Zp0)−

1

α0

(
A∗eXp/2

)
(Zp1 − Zp0)

(
eXp/2A

)]]

+
�R1�

2

�R0�2
�Q0�

2

=
1

α0
trace

[
RT
1

[
(Zp1 − Zp0)−

(
A∗eXp/2

)
(Zp1 − Zp0)

(
eXp/2A

)]]

+
�R1�

2

�R0�2
�Q0�

2

=
1

α0
trace

[
RT
1 (R0 − R1)

]
+

�R1�
2

�R0�2
�Q0�

2

=
1

α0

(
trace

[
RT
1 R0

]
− trace

[
RT
1 R1

])
+

�R1�
2

�R0�2
�Q0�

2

= −
1

α0
trace

[
RT
1 R1

]
+

�R1�
2

�R0�2
�Q0�

2

= −
�R1�

2

�R0�2
�Q0�

2 +
�R1�

2

�R0�2
�Q0�

2 = 0.

(17)

trace

[
R
T
s+1Rs

]

= trace

[[
Rs − αs

(
Qs − A

∗
e
Xp/2Qse

Xp/2A

)]T
Rs

]

= trace

[
R
T
s Rs

]
− αstrace

[[(
Qs − A

∗
e
Xp/2Qse

Xp/2A

)]T
Rs

]

= �Rs�
2 − αstrace

[
QT

s

(
Rs − (A∗

e
Xp/2)TRs(e

Xp/2A)T
)]

= �Rs�
2 − αstrace

[
QT

s Ms

]

= �Rs�
2 − αstrace

[
QT

s

1

2
(Ms +MT

s )

]

= �Rs�
2 − αstrace

[
QT

s (Qs − βs−1Qs−1)

]

= �Rs�
2 − αs�Qs�

2 + αsβs−1trace

[
QT

s Qs−1)

]

= �Rs�
2 − �Rs�

2 + 0 = 0.
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Thus, we have seen that trace
[
RT
k Rk−1

]
= 0 and trace

[
QT

k Qk−1

]
= 0, for all 

k = 0, 1, · · · , l.

Step2: We assume that trace
[
RT
s Rj

]
= 0 and trace

[
QT

s Qj

]
= 0, for all j = 0, 1, · · · , l − 1. 

By Algorithm 2 and Lemma 2, together with the assumptions made, it follows that

Finally, we prove that   trace
[
QT

s+1Qj

]
= 0.

(18)

trace
[
QT

s+1Qs

]
= trace

[[
1

2

(
Ms+1 +MT

s+1

)
+ βsQs

]T
Qs

]

= trace
[
MT

s+1Qs

]
+ βs�Qs�

2

= trace

[[
Rs+1 −

(
A∗eXp/2

)T
Rs+1

(
eXp/2A

)T]T
Qs

]
+ βs�Qs�

2

= trace
[
RT
s+1

[
Qs −

(
A∗eXp/2

)
Qs

(
eXp/2A

)]]
+ βs�Qs�

2

= trace

[
RT
s+1

1

αs
(Rs − Rs+1)

]
+ βs�Qs�

2

= −
1

αs
�Rs+1�

2 + βs�Qs�
2

= −
�Qs�

2

�Rs�2
�Rs+1�

2 +
�Rs+1�

2

�Rs�2
�Qs�

2 = 0.

(19)

trace
[
RT
s+1Rj

]
= trace

[[
Rs − αs

(
Qs − A∗eXp/2Qse

Xp/2A
)]T

Rj

]

= trace
[
RT
s Rj

]
− αstrace

[
QT

s

(
Rj − (A∗eXp/2)TRj(e

Xp/2A)T
)]

= trace
[
RT
s Rj

]
− αstrace

[
QT

s Mj

]

= 0− αstrace

[
QT

s

1

2
(Mj +MT

j )

]

= −αstrace
[
QT

s (Qj − βj−1Qj−1)

]
= 0.

