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Abstract

This article presents a numerical algorithm using the Meshless Local Petrov-Galerkin
(MLPG) method for the incompressible Navier—Stokes equations. To deal with time derivatives,
the forward time differences are employed yielding the Poisson’s equation. The MLPG method with
the moving least-square (MLS) approximation for trial function is chosen to solve the Poisson’s
equation. In numerical examples, the local symmetric weak form (LSWF) and the local unsymmet-
ric weak form (LUSWF) with a classical Gaussian weight and an improved Gaussian weight on

both regular and irregular nodes are demonstrated. It is found that LSWF1 with a classical
Gaussian weight order 2 gives the most accurate result.
© 2013 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society.

Open access under CC BY-NC-ND license.

1. Introduction

Incompressible Navier—Stokes flow in two dimensions is one of
several major problems in fluid mechanics that have been
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extensively studied both theoretically and numerically. In
general, the formulation of primitive variables is popularly
employed for the incompressible Navier—Stokes equation but
it has a limitation in approximating the velocity and the pres-
sure. The finite volume method (FVM) and finite element
method (FEM) have been widely applied to solve the
incompressible Navier—Stokes flow problems. However, it is
well-known that these methods depend strongly on the mesh
properties. In computing problems with irregular complex
geometries using these methods, mesh generation is a far more
time-consuming and expensive task than solution of the partial
differential equations (PDEs), particularly in three dimen-
sional (3D) cases. To overcome such a problem, meshless
methods, a new numerical method class have been developed.

Meshless methods were established with the objective of
eliminating the requirement of mesh generation step, which
is time-consuming and burdensome, in FEM. Owing to these
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reasons, meshless methods have received much attention as a
number of meshless methods have been introduced by different
authors. These include smooth particle hydrodynamics (SPH)
[1,2], diffuse element method (DEM) [3], element-free Galerkin
(EFG) [4], reproducing kernel particle method (RKPM) [5],
finite point method (FPM) [6], partition of unity method
(PU) [7], boundary node method (BNM) [8], local boundary
integral equation (LBIE) [9], meshless local Petrov-Galerkin
method (MLPG) [10], meshless regular local boundary integral
equation (MRLBIE) [11], finite cloud method (FCM) [12],
point interpolation method (PIM) [13], least-squares colloca-
tion meshless method (LSCM) [14], etc. The meshless local
Petrov-Galerkin (MLPG) method is a truly meshless method,
which requires no elements or background cells, for either
the interpolation or the integration purposes. The concept of
MLPG was first proposed by Atluri and Zhu [10], and later
discussed in depth in Atluri and Shen [15]. The most significant
difference between this method and the finite element method
or any other meshless method is that the local weak forms are
generated on overlapping local sub-domains, instead of using
the global weak form. Integration of the weak form is per-
formed in local sub-domains with simple geometrical shapes,
therefore no elements or background cells are necessary either
for interpolation purposes or for integration purposes. The
MLPG approach is also different from the truly meshless
method based on the local boundary integral equation (LBIE)
method, because there are no singular integrals in the MLPG
method. This method is characterized as meshless since distrib-
uted nodal points, covering the domain of interest, are
employed.

Remarkable successes of the MLPG method in computa-
tional mechanics have been reported in recent years. The first
article applying MLPG method to compute convection-diffu-
sion and incompressible flow problems was by Lin and Atluri
[16]. In their work, two kinds of upwind schemes were
constructed to overcome oscillations produced by convection
term. They applied upwind schemes to solve the incompress-
ible flow problem based on the primitive variable formulation
and added the perturbation term to continuity equation to sat-
isfy the Bablka-Brezzi condition. But when these schemes
were applied to compute the high Reynolds number problems,
the parameter of perturbation term was difficult to determine
and it also suffered from the convergent difficulty. Wu et al.
[17] applied MLPG to solve incompressible flow problems with
vorticity-stream function method without addressing the
stability problem. One year later, they applied MLPG to solve
two-dimensional (2D) incompressible fluid flow and heat
transfer problems with benchmark solutions. The streamline
upwind Petrov-Galerkin method is applied to overcome oscil-
lation velocity field and mixed formulation is employed to sat-
isfy the Babuka-Brezzi condition. The results show that SUPG
method gives a convergent solution for high Reynolds number.
Sanyasiraju and Chandhini [18] developed a local RBF
gridfree scheme to solve unsteady incompressible Navier—
Stokes equations for primitive variables. This novel fractional
step algorithm has been proposed to achieve velocity-pressure
decoupling, in which it has been validated over various
problems.

In the present paper, the meshless local Petrov-Galerkin
method with MLS interpolation scheme is applied to develop
an algorithm for solving the unsteady incompressible Na-
vier—Stokes flow problem.

