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Abstract The main goal of this paper is to continue the investigations of the important system of

Fengqi et al. (2008). The occurrence of Turing and Hopf bifurcations in small homogeneous arrays

of two coupled reactors via diffusion-linked mass transfer which described by a system of ordinary

differential equations is considered. I study the conditions of the existence as well as stability

properties of the equilibrium solutions and derive the precise conditions on the parameters to show

that the Hopf bifurcation occurs. Analytically I show that a diffusion driven instability occurs at a

certain critical value, when the system undergoes a Turing bifurcation, patterns emerge. The

spatially homogeneous equilibrium loses its stability and two new spatially non-constant stable

equilibria emerge which are asymptotically stable. Numerically, at a certain critical value of diffu-

sion the periodic solution gets destabilized and two new spatially nonconstant periodic solutions

arise by Turing bifurcation.
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1. Introduction

Alan Turing (cf. [1]) showed mathematically that a system of
coupled reaction-diffusion equations could give rise to
spatial concentration patterns of a fixed characteristic length

from an arbitrary initial configuration due to the so-called
diffusion-driven instability, that is, diffusion could destabilize

an otherwise stable equilibrium of the reaction-diffusion sys-
tem and lead to nonuniform spatial patterns. Over the years,
Turing’s idea has attracted the attention of a great number

of investigators and was successfully developed on the theoret-
ical backgrounds (cf. [2–5]). Not only it has been studied in
biological and chemical fields, some investigations range as
far as economics, semiconductor physics, ecology, embryology

and star formation (cf. [6–9,12]). However, the research for
Turing patterns in real chemical or biological systems turned
out to be difficult. The first experimental observation of a Tur-

ing pattern in a chemical reactor was due to De Keppers
group, who observed a spotty pattern in a chlorite-iodide-
malonic acid (CIMA) reaction (cf. [10]). The experiment on
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the CIMA reaction has revealed the existence of stationary
space periodic concentration patterns, the so-called Turing
structures, in open gel reactors. Later, Lengyel and Epstein

suggested (cf. [3,11]) that these patterns could arise because
the iodine activator species forms a reversible complex of
low mobility with the starch molecules used as color indicator

for this reaction. The difference between our results and the
results pointed out by Fengqi et al. [4] is that, here we investi-
gate the occurrence of Turing and Hopf bifurcations in small

homogeneous arrays of two coupled reactors via diffusion-
linked mass transfer which described by a system of ordinary
differential equations. This is not the case in [4].

This paper is organized as follows: In Section 2 the model is

built; in Section 3 we study the asymptotical behavior of the
equilibrium of the local system and show that for the local sys-
tem Hopf bifurcation occurs; in Section 4 its linearization is

treated and the conditions for the Turing bifurcation are estab-
lished (these are the main results of this paper); in Section 5 we
illustrate our results with numerical simulations; in Section 6

we summarize the main conclusions of the study.

2. The model

We investigate the occurrence of Turing and Hopf bifurcations
in small homogeneous arrays of coupled reactors. We consider
a general two-variable model that represents an activator-

inhibitor scheme with a substrate that can form an inert com-
plex with the activator. We use the Lengyel–Epstein model for
the kinetics as a specific example of such a scheme. The Leng-
yel–Epstein model is in the form of

_u ¼ a� u� 4uv

1þ u2
:¼ fðu; vÞ; _v ¼ rb u� uv

1þ u2

� �
:

¼ gðu; vÞ; ð1Þ

where u; v denote the chemical concentrations of the activator

iodide ðI�Þ and the inhibitor chlorite ðClO�2 Þ, respectively; a
and b are parameters related to the feed concentrations, r is
a re-scaling parameter depending on the concentration of the
starch. We shall assume accordingly that all constants a; b
and r are positive. In laboratory conditions, a sample of
parameters is taken in the range 0 < a < 35, 0 < b < 8 and
r ¼ 8. For the reaction-diffusion Lengyel–Epstein model, let

uðt; iÞ; vðt; iÞ denote the chemical concentrations of the activa-
tor iodide and the inhibitor chlorite, respectively, at time t,
in patch i; i ¼ 1; 2; t 2 R. Homogeneous two coupled reactors

via diffusion-linked mass transfer are described by the follow-
ing system of ordinary differential equations:

_uðt; 1Þ ¼ a� uðt; 1Þ � 4uðt; 1Þvðt; 1Þ
1þ u2ðt; 1Þ þ d1ðuðt; 2Þ � uðt; 1ÞÞ;

_vðt; 1Þ ¼ rb uðt; 1Þ � uðt; 1Þvðt; 1Þ
1þ u2ðt; 1Þ

� �
þ d2ðvðt; 2Þ � vðt; 1ÞÞ;

_uðt; 2Þ ¼ a� uðt; 2Þ � 4uðt; 2Þvðt; 2Þ
1þ u2ðt; 2Þ þ d1ðuðt; 1Þ � uðt; 2ÞÞ;

_vðt; 2Þ ¼ rb uðt; 2Þ � uðt; 2Þvðt; 2Þ
1þ u2ðt; 2Þ

� �
þ d2ðvðt; 1Þ � vðt; 2ÞÞ;

ð2Þ

where di > 0; ði ¼ 1; 2Þ are the diffusion coefficients of mass
transfer.
We will focus on the existence of equilibria and their local
stability. This information will be crucial in the next section
where we study the effect of the diffusion parameters on the

stability of the steady states.