(20)

trace
[
QT

s+1Qj

]
= trace

[[
1

2

(
Ms+1 +MT

s+1

)
+ βsQs

]T
Qj

]

= trace
[
MT

s+1Qj

]

= trace

[[
Rs+1 −

(
A∗eXp/2

)T
Rs+1

(
eXp/2A

)T]T
Qj

]

= trace
[
RT
s+1

[
Qj −

(
A∗eXp/2

)
Qj

(
eXp/2A

)]]

= trace

[
RT
s+1

1

αj
(Rj − Rj+1)

]

=
1

αj
trace

[
RT
s+1Rj

]
−

1

αj
trace

[
RT
s+1Rj+1

]
= 0,
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for all j = 0, 1, · · · , s − 1. The proof is completed.�  �

From Lemma 6, we see that if k > 0, and Ri  = 0, for all i = 0, 1, · · · , k . Then, the 
sequences Ri, Rj generated by Algorithm 2 are orthogonal for all j  = i. We give the follow-
ing remark for for later use.

Remark 3

From Lemma 6, for the Newton’s iteration (8) to have a symmetric solution, then the 
sequences {Rk} and {Qk} generated by Algorithm 2 should be nonzero.

If there exist a positive number k > 0 such that Ri  = 0 for all i = 0, 1, · · · , k in Algo-
rithm 2, then, the matrices Ri and Rj are orthogonal for all i  = j.

Theorem 4  Assume that the pth Newton’s iteration (8) has a symmetric solution. Then, 
for any symmetric initial guess Zp0, its symmetric solution can be obtained with finite 
iterative steps.

Proof
From Lemma 6, suppose that Rk  = 0 for k = 0, 1, · · · , n2 − 1. Since the pth Newton’s iter-
ation (8) has a symmetric solution, then from Remark 3, it is certain that there exist a 
positive integer k such that Qk  = 0. Thus, we can compute Zpn2 and Rn2 by Algorithm 2. 
Also, from Lemma 6, we know that trace(RT

n2
Rk) = 0 for all k = 0, 1, · · · , n2 − 1 and 

trace(RT
i Rk) = 0 for all i, j,= 0, 1, · · · , n2 − 1 with i  = j. We see that the set of matrices 

R0,R1, · · · ,Rn2−1 forms an orthogonal basis of the matrix space Rn×n. But we know that 
trace(RT

n2
Rk) = 0 holds true if Rn2 = 0, this implies that Zpn2 is the solution of the pth 

Newton’s iteration(8). � �

Now, we prove the convergence of Algorithm 1 to symmetric solution.

Theorem 5  Assume that (1) has a symmetric solution and each Newton’s iteration is 
consistent for symmetric initial guess X0. The sequence {Xk} is generated by Algorithm 1 
with X0 such that limk→∞ Xk = X∗, and the matrix X∗ satisfies F(X∗) = 0, then, X∗ is a 
symmetric solution of (1).

Proof
Since all Newton’s iteration have symmetric solution, from Theorem  4 and Newton’s 
method we can obtain the sequence {Xk} which is the set of symmetric matrices. Further-
more, the Newton’s sequence converges to a solution X∗ which is a symmetric solution of 
(1). � �
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Perturbation and error bound estimate for the approximate symmetric positive definite 

solution of Eq. (1)

In this subsection, we investigate a perturbation and error estimates for the approxi-
mate symmetric positive definite solution of the nonlinear matrix Eq. (1). We will use 
a fixed point method to find the approximate symmetric solution.

Lemma 7  Suppose A is a nonsingular matrix with ρ(A) ≤ 1/e and X is the symmetric 
positive definite solution of (1). Then, �A�2�eX� ≤ 1.

Proof
Let define a map G(X) = I + A∗eXA. G(X) has a fixed point in [I,  2I]( see [16]). Thus, 
from the assumption that ρ(A) ≤ 1/e , X ≤ 2I and G(X) = I + A∗eXA, it follows that

�

Theorem 6  Suppose that Xsol. is the symmetric positive definite solution of (1) such that 

�A�2
∥∥∥∥e

X̃sol.

∥∥∥∥ ≤ 1    and   
1∥∥Xsol.