2. The moving least-square (MLS) approximation for trial
function

The moving least-square (MLS) is one of these interpolation
schemes with a reasonable accuracy. Consider a sub-domain
Q,, which is defined as the neighborhood of a point x and
denoted as domain of definition of MLS approximation for
the trial function at point x. To approximate the distribution
of function u"(x) = u(x, t,) in Qy, over a number of randomly
located nodes x;, i = 1, 2, ..., N. The moving least-squares
(MLS) approximation u}(x) of u", Vx € Q,, can be defined by

u) = p’(x)a" (x), VX € £, (1)

where p(x) is a vector of basis function

P'(x) = [p1(x).p2(%), - P (X)),

where m is the number of the basis functions. Usually the
complete monomial basis is used to ensure the consistency of
the approximations, whereby different types of the polynomi-
als may be used. Depending on the problem, other type of
functions may also be employed in order to enhance the solu-
tions. For a two-dimensional (2D) case used in this paper, the
complete monomial basis are defined as follows:

e Linear basis
p'(x) =1, x, ¥,
e Quadratic basis

p'(x) =11, x, y, X, xy, »],

where x = (x,y) € R* and the term of the complete 2D ba-
sis may be obtained by employing the Pascal triangle. For the
polynomial basis, the total number of terms is related to the
order of the basis by expression m = w with / as the order
of the basis. The vector a”(x) contains the unknown
coefficients

a"(x) = [a](x), d5(x), a5(X), ..., a:“"(x)]r,

which are the functions of x, i.e. they have to be calculated for
each point x. The vector a”(x) is determined by means of the
discrete weighted L, norm, defined as follows:

J(@"(x) = 3 i) [P (x)a" (x) T e

where wi(x) is a weight function associated with the node i,
wi(x) > 0 for all x in the support of w{(x), X; denotes the values
of x at node i, N is a number of nodes in Q, for which
wi{x) > 0. Here it should be noted that &/, i=1,2,...,N in
Eq. (2) are the fictitious nodes and not the actual nodes of
unknown trial function u}(x). The minimization of J(a"(x))
leads to the following system of equations

A(x)a"(x) = B(x)u", (3)

where,
N

A= wix)p(x)p’(x))
=1

the matrix B is defined as

B = [wi(x)p(x1), wa(x)p(x2), ws(x)p(x3), ..., wy(x)p(xn)],
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and the vector u” contains the fictitious values at the nodes x;

an ~n ~n

W= [, @, a, ., i)

The coefficients a(x) are evaluated by solving the Eq. (3), lead-
ing to

a'(x) = A7 (x)B(x)i". (4)
Substituting Eq. (4) into Eq. (1), the MLS approximation is
obtained, may be written as follows:

wy(x) =Y (N = B, Vx € Q, (5)

where @(x) is the vector of MLS shape functions correspond-
ing to N nodes in the support domain of the point x, can be
written as

¢(x) = [¢17 ¢27 ¢37 B ¢N]T7

and ¢,(x) is the shape function associated with the node x;,
which is calculated as

¢i(x) =Y p(x)[47(x).B()], (6)
=1

The derivatives of the shape function ¢(x) may be obtained by

direct differentiation of Eq. (6) as

m

b= D puld”'B) +p,(47 Bi+47'B) |, (7)
j=1

Ji

where Afkl = (A’l)ﬂk represents the derivative of the inverse of
A with respect to x;, = x (or y), which is given by

A =—A7"4,47" (8)

The second partial derivatives of ¢x) are obtained as

m

Qi = Z [Pj.kl(Ai]B),-,- +P_,:k(A7]B.1 + AJIB)_,,

J=1

+p; (A7 B+ A}'B)

Ji

+p,(A7" By + Ajk}B + A;‘B.k +A,'B))

©)
with
Ay =—A" 447 A A7 — AT A AT+ AT A a7 4,47

(10)

cl?"’(l—exp[f(l';/(’i)zk])

0,

—2kd?* 4 exp[—(di /i) ] [—zk(x—x,-)ld,M 2% — 2 2
—2)(x —x;
Wi,,\'x(x) = { G + ( )( ) +

and,

—2kd*~ expl—(di/ 1)) [—2k<.v—y,>2d? 2%k —2)(y — y,)
0= FE+ -0 -0+

F(1—expl— (/™)) ,

0,

The MLS approximation is well defined, only when the matrix
in Eq. (3) is non-singular. From Egs. (2) and (6), it may be seen
that ¢(x) = 0 when wy(x) = 0. The fact that ¢,(x) vanishes,
for x not in support of node x; preserves the local character
of the moving least-squares approximation. It is known that
the smoothness of the shape functions ¢(x) is determined by
that of the basis functions and of the weight functions. Let
C*(Q) be the space of kth continuously differentiable func-
tions. If w(x) € C*(Q), i=1, 2, ..., N and p/x) € C(Q),

j=1,2, ..., m, then ¢(x) € C"(Q) with r = min(k, /). A num-

ber of choices are available for the basis functions and the
weight functions. In this paper, the quadratic basis is chosen
and a Gaussian weight function is used,

expl—(di/e))* ] —exp[—(ri/e)*] <
wi(x) = { 1—exp[—(ri/c)*] » 0Sdisr
07 d,‘ > r;