3. Stability and Hopf bifurcation

The interaction is described as a system of differential
equations as follows:

_uðt; 1Þ ¼ a� uðt; 1Þ � 4uðt; 1Þvðt; 1Þ
1þ u2ðt; 1Þ ;

_vðt; 1Þ ¼ rb uðt; 1Þ � uðt; 1Þvðt; 1Þ
1þ u2ðt; 1Þ

� �
;

_uðt; 2Þ ¼ a� uðt; 2Þ � 4uðt; 2Þvðt; 2Þ
1þ u2ðt; 2Þ ;

_vðt; 2Þ ¼ rb uðt; 2Þ � uðt; 2Þvðt; 2Þ
1þ u2ðt; 2Þ

� �
:

ð3Þ

We see that ðu1; v1; u2; v2Þ :¼ ða; 1þ a2; a; 1þ a2Þ is a unique

spatially homogeneous equilibrium of the system without dif-
fusion, where a ¼ a=5.

The Jacobian matrix of system (3) at ðu1; v1; u2; v2Þ can be

written as:

Jkinetic ¼

3a2�5
1þa2 � 4a

1þa2 0 0

2ra2b
1þa2 � rab

1þa2 0 0

0 0 3a2�5
1þa2 � 4a

1þa2

0 0 2ra2b
1þa2 � rab

1þa2

0
BBBBBBB@

1
CCCCCCCA
: ð4Þ

The characteristic polynomial is

DkineticðkÞ ¼ ðD2ðkÞÞ2;D2ðkÞ ¼ k2 � 3a2 � 5� rab
1þ a2

kþ 5rab
1þ a2

:

ð5Þ

Under condition 3a2 � 5 > 0, system (3) is an activator-inhibi-

tion system.
If

0 < 3a2 � 5 < rab; ð6Þ

holds, then the equilibrium ðu1; v1; u2; v2Þ of system (3) is
locally asymptotically stable.

Next we analyze the Hopf bifurcation occurring at

ðu1; v1; u2; v2Þ by choosing b as the bifurcation parameter.
Denote

bcrit :¼ 3a2 � 5

ra
; ð7Þ

then when b ¼ bcrit, the Jacobian matrix Jkinetic has a pair of
imaginary eigenvalues k ¼ �i

ffiffiffiffiffiffiffiffiffiffiffi
5rabcrit
1þa2

q
. let k ¼ bðbÞ � ixðbÞ be

the roots of D2ðkÞ, then

bðbÞ ¼ 3a2 � 5� rab
2ð1þ a2Þ ;

xðbÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20rab
1þ a2

� 3a2 � 5� rab
1þ a2

� �2
s

; ð8Þ

and

b0ðbÞb¼bcrit ¼ �
ra

2ð1þ a2Þ < 0: ð9Þ
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By the Poincare Andronov Hopf Bifurcation Theorem (cf. [12],

Theorem 3.1.3), we know that system (3) undergoes a Hopf
bifurcation at ðu1; v1; u2; v2Þ when b ¼ bcrit.
4. Turing instability with diffusion

For two coupled reactors, we will derive conditions for the
diffusion-driven instability with respect to the equilibrium

solution, the spatially homogenous solution of the reaction-
diffusion Lengyel–Epstein system. We see that ðu1; v1; u2; v2Þ
is also a spatially homogeneous equilibrium of the system with
diffusion. The Jacobian matrix of system (2) with diffusion at

ðu1; v1; u2; v2Þ can be written as:
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Fig. 1 Left figures: The solutions u1 and v1 before bifurcation at b ¼ 1

bifurcation at b ¼ 7; the solutions loss its stability by Turing bifurcati
JT ¼

3a2�5
1þa2 � d1 � 4a

1þa2 d1 0

2ra2b
1þa2 � rab

1þa2 � d2 0 d2

d1 0 3a2�5
1þa2 � d1 � 4a

1þa2

0 d2
2ra2b
1þa2 � rab

1þa2 � d2

0
BBBBB@

1
CCCCCA;

ð10Þ

detðJT�kIÞ¼

3a2�5
1þa2 �d1�k � 4a

1þa2 d1 0

2ra2b
1þa2 � rab

1þa2�d2�k 0 d2

d1 0 3a2�5
1þa2 �d1�k � 4a

1þa2

0 d2
2ra2b
1þa2 � rab

1þa2�d2�k

�����������

�����������
:

ð11Þ

Using the properties of determinant we get
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7; the solution is stable. Right figures: The solutions u1 and v1 after

on (Figure produced by applying MATLAB).
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3a2�5
1þa2 � k � 4a

