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1. Introduction

The two-parameter Lomax distribution, denoted by
Lomax(a, §), with probability density function (pdf) is defined
as:

S0, B) = (1 + px) =, (o, 8 > 0), (1)
and hence the cumulative distribution function (cdf)

Flx;o ) = 1 (14 px) (2.8 > 0), 2)

x>0,

x>0,
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where o and f§ are the shape and scale parameters, respectively.
This version of the Lomax distribution separates the two
parameters and often simplifies the algebric in the subsequent
Bayesian techniques. From (1) and (2) the reliability function
R(7), and the hazard (instantaneous failure rate) function
h(t) at mission time ¢ for the Lomax distribution are

R(1) = (1+pr)~, t>0, (3)
and

_ o
h(t) = 0550’ t>0. 4)

The Lomax (Pareto of the second kind or Pareto type-II)
distribution can be considered as a mixture of the exponential
gamma distribution. Lomax [10] used this distribution for
analysis of the business failure data. Marshall and Olkin [11]
have shown that the Lomax distribution can be applied as a
lifetime distribution. Bryson [5] argued that Lomax distribu-
tion provides a very good alternative to common lifetime
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distribution such as exponential, Weibull, or gamma distribu-
tions when the experimenter presumes that the population dis-
tribution may be heavy-tailed. Details on Pareto distributions
as well as areas of application can be found in Arnold [2].
Balkema and De Haan [4] showed that this distribution arises
as a limit distribution of the residual lifetime at great age.
Monotonicity of the hazard rate is well presented by Lomax
distribution. Also, it has been shown its utilities for modeling
and analyzing lifetime data in medical and biological sciences,
engineering, etc. So, it has been received greatest attention
from theoretical and statisticians primarily due to its use in
reliability and lifetime testing studies. For many references
and historical notes on this subject, we refer the interested
reader to Balakrishnan and Aggarwala [3]. For more detalils,
see Cramer and Schmiedit [6].

For estimating the parameter «, the reliability and the haz-
ard functions of Lomax distribution based on balanced loss
function (BLF), which is introduced by Zellner [13], we shall
use the following form introduced by Ahmadi et al. [1]:

L} 05, (A(2),0) = 0q(2)p(d0,0) + (1 — w)q(2)p(A(2),8),  (5)

where ¢(.) is a suitable positive weight function and p(A(x), d)
is an arbitrary loss function when estimating A(a) by 6. The
parameter J, is a chosen priori estimator of A(«), obtained
for instance from the criterion of maximum likelihood, least
squares or unbiasedness, among others. They give a general
Bayesian connection between the case of @ >0 and w =0
where 0 < w < 1. By choosing p(A(a),8) = (6 — A(«))* and
g(a) = 1, the BLF reduced to the balanced squared error loss
(BSEL) function, used by Ahmadi et al. [1], in the form

Ly (A(2),8) = (3 = 30)” + (1 = )p(3 = A())’, (6)

and the corresponding Bayes estimate of the function A(«) is
given by

Ow.a5,(X) = 0y + (1 — w) E(A(x)|x). (7)

In this article, we consider type-II censored data from a two-
parameter Lomax distribution. E-Bayes and Bayes approaches
have been used for obtaining the estimates of the unknown
parameter, and some other lifetime characteristics such as
the reliability and hazard functions. Bayes estimators have
been developed under BSEL function in Section 2. E-Bayes
estimates are derived based on a conjugate prior for the
parameter of interest and the balanced squared error loss func-
tion in Section 3. Properties of E-Bayesian estimation are car-
ried out in Section 4. Finally, comparisons between the new
method and the corresponding Bayes and maximum likelihood
techniques are made using the Monte Carlo Simulation in
Section 5.

2. Bayesian estimation

In this section, Bayes estimators of the parameters, reliability
functions, and hazard rate functions are obtained by consider-
ing balanced squared error loss function. Based on type-II cen-
sored samples of size r obtained from a life test of n items from
the Lomax(«, §) distribution, the likelihood function can be
written as

n!