; (11)

where d; = |x — x/|, ¢; and k are constant controlling the shape
of the weight function w,(x) and r; is the size of the support
domain. The size of the support domain should be large to
have sufficient number of nodes covered in the domain of def-
inition of every sample point (n > m) to ensure the regularity
of the matrix A. A Gaussian weight function has a specific
characteristic where the relative weights can be controlled by
manipulating the constant ¢, When ¢; decreases, higher
weights are obtained on points x; which stay close to x and
lower weights on points that are far will be removed from x
and vice versa. If the weight function w(x) is continuous to-
gether with its first derivatives, the shape function ¢,(x) will
be continuous along with its first derivatives. The exponential
weight function has unlimited continuity. The first derivatives
of a Gaussian weight function w{x) can be calculated as

—2k(x=x))d?* 2 exp[—(d;/ci)*] <dJd<r

wix(X) = { A (—exp[—(ri/e)™]) 7 0 di< "7 (12)
07 d,' >

and,
KD expld/)™] ) g g

Wiy (X) = { F—eplmfa) 0 S AN (13)
O, d; > r;

For the case that d; is equal to zero, the first derivatives of w;(x)
may be written as

Wir(X) = wi,(x) = 0. (14)

Similarly, the second derivatives of the weight function can be
computed as

}’ disri (15)
di > r;
]’ di<ri (16)
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Fig. 1 Node distribution

Likewise, for the case that d; is equal to zero, the second deriv-
atives of w;(x) may be written as

—2keexp[—(d;/c))™] .
(1 — exp[—(r;/e;)))

The idea of all these derivatives can be found in [19].

(17)

Wi.xx(x) - wl}y}'(x) =

3. Problem formulation

The governing equations for unsteady incompressible viscous
fluid in the square domain Q = [0, 1]x[0, 1] are the two-
dimensional Navier—Stokes equation together with the conti-
nuity equation in the convection term, i.e., non-conservative
form. These equations can be written as

ou 1 /0%u &u ou Ou Op
E—R—e<w+8—yz)*uafva—y*$+fxv (18)
ov 1 /&y &% ov v Op

A teas Rl )
ou Ov

ox oy = .

where u and v are the velocities in x and y direction respec-
tively, p is the pressure, f, and f, are the body force, Re is
the Reynolds number. Egs. (18) and (19) are the momentum
equation and Eq. (20) is the continuity equation. The bound-
ary conditions can be assumed to be:

u:ﬁ, V:\j, p:ﬁ on ru: (21)
ou 0 op

— =g = —=q,=q,, —=q,=4( r 22
== 5 =4 =0 5 =4q,=q on Iy (22)

where u, v, p, q., Gy, and g, are the prescribed potential and
normal flux. I', and I',, are subset of I' satisfying I', N I', = ¢
and I',UT', = T.

4. Discretization of time derivatives and the algorithm

To deal with the time derivatives, a time stepping method is
employed. For this paper the following approximations are
written as

ou
E (X7 [,,) ~

v

ot

un+l(x) _ un(x)
At '
vn+1 (X) _ vn(x)

t,) ~ s
(x.1,) v

fo

=

1
09¢ © o % o
06 o ©Op° Oo o
0.8 ¢ 5 o o
07¢ o o o® o 4 o OO
o ©° ©
0.6 ¢ o 5 oo ®© e}
05¢ o o o ° o o © o
04¢ 0 oo ©
B [¢] g 08 o .
03¢ % °© ©° 5 o
)
02¢ o °© o %
o % D
01¢ o © e}
o) [e]
0 o - o -
0 0.2 0.4 0.6 0.8 1
Example 1 (11 x 11 nodes).

where x = (x, )7, " = u(x, t,) and vV = w(x, t,). Discretizing
Egs. (18) and (19) at times level n, yielding,