∥∥ ≤ 1. Then,

where

Proof
Consider the equations

and

Let    △A = Ã− A,   △Xsol. = X̃sol. − Xsol., and    △I = Ĩ − I . Then, we have

I ≤ I + A∗eXA ≤
(
1+ �A�2e�X�

)
I = 2I .

(21)

∥∥∥△Xsol.
∥∥∥

∥∥Xsol.
∥∥ ≤

1

θ

(
�△I�

�I�
+

2�△A�

�A�

)
,

θ = 1− �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

> 0.

(22)Xsol. − A∗eX
sol.
A = I

(23)X̃sol. − Ã∗ẽX
sol.
Ã = Ĩ .
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Since both    △A∗ → 0 and △A → 0 in (24), then the term △A∗ẽX
sol.
△A is neglected.

For convenience, let N = A∗

(
ẽX

sol.
− eX

sol.

)
A and H = A∗ẽX

sol.
△A−△A∗ẽX

sol.
A, we 

have,

It follows that

and

Now, from (25) we have,

(24)

△I = Ĩ − I

= X̃sol. − Ã∗ẽX
sol.
Ã−

(
Xsol. − A∗eX

sol.
A
)

= △Xsol. − Ã∗ẽX∗Ã+ A∗eX
sol.
A

= △Xsol. − (A+△A)∗ẽX
sol.
(A+△A)+ A∗eX

sol.
A

= △Xsol. − A∗ẽX
sol.
A− A∗ẽX

sol.
△A−△A∗ẽX

sol.
A

−△A∗ẽX
sol.
△A+ A∗eX

sol.
A

= △Xsol. − A∗

(
ẽX

sol.
− eX

sol.

)
A− A∗ẽX

sol.
△A−△A∗ẽX

sol.
A.

(25)�△I� ≥ �△Xsol.� − �N� − �H�.

(26)
�N� =

∥∥∥∥A
∗

(
ẽX

sol.
− eX

sol.

)
A

∥∥∥∥

≤ �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)∥∥∥△Xsol.

∥∥∥

(27)

�H� ≤ �A∗�

∥∥∥∥ẽX
sol.

∥∥∥∥�△A� + �△A∗�

∥∥∥∥ẽX
sol.

∥∥∥∥�A�

= �A�

(∥∥∥∥ẽX
sol.

∥∥∥∥+

∥∥∥∥ẽX
sol.

∥∥∥∥
)
�△A�

= 2�A��△A�

∥∥∥∥ẽX
sol.

∥∥∥∥.

(28)�△I� ≥
∥∥∥△Xsol.

∥∥∥− �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

�△Xsol.� − 2�A��△A�

∥∥∥∥ẽX
sol.

∥∥∥∥

(29)= �△Xsol.�

(
1− �A�2e

max
(
�Xsol.�, �X̃sol.�

))
− 2�A��△A��ẽX

sol.
�

(30)�△Xsol.� ≤
1

1− �A�2emax(�Xsol.�, �X̃sol.�)
(�△I� + 2�A��△A��ẽX

sol.
�)
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It follows from �A�2 ≤ �I�∥∥∥∥
˜
eX

sol.
∥∥∥∥
 and 1

�Xsol.�
≤ 1 that

where

Which completes the proof.�  �

In Theorem 7, we derive the error estimate for X̃sol..

Theorem  7  Let X̃sol. approximate the symmetric positive definite solution of (1) such 
that the residual R

(
X̃sol.

)
= X̃sol. − A∗ẽX

sol.
A− I . Then,

Proof
Suppose that X̃sol. approximate the symmetric positive definite solution of (1), it follows 
that

by Lemma 3. From (33) we see that

Then, we have    
∥∥∥R

(
X̃sol.

)∥∥∥ ≤ θ1

∥∥∥X̃sol. − Xsol.
∥∥∥,   where    

(31)

���△Xsol.
���

��Xsol.
��

≤
1

1− �A�2e
max

�
�Xsol.�,

����Xsol.
���
�



�△I�

�I�

�I�

�Xsol.�
+

2�△A�

����
�
eX

sol.