(n—r) o (s x)e ", (8)

L(O{, /3|X) =

H.M. Okasha
where
_ P
K*(xhxb“wxr)a V(ﬁ:l)* T ) (9>
[0 +px)
i=1
and

r

T=TFx) = S In(1+px) + (1 —r)In(l + fx).  (10)
=1
When f is known, the maximum likelihood estimate (MLE)
of the parameter o, is given by

“ r
oML :7_, (11)

By Eq. (11), the corresponding MLEs of the reliability func-
tion R(¢) and the hazard rate function h(z) are obtained,
respectively, from (3) and (4) after replacing o by its MLE,
O -

We use the gamma conjugate prior density for the parame-
ter o as

OCa71 e*bu7

b
g(oc|a, b) - F(a)
where a > 0 and b > 0. This prior was first used by Papadopo-
ulos [12]. The posterior density of o given x can be obtained
from (8) and (12)

o> 0, (12)

q(a| x) = o T e O g >0, (13)
where
(b + Tv)r+a
=7 14
o I'(r+a) (14)

Under the BSEL function, the Bayes estimate of o can be given
as:

aps(a,b) :w(lT) +(1 —W)(gi‘;). (15)

For more details about the BLF, see for example, Zellner [13]
and Ahmadi et al. [1].

The Bayes estimate of the reliability, based on the BSEL
function is obtained from (3) and (13) as

Ras(t) = (1 + B0+ (1—w) (%) , (16)
where
= «(pir) = In(1 + o). (1)

Similarly, the Bayes estimate of the hazard rate, based on the
BSEL function is obtained from (4) and (13) as

hys (1) = <1 fﬁz) [w%) +(1=w) (1:16;)] (18)

3. E-Bayesian estimation

According to Han [8], the prior parameters ¢ and b should be
selected to guarantee that the prior g(a|a,b) in (12) be a
decreasing function of «. The derivative of g(«|a,b) with re-
spect to o is
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dg(a|a,b) b s
BT Z 20 (q — 1) — bal.

I @ a’Ce™(a—1) — bo]
Thus, for 0 < a < 1,b > 0, the prior g(a|a,b) is a decreasing
function of a.

Assuming that the hyperparameters ¢ and b in (12) are
independent and

n(a,b) = m(a)m(b),

the E-Bayesian estimate of o (expectation of the Bayesian esti-
mate of o) is

&EB = E(OC|X) = / /&Bs(a7 b)ﬂf(d, b)dadb, (19)

where ¢ is the domain of ¢ and b for which the prior density is
decreasing in «. dp(a,b) is the Bayes estimate of « given by
(15). For more details, see Han [9].

3.1. E-Bayesian estimate of o

E-Bayesian estimate of « is obtained based on three different
distributions of the hyperparameters a and ». These distribu-
tions are used to investigate the influence of the different prior
distributions on the E-Bayesian estimation of o.

The following distributions of 0 < ¢ < 1 and 0 < b < s may
be used

m(a,b) :sB(ll”) a 1(1 7“)\ 17
my(a,b) = ﬁ(sf hya (1 —a)", (20)
n3(a, b) = zBu\) a'(1 fa)vfl,

where B(u, v) is the beta function. For =, (a, b), the E-Bayesian
estimate of the parameter o is obtained from (15), (19) and (20)
as

iins1 — / / dns(a, by (a, b)dbda,

/ / (1= w) r+a
sBuv " b+ T
x a1 —a)” 'dbda

or 1—w u s+ T
Tt <r+u+v)ln( T>' 1)

Similarly, the E-Bayesian estimates of « based on m,(a, b) and
n3(a, b) are computed and given, respectively, by

5 _wr+2(lfw) rp
EBS2 = 5 I

s+ T s+ T
N IES NS | -
and
5 _ﬂ+2(l—w) P
EBSY = 5 v
T s+ T
X {lf§ln< T )} (23)