Wt —yr 1 (0P O o' ou"  Op"
_— = —u —v — + 1,
At Re \ 0x* = 0)? ox dy Ox 7F
1 (& O ou" ou"
n+1 — At |l— [ = %Y= 7 d
! vt [[Re (8x2 + 8y2) “ox oy +‘f;}
op"
—A .
! ox
Let,
- Re \ 0x2  0y? Tox oy |
Therefore,
op"
= A 24
u 1oy (24)
and
anm 1 Py N Py B u&v” 3 v@v” _op" ny
At Re\ox?  0y? Ox dy oy 7V
1 (P P 1 ap"
n+1 — A - _ _ —A
! v I{Re(axz_‘—ayz) “ox v(?y _HT} tay
Let,
1 v v o' o'
G'=V'+ At|— —) — — 25
i [[Re(8x2+8y2) "ox V8y+f;l}7 (25)
therefore,
op”
ntl _ on A . 2
v G t@y (26)
From Egs. (24) and (26), we obtain
0un+l aFrl (92[)"
ox  Ox  ox2’ (27)
n+1 n 2 1
v :6G_ 8[)_ (28)
Ay dy 0y?

Substitution of Egs. (27) and (28) into Eq

can be written as

6un+1 8Vn+1
= 47—

Ox oy ’
and,

. (20), the equation

(29)
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Fig. 3 The numerical solution of velocities and pressure at Az = 0.10 of LSWF1 on irregular nodes in Example 1.

2 n 2 n 4 n
op 8p_1<8F GG). (30)

o oy A\ax oy
Eq. (30) is the Poisson’s equation with non-zero source term.
Numerical implementation of the procedure described from
Egs. (26)-(30) can be summarized as follows.

1. Compute intermediate velocity field using
1 (0% O ou" ou"
Flew +Ar|— [+ 22 ) 28 20
v I[Re(8x2+8y2) “ox " Voy +ﬂ‘]’
>V PV o o

1
G" =" Arl— [ 2= vy o
n [Re(8x2+6y2 “ox Vay

2. Solve the pressure Poisson’s equation,
azpn aan _ L @ N oG"
oxr 9y At\ox oy )’

ap’

with boundary conditions p"| = p" and W’ r =4

3. Update the velocity field to (n + 1)th time level using

8])"
ntl F' — At
! ox’
8 n
vn+l —G"— At P .
dy

5. The MLPG method and the local weak forms

In the present, the meshless local Petrov-Galerkin is con-
structed over a local sub-domain Q; which is located inside
the global domain Q. The local sub-domain €, is a taken to
be either circle or a part of a circle.

A generalized local weak form Eq. (30) over a local sub-do-
main Q,, can be written as

o*pr & 1 (OF" OG"
L) (2 dQ
/ Kax - 9y2) Al (ax - ay)]‘”
, o'
- " pYwdl — — §" | wdr
o . (" —=phHw ac/rw (811 q )u
—0 (31)

where p is the trial function, w is the test function and Iy, is a
part of the boundary 0Q; of Q,, over which the essential bound-
ary conditions are specified. In general, 0Q; = I'; U Ly, with I,
is a part of the local boundary located on the global boundary
and L, is the other part of the local boundary over which no
boundary conditions are specified, i.e., I'y = 0Q,N T with
Iy =0Q,— L. In Eq. (31), a is a penalty parameter, o> 1 is
used to impose the essential and natural boundary conditions.
In this paper, the value of & = 10'? gives good results.
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Table 1

time step of LUSWF on regular nodes in Example 1.

Relative errors of velocities and pressure for each

Time (t) A classical Gaussian weight function

@y @y e,

0.01 42592%x107° 4.2590%x107° 3.4783x 107’
0.02 8.5312x 107> 8.5309x 107> 3.4435x 10~
0.03 1.2764x107* 1.2764x107* 3.5868 x 107’
0.04 1.6959x 10~ 1.6958 x 10~ 3.4960 x 10~
0.05 2.1115%107% 2.1115x107*  3.4503 % 1077
0.06 2.5234%107* 2.5233x10°* 3.4535x 107’
0.07 1.4623x107* 1.4628x107* 1.5057 % 10’
0.08 2.9315%107* 2.9314x10°* 3.4568 x 10’
0.09 3.3359 x 107*  3.3358 x 107*  3.4326 x 10~/
0.10 3.7367x 107%  3.7366x 10™*  3.3986x 10~
Table 2 Relative errors of velocities and pressure for each

time step of LUSWF on irregular nodes in Example

1.