����
�A�

�A�2��Xsol.
��




(32)
�△X∗�

�Xsol.�
≤

1

θ

(
�△I�

�I�
+

2�△A�

�A�

)
,

θ = 1− �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

> 0.

∥∥∥R
(
X̃sol.

)∥∥∥ ≤ θ1

∥∥∥X̃sol. − Xsol.
∥∥∥, where θ1 = 1+ �A�2e

max
(∥∥∥Xsol.

∥∥∥,
∥∥∥X̃sol.

∥∥∥
)

.

(33)

R
(
X̃sol.

)
= X̃sol. − A∗ẽX

sol.
A− I

= X̃sol. − Xsol. − A∗ẽX
sol.
A+ A∗eX

sol.
A

=
(
X̃sol. − Xsol.

)
− A∗

(
ẽX

sol.
− eX

sol.

)
A

=
(
X̃sol. − Xsol.

)
− A∗

(∫ 1

0
e(1−s)Xsol.

(
X̃sol. − Xsol.

)
es̃X

sol.
ds

)
A,

∥∥∥R
(
X̃sol.

)∥∥∥ ≤
∥∥∥
(
X̃sol. − Xsol.

)∥∥∥
(
1+ �A�2e

max
(∥∥∥Xsol.

∥∥∥,
∥∥∥X̃sol.

∥∥∥
))

.

θ1 = 1+ �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

.
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Hence, the proof is completed.�  �

Results and discussion
In this section, we will give some numerical examples to illustrate our results. All the 
tests are performed by MATLAB R2015a. Because of the influence of round off error, 
we regard the matrix A as zero matrix if �A�F < 10−07.

Example 1

We consider (1) with

where N is the size of matrix A. Then using Algorithms 1 and 2 with N = 4,X0 = I  and 
Z0 = 0, and iterating one step, we have the approximate symmetric solution of (1)

with a corresponding residual 7.34 × 10−10.

Example 2

We consider (1) with A = 10−02




0.191 0.0785 0.1975
0.0785 0 0.239
0.1975 0.239 0.5325


 . Using Algorithms 1 and 2 

with X0 = I and Z0 = 0and iterating one step we obtain a symmetric solution of (1)

with a corresponding residual �X1 − A∗eX1A− I�F = 8.32× 10−08.

Example 3
We consider equation (1) with

A =

{
1

400(Ni−1) , if i = j
1

400(i+j+1) , if i �= j, i, j = 1, 2, · · · ,N ,

X =



1.0000065807096 0.0000049771825 0.0000040315387 0.0000036592124
0.0000049771825 1.0000038264297 0.0000030655566 0.0000027986304
0.0000040315387 0.0000030655566 1.0000025349499 0.0000022569069
0.0000036592124 0.0000027986304 0.0000022569069 1.0000020783084




X1 =



1.000035856379445 0.000025526838279 0.000073063791221
0.000025526838279 1.000020966091056 0.000055325826041
0.000073063791221 0.000055325826041 1.000159215242941




A = 10−03



0.039184486647583 0.752572770157521 0.640759461948906
0.752572770157521 0.183842944465775 0.746095912831499
0.640759461948906 0.746095912831499 0.854851683090675


 .
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Then, using Algorithms 1 and 2 with X0 =



1.0000001 0 0

0 1.0000008 0
0 0 1.000005


   and 

Z0 = 0 and iterating one step, we get symmetric solution of (1)

with a corresponding residual 5.72× 10−10.

Example 4
We now consider a matrix used in a model for the population of the bilby for the quasi-
stationary behaviour of quasi-birth-death processes. The bilby is an endangered Austral-
ian marsupial ( [25, 26]). Define the 5× 5 matrix B = βAT

2 , where β = 0.5,

d = [0, 0.5, 0.55, 0.8, 1] is the vector of probability that the population moves down a 
level given phase j and g = 0.2. We now consider equation (1) with a symmetric matrix 
given by

Employing Algorithms 1 and 2, with δ = 0.001 , X0 = I and Z0 = 0 , the solution of equa-
tion (1)

is obtained by one iterative step with a residual 2.03 ×10−12.