3.2. E-Bayesian estimation for the reliability

Adopting the BSEL function, the E-Bayesian estimates of the
reliability function is computed with respect to the three differ-

ent distributions of the hyperparameters ¢ and b given by (20).
For = (a,b), the E-Bayesian estimate of the reliability is ob-
tained from (16), (19) and (20) as

Regsi = / / Rss(t)my(a, b)dbda
w |, [ {o

b+ T r+a » 1
- U 1 _
X(b+ T+r> }a (1 —a)" dbda,
v l=w [/ b+T \
1 T+
o(l+p0- sB(u, V) /0 (b + T+ T)

1
X {/ e“ln('ﬁ%)a“"(l —a)v*lda}db7
0

(L+B) T+ (1w

oo l=w [ b+T
= (1l HT
oL+ 507+ s /0<b+T+r)
b+ T
F. sIn(————1 |db 24
X 1,1(U7U+V7n(b+T+r)> ) (24)
where, F,(.,.;.) is the generalized hypergeometric function.

[see, Gradshteyn and Ryzhik [7], (formula 3.383(1))]. Similarly,
the E-Bayesian estimates of the reliability based on m,(a,b)
and 73(a, b) are computed and given, respectively, by

I/Q\EBSZ = w(l + ﬂ[)*"f +¥ /OS(S _ b) (i)'

b+T+1
x Fl., (u, u+v;In (%))db, (25)
and
x Fi. (u,u + v;In (%))db (26)

The double integrals in (24)—(26) cannot be computed analyt-
ically, therefore, it may be derived numerically using mathe-
matical packages such as Maple'?.

3.3. E-Bayesian estimation for the failure rate

Based on the BSEL function, the E-Bayesian estimates of the
failure rate function is computed for the three different distri-
butions of the hyperparameters a and » given by (20). For
m(a,b), my(a,b) and 73(a,b), the E-Bayesian estimates of the
failure rate are obtained from (18)—(20) as

hepsi = / / has(t)mi (a, b)dbda
s | | () o)+ -
x (Z’)I‘;ﬂaﬂ(l — )" dbda,

B

(1+/3Z)[( (t=w) / / (1:1—?)

xa" (1 —a)"~ ldbda],

(Rl () @
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Popss = (1 fﬁt) {%+2(1;w) ("+uiv> x <§t T <SJ;T> - lﬂ,

(28)
and
s p or 2(1—-w) (. u T (s+
pe = () [ 25 (s) = (5 ()]
(29)
respectively.

4. Properties of E-Bayesian estimation

Now, we discuss the relations among &gps;, ﬁEBS[ and
hgssi (i: 1,2,3).
1. Relations among 455 (i = 1,2, 3)

Proposition 4.1. Let 0 < s < T and Ggps; (i=1,2,3) be given
by Egs. (21)~(23). Then

(i) dgps2 < Ogpsi < Ogpss-
(i) limy_.obgpst = imy_ooppsy = My o 8gpss-

Proof. See, Appendix A. [

2. Relations among Rz (i = 1,2,3)

Proposition 4.2. Let 0 < s < T and Rirpsi (i=1,2,3) be given
by Eqs. (24)—(26). Then

lim REBSI = lim REBS2 = lim REBS}‘
T—o0 T—00 T—00

Proof. See, Appendix A. [
From (24)-(26), we have

REBS3 - REBSI - REBSI - REBSZ

l-w [* b+T \
- —s)[—
52 /O(b 3)(b+T+r)

b+T
X F];](M,M-i— V,ll’l (m))db > 07 (30)

The integral (30) cannot be computed analytically in a simple
closed form. Using the mathematical package Maple'?, we
found that this integral is positive. It follows that

R\EBSZ < R\EBSI < ﬁEBS}-
3. Relations among /izps; (i = 1,2,3)

Proposition 4.3. Let 0 < s < T and hggs; (i = 1,2,3) be given
by Egs. (27)~29). Then

() hepsy < hepsi < hgps. A
(i) imy_oohepst = imr_hepsy = limy_ o hgps3.