Time (t) A classical Gaussian weight function
e, e, ep
0.01 1.4190x 107> 2.1539x 107> 1.8264x 107°
0.02 2.8169%107° 4.2860x107° 1.8082x10°°
0.03 42023%107° 6.3985x 107> 1.7897x107°
0.04 5.5753x 107> 8.4917x 107> 1.7600 x 10~°
0.05 6.9360 x 10> 1.0566 x 10~* 1.7542x 10~°
0.06 8.2843x 107 1.2621x107* 1.7641x10°°
0.07 9.6207x 107> 1.4657x107* 1.7271x107°
0.08 1.0945x 107* 1.6675x 10~* 1.7110 x 10~°
0.09 1.2258x107* 1.8674x10™* 1.6889x 107°
0.10 1.3558x 107*  2.0655x 10™* 1.6819 x 10~°
. o (Op ¢ 15) ap Ow ap Ow
Using  (Vp)w = [ﬁ (Fw) +5 a—i’,w)} - <d—€ T+ ‘37)

and the divergence theorem in Eq. (31) leads to

op" ow  Op" Ow op"
AL dian 1P 7o W
/Q‘\ (Ox ox oy 0y) o, On

+ac/ p'wdl + o

o wdl’

I on

" 1
= 7 wdl §'wdl — —
ot/wpw +oc/rj qw Al

oF'  0G"
7\ .
X /52 (8x + ay)nd

Similarly, Eq. (32) has changed to

op" ow  Op" Ow op"
il do —
LR ma)e Lo
+ac/ p”wdF—&—a/ %
r, on
=a/ 17”wdF+fx/
I

1
></ (F'myw 4+ G"nyw)dl’ + —
09y

1
q'wdll — —

4 wdl’

At

At

0

X / <F"%+ G"%>dﬂ7
Jo, Ox Y

wdl’

wdl

(32)

(33)

Table 3 Relative errors of velocities and pressure for each
time step of LSWF on regular nodes in Example 1.

Time (t) A classical Gaussian weight function

e, e, e,

0.01 42588 x 107> 4.2586x 107>  3.3424 x 107’
0.02 8.5306x 107> 8.5303x 107> 3.3465x 10~
0.03 1.2763x107* 1.2763x 10°* 3.4284 x 107’
0.04 1.6958 x 10~ 1.6958 x 10™* 3.3944 x 10~
0.05 2.1114%x107* 2.1114x10°* 3.3528 x 107/
0.06 2.5233%x107* 2.5232x10°* 3.2452x 107
0.07 29313x107* 2.9313x107* 3.1736x 1077
0.08 3.3357x 107% 3.3357x107* 3.1902x 10~
0.09 37364 x 107*  3.7364x 107*  3.1695x 1077
0.10 4.1335%107* 4.1334x107* 3.1457x 107’

Table 4 Relative errors of velocities and pressure for each
time step of LSWF on irregular nodes in Example 1.

Time (t) A classical Gaussian weight function

e, e, ep

0.01 1.4139x 107 2.1700x 107> 2.7453 x 10~°
0.02 2.8094x 107> 43101 x 107> 2.7201 x 10~°
0.03 4.1923% 107> 6.4304x 107> 2.6885x 10~°
0.04 5.5629x 10> 8.5313x 107> 2.6658 x 10~°
0.05 6.9211x107° 1.0613x107* 2.6377x107°
0.06 82672x 107> 1.2676x107* 2.6139x10~°
0.07 9.6012x 107> 1.4619x10™* 2.5878 x 10~°
0.08 1.0923x 107 1.6744x10°* 2.5622 % 107°
0.09 1.2233x107* 1.8751x107* 2.5411x107°
0.10 1.3532x 107 2.0739x 10°* 2.5122x107°

where n; and n, are components of outward unit normal vector
to the boundary 0, which is usually composed of three parts;
the internal boundary L, the boundaries, I'y, and I'y, over
which the Dirichlet and Neumann conditions are applied
respectively. If there is no intersection between 0, and the
global boundary I', 0Q2; = L,. In the MLPG method the trial
functions and the test functions are not necessarily from the
same functional spaces. To simplify Eq. (33), we can deliber-
ately select the test functions w such that they vanish over
0Q, except when 0€Q intersects with the global boundary I,
we obtain the following local weak form, as

ap" ow  dp" Ow ap"
— — |dQ — vdl'
/Qf (8x Ox + dy 6y) r, on "

a v
+oc/ p”14)dF+a/ andf
Iy

1
=0 / p'wdl + o / gwdl + / qwdll — —
Ty r, r At

sq sq

At

ow ow
F'— "— 1dQ. 34
) /Q ( ox O 5}’) G4

Because, the trial functions p;, within the sub-domain €, in the
MLS approximation, is determined by the fictitious nodal val-
ues p;, within the domain of definition for all points x falling

1
X / (F'mw + G"nyw)dl’ + —
90,
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Table 5 Relative errors of velocities and pressure for each
time step of LSWF on regular nodes in Example 1.