1þa2 d1 0

2ra2b
1þa2 � rab

1þa2 � k 0 d2

0 0 3a2�5
1þa2 � 2d1 � k � 4a

1þa2

0 0 2ra2b
1þa2 � rab

1þa2 � 2d2 � k

�����������

�����������
:

ð12Þ

In order to have Turing instability of the system (2), the char-
acteristic polynomial

D4ðk; d1; d2Þ ¼ D2ðkÞD2ðk; d1; d2Þ; ð13Þ

D2ðk; d1; d2Þ ¼ k2 � k
3a2 � 5� rab

1þ a2
� 2ðd1 þ d2Þ

� �
þ 5rab
1þ a2

þ 2d1
rab

1þ a2
� 2d2

3a2 � 5

1þ a2
� 2d1

� �
;
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Fig. 2 Left figures: The solutions u1 and v1 before bifurcation at d2
after bifurcation at d2 ¼ 200; the solutions loss its stability by Turing
must have at least one eigenvalue with positive real part.

We know that D2ðkÞ has two roots with negative real parts.
By (6), clearly,

3a2 � 5� rab
1þ a2

� 2ðd1 þ d2Þ < 0;

the other polynomial will have a negative and a positive root if
the constant term is negative. By the properties of the model
the first two terms are positive.

Suppose that the parameters have been chosen so that

d1 <
3a2 � 5

2ð1þ a2Þ : ð14Þ

If we have achieved this we may increase d2ðbÞ and the
constant term becomes negative. The calculations lead to
the following Theorem.
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bifurcation (Figure produced by applying MATLAB).
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Theorem 1. If (6) and (14) hold and if

d2ðbÞ > d2critðbÞ :¼ rabð5þ 2d1Þ
2 3a2 � 5� 2d1ð1þ a2Þð Þ ; ð15Þ

then Turing instability occurs.

Notes: At d2critðbÞ we have four eigenvalues kiði ¼ 1; 2; 3; 4Þ
such that ki < 0ði ¼ 1; 2; 3Þ and k4 ¼ 0.

If d2ðbÞ < d2critðbÞÞ ) ki < 0 ði ¼ 1; 2; 3; 4Þ, then, ðu1; v1;
u2; v2Þ is asymptotically stable.

If d2ðbÞ > d2critðbÞ ) ki < 0 ði ¼ 1; 2; 3Þ and k4 > 0, then,
ðu1; v1; u2; v2Þ is unstable.

Thus if d2ðbÞ is increased through d2ðbÞ ¼ d2critðbÞ then the

spatially homogeneous equilibrium loses its stability.

Remark 1. If (6) holds and the parameters have been chosen so
that

d1 >
3a2 � 5

2ð1þ a2Þ ; ð16Þ

then self-diffusion never destabilizes the equilibrium

ðu1; v1; u2; v2Þ which is asymptotically stable for the kinetic sys-
tem, i.e. the equilibrium ðu1; v1; u2; v2Þ is diffusively stable for
all values of d2.
5. Numerical Investigations

In this section, we present some numerical simulations to illus-
trate our theoretical analysis.

First we choose parameters: a ¼ 15; r ¼ 8; d1 ¼ 1, then we

have bcrit ¼ 0:9166 and d2critðbÞ ¼ 21b.
In the absence of diffusion, we show that the equilibrium

ðu1; v1; u2; v2Þ is asymptotically stable if b > bcrit and a Hopf

bifurcation occurs at b ¼ bcrit, the direction of the bifurcation
is subcritical and the bifurcating periodic solutions are asymp-
totically stable. This is shown in Fig. 1.

For the model with diffusion: If d2 > d2critðbÞ ¼ 21b and

b > bcrit, then by (6), (14) and (15) the spatially homogenous
equilibrium ðu1; v1; u2; v2Þ loss its stability by Turing bifurca-
tion. If d2 > d2critðbÞ ¼ 21b and b < bcrit. By (7), Hopf bifurca-

tion occurs at bcrit, the direction of the bifurcation is
subcritical, and the bifurcating periodic solutions are locally
asymptotically stable. This is shown in Fig. 2.

6. Discussions

The main purpose of this article is to identify the parameter

ranges of stability/instability of spatial homogeneous equilib-
rium solution and periodic solutions. The equilibrium and
periodic solution of the ODE system (3) are spatial homoge-
neous solutions of the reaction-diffusion system (2). The stabil-
ity of the solution can change because of the diffusion. We
show that analytically a diffusion driven instability occurs at

a certain critical value, that is, the system undergoes a Turing
bifurcation, patterns emerge, the spatially homogeneous equi-
librium loses its stability and two new spatially non-constant

stable equilibria emerge which are asymptotically stable.
Numerically, for the periodic solution, at a certain critical
value of diffusion this periodic solution gets destabilized and

a two new spatially nonconstant periodic solution arises by
Turing bifurcation.
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