Proof. See, Appendix A. [
5. Monte-Carlo simulation and comparisons

In this section, a Monte Carlo simulation was conducted for
comparing the Bayes and E-Bayes techniques of estimation.
The following steps were considered.

Table 1 Estimated risks (ER) of the estimates of dgg, dgpsi,
Ogps2, and dppss (u=4,v=5,5=0.1,1=2, 0 =0.5).

n r aps oggs1 GEBS? 8gps3

25 20 0.569327 0.559041 0.558573 0.559511
25 0.383843  0.386466 0.386642 0.386294

30 20 0.654114 0.643296 0.642795 0.643798
25 0.532800 0.523685 0.523267 0.524103
30 0.350833  0.352175 0.352276 0.352078

35 20 0.702136  0.691569 0.691078  0.692060
30 0.501973  0.493870 0.493498 0.494243
35 0.327858 0.328662 0.328728 0.328598

50 20 0.774577 0.764737 0.764279  0.765194
35 0.630382  0.623325 0.622997 0.623653
30 0.692678 0.685118 0.684768 0.685468
40 0.548875 0.542136 0.541824  0.542448
45 0.430836  0.424560 0.424271 0.424850
50 0.271340  0.270934 0.270930 0.270930

70 30 0.774652 0.767880 0.767567 0.768194
35 0.746078  0.739969 0.739687 0.740251
50 0.620926 0.615756 0.615516 0.615995
60 0.478206 0.473181 0.472948 0.473414
65 0.368753 0.363998 0.363778 0.364217
70 0.230064  0.229470  0.229452  0.229489

e For given values of the prior parameters (u,v) and (0, s), we
generate samples a and b from the beta and uniform priors
(20), respectively.

e For given values of (a,b) we generate o from the gamma
prior density (12).

e For known values of «, type-II censored of different sizes
are generated samples from the Lomax(a, f) with pdf (1).
The codes of Maple'? are used to generate from the gamma,
beta and uniform distributions.

e Based on the BSEL function, the estimates dzg, dzps1, dzas2
and Oggs3 of o are computed from (15), (21), (22) and (23).

e Based on the BSEL function, the estimates IA?BS, IAQEBSI , IA?EBSZ
and §53S3 of R are computed from (16), (24), (25) and (26).

e Based on the BSEL, the estimates iz,gs, 135351,515352 and }15353
of / are computed fI‘OH21 (18), (27), (28) and (29).

e The quantities (¢ — ¢) are computed where ¢ stands for
an estimate of ¢.

e The above steps were repeated 10000 times and the esti-
mated risks (ER) of the estimates are computed by averag-
ing the squared deviations over 10000 repetitions:

ER($) = 1505 3 (6~ 9’

e The computational results are displayed in Tables 1.

6. Concluding remarks

In this paper, E-Bayes and Bayes methods are used for esti-
mating the parameter, the reliability and hazard functions of
the Lomax distribution based on type-II censored samples
[Monte-Carlo simulation and comparisons are used for com-
puting E-Bayes and Bayes estimates.] It has been noticed, from
the Tables, that the estimated risks of the estimates decrease as
the sample size increases.
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e Generally, the estimated risk of the E-Bayes estimate of
o, R and h have the smallest estimated risks. On the other
hand, the estimated risk of the E-Bayes estimates of a, R
and /& based on the BSEL are less than the estimated risk
of their corresponding Bayes estimates.

e It has been noticed, from Tables 1-6, that the E-Bayes esti-
mates, in most cases, tend to be more efficient than the Bayes
estimates in the sense of having smaller estimated risks of the
estimates. Also, the estimated risks of the estimates decrease

Table 2 Estimated risks (ER) of the estimates of 13337 ﬁEBSl,
Rggsr, and Rpgsys (u=4,v=5,5s=0.1,1 =2, 0 =0.5).