Time (t) An improve Gaussian weight function

e, e, e,
0.01 3.1488 x 107> 3.1485x 107> 2.9851 x 10~/
0.02 6.3175% 107> 6.3169x 107> 2.9361 x 10~/
0.03 9.4546 x 107> 9.4538x 10> 2.9129 x 10~/
0.04 1.2560x 107 1.2559x 10™* 2.9129x 10~
0.05 4.5635%107* 1.5634x107* 2.8657x 107’
0.06 1.8680 x 10~ 1.8678 x 10~* 2.8357 x 10~/
0.07 2.1694%x107* 2.1692x107* 2.7895x 107’
0.08 24678 % 107* 2.4676x107* 2.7719x 107’
0.09 2.7632x107%  2.7630x 107* 2.7315%x 1077
0.10 3.0556x 107*  3.0554x107* 2.7653x 10~
Table 6 Relative errors of velocities and pressure for each

time step of LSWF on irregular nodes in Example 1.

Time (t) An improve Gaussian weight function
e, @y €

0.01 1.0561x 107> 1.3191x 107> 2.2247x 107°
0.02 2.0783% 107> 2.6326x 107> 2.2036 x 10~°
0.03 3.0915x 107> 3.9330x 107> 2.1825x 107
0.04 4.0957x 107> 5.2205x 107> 2.1638 x 10~°
0.05 5.0910x 107> 6.4953x 107> 2.1386x 10~°
0.06 6.0775% 10> 7.7575x 107> 2.1182x107°
0.07 9.6012x 107> 9.0072x 10~ 2.1000 x 10~°
0.08 8.0243x 107> 1.0245%x 107> 2.0782x107¢
0.09 8.9848x 107> 1.1470x 10™* 2.0564x 10~°
0.10 9.9368x 10~> 1.2683x10™* 2.0380x 10~°

within Q,. The local weak form, Eq. (34) gives one algebraic
equation relating to all these p;. Thus, one obtains as many
equations as the number of nodes. Therefore, we need as many
local domains @ as the number of nodes in the global domain
to obtain as many equations as the number of unknowns. To
obtain the discrete equations from the Eq. (34), the MLS
approximation in Eq. (5) is used to approximate the test func-
tion w. Substitution of Eq. (5) into Eq. (34), and summing over
all nodes leads to the following discretized system of linear
equations

Kf):f7

(35)

09¢ o o o o o o o O O {
086 o o o o o O O O O ¢4
07¢ o o o o o o O O O ¢{
066 o o o o o o O O O ¢4
05¢ o o o o o o o o o q
046 o o o o o o o O O ¢4
03¢ o o o o o o o o o q
02 o o o o O O O O O ¢{
01¢ o o o o o o o o o q

0

0 0.2 0.4 0.6 0.8 1

where, p = [ﬁ],ﬁz,ﬁ37,..,ﬁN]T, the entries of the “stiffness”
matrix K and the “load” vector f are defined by

_ 09, Ow; 0, ow; op;
Kl/ik/g;,\ (E 6)(“’7 )dQ_\/F,WEWIdF

dy Oy

0.
+rx/ (ﬁjwidl"—i-oc/ (ﬁw,)dﬂ (36)
F(u FI\‘LI 311
and
1
fi= g(/ p”w,-dl’+a/ c]”wdF—&—/ q'wdll — —
ri, sy Tsq Al
X /r{;“ (F'myw; + G"nzwl-)deB
1
></ (F'myw; + G"nyw;)dl + —
, At
" ow; ow;
F' G" dQ. 37
« | ( e+ a5 (37)

6. Numerical examples

In this section, some numerical results are shown to illustrate
the implementation of the present MLPG method for solving
unsteady incompressible fluid flow problem. For the purpose
of error estimation study, the Sobolev norm || - ||, is calculated.
In the following numerical examples, the Sobolev norm for
k = 0 is considered and defined as

1

W — Uexge 2

erA _ || num exaa”k Where Hqu — (/ ll2dQ) .
Q

‘ |uexact ”k

The computational results indicate that the present mesh-
less method based on the Local symmetric weak form
(LSWF1, LSWF2) and the Local unsymmetric weak form
(LUSWF) passes all examples. In calculation of LSWF1, both
a classical Gaussian weight function and test function, which
are C? functions, are required. In LSWF2 case, it requires an
improved Gaussian weight function as trial function, and both
trial and test functions are C' functions. For the LUSWF case,
the calculation requires test function that is at least C' func-
tions, while trial function, we choose a classical Gaussian
weight function which is at least C* functions, that we call
“a classical Gaussian weight order 2 herein. The boundary

1¢ S . : : )
o
o
0.9¢ 5 % o © 5 o
0.8% © 0o 0 L o
Q (@] [e)
07d © . . o o
o
0.6¢ © ) ) © ©
o o o o
05¢ © % 00 o°
o o
0.4¢ ) o O )
(@] o le) o o o
03 & ©° o o ©
02¢ o o ©
o (@) o O O o o
0.1¢ o © o © o
o o o
0e : : : : )
0 0.2 0.4 0.6 0.8 1

Fig. 4 Node distribution for Example 2 (11 x 11 nodes).
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Fig. 5 The numerical solution of velocities and pressure
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at At = 0.10 of LSWF1 on regular nodes in Example 2.
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Pressure contour at time step 10
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Fig. 6 The numerical solution of velocities and pressure at Az = 0.10 of LSWF1 on irregular nodes in Example 1.