The influence of δ on the convergence of the proposed algorithm is summarized in 
Table 1.

From Table 1, the result reveals that when the spectral radius of the coefficient matrix A 
is reduced the convergence of the proposed algorithm improves significantly.

X =



1.000003733574993 0.000003520228949 0.000005160654545
0.000003520228949 1.000004818752929 0.000005932157008
0.000005160654545 0.000005932157008 1.000007943209756




A2 = Q(g , d) =




gd1 (1− g)d1 0 0 0
gd2 0 (1− g)d2 0 0
gd3 0 0 (1− g)d3 0
gd4 0 0 0 (1− g)d4
gd5 0 0 0 (1− g)d5


 ,

A = δ

�
BT + B

2

�
= δ




0 0.0250 0.0275 0.0400 0.0050
0.0250 0 0.1000 0 0
0.0275 0.1000 0 0.1100 0
0.0400 0 0.1100 0 0.1600
0.0050 0 0 0.1600 0.4000


 .

X =




1.0000000146 0.0000000169 0.0000000350 0.0000000367 0.0000000695
0.0000000169 1.0000000338 0.0000000308 0.0000000593 0.0000000708
0.0000000350 0.0000000308 1.0000000956 0.0000000755 0.0000001646
0.0000000367 0.0000000593 0.0000000755 1.0000001636 0.0000002854
0.0000000695 0.0000000708 0.0000001646 0.0000002854 1.0000006381



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Example 5

In this example, we consider (1) in which symmetric matrix A =




0.0382 0.0157 0.0395
0.0157 0 0.0478
0.0395 0.0478 0.1065


. 

Then, we suppose that the perturbations in the matrices A and I are 

△A = 10−h ×




−0.2 − 0.3 0.1
0.1 − 0.1 0.1
−0.1 0.1 0.2


,     △I = 10−h ×




−0.3 0.2 0.1
0.1 − 0.2 0.3
0.1 0.1 − 0.3


, respectively, 

where h is a positive integer. Let Ã = A+△A and Ĩ = I +△I and X̃sol. = Xsol. +△Xsol., 
where Xsol. and X̃sol. are the positive definite solutions of (23) and (24) computed by Algo-
rithm  3 with initial solution X0 = I . A summary of results for Theorems 6 and 7 are 
recorded in Table 2. We denote    

θ = 1− �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

,    θ1 = 1+ �A�2e
max

(∥∥∥Xsol.
∥∥∥,

∥∥∥X̃sol.
∥∥∥
)

,   RE =
∥∥∥R

(
X̃sol.

)∥∥∥

   C1 = θ1

∥∥∥X̃sol. − Xsol.
∥∥∥   C2 =

∥∥∥X̃sol. − Xsol.
∥∥∥

∥∥Xsol.
∥∥   and  C3 =

1

θ

(
�△I�

�I�
+

2�△A�

�A�

)
.

Remark 8

Table 2 shows the numerical results for the computed parameters. The computed values 
demonstrate the accurateness of our theoretical proofs. The estimates are relatively sharp. 
The bounds are reduced as the perturbations become very small.

Conclusion
In this paper, an efficient inversion free iterative method is developed by extending 
the conjugate gradient method and incorporated into Newton’s method, then after 
some refinements, it is employed to compute symmetric solution of Eq. (1). Moreo-
ver, the necessary conditions for the existence of symmetric solution for the proposed 
iterative method are derived. The fixed point method proposed in [16] is applied to 
find symmetric positive definite solution of Eq.(1). Finally, explicit expressions of per-
turbation and error bound estimates for the obtained solution are derived. Numerical 
experiments provided, demonstrate the plausibility of the derived theoretical results.

Table 1  Summary of Results for Example 4 for different δ with X0 = I and Z0 = 0

δ Iterations allowed Iterations performed residual = �X − A
∗
e
X
A− I�F

1 1000 Over 1000 3.36×10
+02

0.1 1000 Over 1000 5.32×10
+00

0.01 1000 Over 1000 8.37 ×10
−02

0.001 1000 1 2.03 ×10
−12
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