n r Ras Regsi Ress: Resss
25 20 0.059045 0.057408 0.057334 0.057483
25 0.026109 0.025196 0.025155 0.025237
30 20 0.072902 0.071129 0.071049 0.071210
25 0.034091 0.033405 0.033374 0.033437
30 0.022632 0.021899 0.021866 0.021932
35 20 0.081183 0.079346 0.079262 0.079429
30 0.045557 0.044489 0.044441 0.044538
35 0.020166  0.019558 0.019531 0.019586
50 20 0.094765 0.092843 0.092756 0.092930
30 0.074046 0.072779 0.072722 0.072837
35 0.062239 0.061187 0.061139 0.061235
40 0.049407 0.048539 0.048499 0.048578
45 0.034091 0.033405 0.033374 0.033437
50 0.015371 0.014977 0.014959 0.014995
70 30 0.089170  0.087842 0.087781 0.087902
35 0.081921 0.080787 0.080735 0.080839
50 0.057760 0.057011 0.056977 0.057045
60 0.037919 0.037362 0.037336 0.037387
65 0.026089 0.025638 0.025617 0.025659
70 0.012107 0.011850 0.011838 0.011862

Table 3 Estimated risks (ER) of the estimates of }2337 ’Ewsu
hgpsa, and hgpss (u=4,v=15,5=0.1,t =2, =0.5).

n r hgs hepsi hips2 hipss

25 20 0.253034 0.248463 0.248255 0.248672
25 0.170597 0.171763 0.171841 0.171686

30 20 0.290717  0.285909 0.285687 0.286132
25 0.236800 0.232749 0.232563 0.232935
30 0.155926 0.156522 0.156567 0.156479

35 20 0.243944  0.240949 0.240811 0.241088
30 0.223099 0.219498 0.219332 0.219664
35 0.145715 0.146072 0.146101 0.146043

50 20 0.344257 0.339883 0.339680 0.340086
30 0.307857 0.304497 0.304341 0.304653
40 0.243944  0.240949 0.240811 0.241088
45 0.191483 0.188693 0.188565 0.188822
50 0.120595 0.120415 0.120414 0.120417

70 30 0.344290 0.341280 0.341141 0.341419
50 0.275967 0.273669 0.273563 0.273776
60 0.212536  0.210303 0.210199 0.210406
65 0.163890 0.161777 0.161679 0.161874
70 0.102251 0.101987 0.101979 0.101995

Table 4 Estimated risks (ER) of the estimates of dzs, dzpsi,

Ogps2, and dppss (u=4,v=35,5=0.1,1=2, 0 = 0.0).

n r aps aggs1 OEBS? aps3

25 20 0.570403  0.549869 0.548960 0.550782
25 0.379977 0.385231 0.385659 0.384816

30 20 0.655081 0.633478  0.632490 0.634468
25 0.534177 0.515974 0.515156 0.516795
30 0.348209 0.350913 0.351172  0.350664

35 30 0.503420  0.487234 0.486503 0.487967
35 0.325865 0.327494 0.327672 0.327324

50 40 0.550101 0.536631 0.536010 0.537252
45 0.432339  0.419797 0.419224 0.420371
50 0.270610  0.269819  0.269839  0.269804

70 60 0.479364 0.469319 0.468855 0.469783
65 0.370084 0.360579 0.360144 0.361014
70 0.229780  0.228607 0.228586  0.228630

Table 5 Estimated risks (ER) of the estimates of I’?\BS, 135331,
REBSZ» and REBS3 (u = 4, V= S,S = 017 t= 27U] = 00)

n r Rss Repsi Reps2 Resss

25 20 0.064011 0.060663  0.060511 0.060815
25 0.029124 0.027179  0.027092 0.027266

30 20 0.078156 0.074555  0.074392 0.074719
25 0.055466 0.052820  0.052700 0.052941
30 0.025083 0.023520  0.023450 0.023591

35 30 0.048892 0.0466719 0.046620 0.046818
35 0.022216 0.020921  0.020862 0.020979