Table 7 Relative errors of velocities and pressure for each
time step of LUSWF on regular nodes in Example 2.

Time (t) A classical Gaussian weight function

@y @y e,

0.01 2.0360x 1072 2.0358x 1072 2.9767 x 107>
0.02 2.0319%x 1072 2.0318x 1072 2.9707 x 1072
0.03 2.0279%x 1072 2.0277x 107> 2.9648 x 10>
0.04 2.0238%x 1072 2.0237x 1072 2.9589 x 1072
0.05 2.0198x 1072 2.0196x 1072 2.9529% 10>
0.06 2.0157%x 1072 2.0156x 1072 2.9470 x 1072
0.07 20117%x 1072 2.0166x 107> 2.9412 x 10>
0.08 2.0077x 1072 2.0075x 1072 2.9353 x 10>
0.09 2.0037x 1072 2.0035x 1072 2.9294x 107>
0.10 1.9997x 1072 1.9995x 1072 2.9236 x 102

and initial conditions of all quantities in each example can be
evaluated from the exact solutions.

6.1. Example 1

This problem has an analytical solution to the two-dimen-
sional (2D) unsteady incompressible fluid flow problem in a
square domain [0, 1] x [0, 1] as shown in Fig. 1. The exact solu-

tion of the problem are

Table 8 Relative errors of velocities and pressure for each

time step of LUSWF on irregular nodes in Example 2.

Time (t) A classical Gaussian weight function

ey, @y e,

0.01 1.2866x 1072 7.2319x 10~ 3.0390 x 102
0.02 1.2840x 1072 7.2175x 107> 3.0329x 102
0.03 1.2815%x 1072 7.2031x 1073 3.0268 x 10>
0.04 1.2789x 1072 7.1887x 10~ 3.0208 x 102
0.05 1.2764%x 1072 7.1743x 107> 3.0148 x 10>
0.06 1.2738x 1072 7.1600x 10~ 3.0087 x 102
0.07 1.2713%x 1072 7.1457x 107> 3.0027 x 10>
0.08 1.2687x 1072 7.1314x 107> 2.9967 x 107>
0.09 1.2662%x 1072 7.1172x 107> 2.9908 x 10>
0.10 1.2637x 1072 7.1030x 10~ 2.9848 x 102

u(x,y, 1) = 2p(1 = x)*(1 = y)(1 = 2p)e,
v(x,y,1) = =2x9*(1 = x)(1 = 2x)(1 — p)’e™,
P(x»y» t) = (xz - y2)eit7
and the body force is

fx,p,1) = 2x%p(1 = x)*(1 = y)(1 = 2y)e ™.
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Table 9 Relative errors of velocities and pressure for each
time step of LSWF on regular nodes in Example 2.

Table 11 Relative errors of velocities and pressure for each
time step of LSWF on regular nodes in Example 2.

Time (t) A classical Gaussian weight function

Time (t) An improve Gaussian weight function

e, e, e e, @y €
0.01 1.2664%x 1073 1.2658x 107> 1.7720x 1073 0.01 42149%x 1072 4.0399x 1072 2.9768 x 107>
0.02 1.2639x 107> 1.2632x 107> 1.7685x 1073 0.02 6.4823%x 1072 6.2899x 1072 2.9710 x 102
0.03 1.2614x 1073 1.2607x 1073 1.7649 x 1073 0.03 8.7934x 1072 8.7317x 1072 2.9652x 102
0.04 1.2589x 1073 1.2582x 107> 1.7614x 1073 0.04 1.1098 x 107" 1.1402x 10~"  2.9595 x 10>
0.05 1.2564%x 1073 1.2557%x 107> 1.7579x 1073 0.05 1.3350x 107! 1.4347x107" 2.9538x 1072
0.06 1.2538x 1073 1.2532x 1072 1.7544x 1073 0.06 1.5505%x 10 1.7626 x 10~"  2.9482 x 10>
0.07 1.2513x 107 1.2507x 1073 1.7509 x 1073 0.07 1.7531 x 1071 2.1373x 107! 2.9427 x 1072
0.08 1.2488x 107> 1.2482x 107> 1.7474x 1073 0.08 1.9403x 1071 2.5917x 107" 2.9372x 10>
0.09 1.2463x 1073 1.2457x 107 1.7439x 1073 0.09 2.3049%x 1071 3.1251x 107" 2.9320% 1072
0.10 1.2439x 107> 1.2432x 107> 1.7404x 1073 0.10 2.8892x 107! 3.7612x 107" 2.9268 x 107>

Table 10 Relative errors of velocities and pressure for each
time step of LSWF on irregular nodes in Example 2.

Table 12 Relative errors of velocities and pressure for each
time step of LSWF on irregular nodes in Example 2.

Time (t) A classical Gaussian weight function

Time (t) An improve Gaussian weight function

€y €y e[) €y €y ep
0.01 2.7759 % 1072 4.0519%x 1072 1.3411x 107! 0.01 24992 %1072 1.4528 x 1072 3.0390 x 10>
0.02 27703% 1072 4.0438x 1072 1.3384x 107! 0.02 3.6312x 1072 2.1858 x 1072 3.0330 x 102
0.03 2.7648 x 1072 4.0357x 1072 1.3357x 107! 0.03 46918 x 1072 2.9215x 1072 3.0270 x 102
0.04 2.7593%x 1072 4.0276x 1072 1.3331x 107! 0.04 5.6865x 1072 3.6573x 1072 3.0211x 1072
0.05 2.7538 x 1072 4.0196x 1072 1.3304x 10~ 0.05 6.6206 x 1072 4.3955x 1072 3.0151 x 1072
0.06 27483 %1072 4.0116x 1072 1.3277x 107" 0.06 7.4986x 1072 5.1300x 1072 3.0092 x 1072
0.07 2.7428 x 1072 4.0035x 107> 1.3251 x 107! 0.07 8.3249x 1072 5.8537x 1072 3.0033x 102
0.08 27373% 1072 3.9955x 1072 1.3224x 107! 0.08 9.1034%x 1072 6.5624%x 1072 2.9974 x 1072
0.09 2.7318 x 1072 3.9876x 107> 1.3198 x 10~ 0.09 9.8380x 1072 7.2523x 1072 2.9915x 102
0.10 2.7264%x 1072 3.9796x 1072 1.3172x 107! 0.10 1.0532x 107 7.9200x 1072  2.9856 x 1072

We present our computed results for both regular nodes
and irregular nodes on 11x11 with Ar = 0.01,Re = 100,
r; = 0.55, rp = r; + 0.05 and ¢; = 4r;. The numerical results
of LSWF1 for velocities and pressure contour on regular and
irregular nodes at 1 = 0.10 are shown in Figs. 2 and 3 with
11 x 11 nodes. The relative errors of velocities and pressure
for each time step are shown in Tables 1-6.

6.2. Example 2

This problem of Taylor decaying vortices is frequently used for
validation of numerical schemes for simulating unsteady flow
problems. An analytical solution in a square domain [0,
1]x [0, 1] (see Fig. 4) of problem satisfying the two-dimen-
sional (2D), are

u(x,y,t) = —cos(x) sin(y) exp(—2t/Re),
v(x,p,t) = cos(y) sin(x) exp(—2¢/Re),
p(x,p,1) = —0.25(cos 2x + cos 2y) exp(—4t/ Re).

We present our results computed both regular nodes and
irregular nodes on 11x 11 with Az = 0.05 and Re = 100.
The numerical results of LSWF for velocities and pressure con-
tour on regular and irregular nodes at ¢ = 0.10 are shown in
Figs.5 and 6 with 11 x 11 nodes. The relative errors of veloci-
ties and pressure for each time step are shown in Tables 7-12.

7. Results and discussion

From two examples above, we can see that the present numer-
ical algorithm can work very well for all schemes including
LSWF and LUSWF with a classical Gaussian weight and an
improved Gaussian weight on regular and irregular nodes.
However, the local symmetric weak form with the classical
Gaussian weight order 2 gives slightly more accurate result.

8. Conclusions

In this article, a numerical algorithm using the Meshless Local
Petrov-Galerkin (MLPG) method for the incompressible Na-
vier-Stokes equations is demonstrated. To deal with the time
derivatives, the forward time differences are considered to ob-
tain a Poisson’s equation. The MLPG method with the moving
least-square (MLS) approximation for trial function is used to
solve a Poisson’s equation. In numerical examples, a classical
Gaussian weight and an improved Gaussian weight are pres-
ent, and the results show that LSWF1 with a classical Gauss-
ian weight order 2 gives the most accurate result.
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