50 40 0.049407 0.048539  0.048499 0.048578
45 0.036291 0.034900  0.034836 0.034963
50 0.016725 0.015885  0.015847 0.015923

70 60 0.036291 0.034900 0.034836 0.034963
65 0.027563 0.026651  0.026609 0.026693
70 0.013006 0.012455  0.012430 0.012480

Table 6 Estimated risks (ER) of the estimates of }2557 155551,

hEss2, and hpgss (u=4,v=75,5=0.1,1 =2, = 0.0).

n r hs hEgsi hEps) hesss

25 20 0.253512  0.244386 0.243982 0.244792
25 0.168879 0.171214 0.171404 0.171029

30 20 0.291147 0.281546 0.281106 0.281986
20 0.291147 0.281546 0.281106 0.281986
25 0.237412 0.229322 0.228958 0.229687
30 0.154760 0.155961 0.156076 0.155851

35 30 0.223742 0.216548 0.216223 0.216874
35 0.144829 0.145553 0.145632 0.145477

50 40 0.244489 0.238503 0.238227 0.238779
45 0.223099 0.219498 0.219332 0.219664
50 0.120271 0.119919 0.119928 0.119913

70 60 0.213051 0.208586 0.208380 0.208792
65 0.164482 0.160257 0.160064 0.160451
70 0.102125 0.101603 0.101594 0.101613
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Table 7 Estimated risks (ER) of the estimates of &;, ﬁ,-, /;,-,
i=BS,EBS1,EBS2,EBS3 (r=20,u=4,v=>5,5s=0.1,1 =2,
o =0.5).

n 25 30 35 50 70

P.

ags 0.56933 0.65411  0.70214  0.77458  0.81596
0EBSI 0.55904 0.64330  0.69157  0.76474  0.80665
0EBS2 0.55857 0.64280  0.69108  0.76428  0.80621
0EBS3 0.55951 0.64378  0.69206  0.76519  0.80708
IEBS 0.05905 0.07290  0.08118  0.09477  0.10305
Ressi 0.05741 0.07113  0.07934  0.09284  0.10108
Reps 0.05733 0.07105  0.07926  0.09276  0.10099
Reps3 0.05748 0.07121  0.07942  0.09293  0.10117
}235 0.25303 0.29072  0.31206  0.34426  0.36265
hess 0.24846 0.28591  0.30736  0.33988  0.35851
hepsy 0.24826 0.28569  0.30715  0.33968  0.35832
hEps3 0.24867 0.28613  0.30758  0.34009  0.35870

P.= Parameters = &, ﬁ,,ﬁ,, r = BS, EBS1, EBS2, EBS3.

as n (and r) increases and the E-Bayes estimates have the
smallest estimated risks as compared with their correspond-
ing Bayes estimates. By increasing n (and r), the computa-
tions in Tables 1-6 show that the E-Bayes estimates (based
on BSEL) are better than the Bayes in the sense of comparing
the estimated risks of the estimates.

e From Table 7, the estimated risks of the estimates decrease
as n (and fixed r) decrease. the E-Bayes estimates have the
smallest estimated risks as compared with their correspond-
ing Bayes estimates. By increasing # (and fixed r), the com-
putations in Table 7 show that the E-Bayes estimates (based
on BSEL) are better than the Bayes in the sense of compar-
ing the estimated risks of the estimates.

e The computations in Tables 4-6 show that E-Bayes and
Bayes estimates based on squared error loss function which
is a special case of BSEL function.

e Different values of the prior parameters u,v rather than
those appearing in the above Tables have been considered
but did not change the previous conclusion. If the prior
parameters are unknown, the empirical Bayes approach
may be used to estimate such parameters.

e The author suggests take beta and uniform distribution as
the priors of the hyperparameters a and b, respectively.
The work in this paper showed that the E-Bayesian estima-
tion method is both efficient and easy to perform.
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Appendix A. Proofs of Proposition

Proof of Proposition 4.1. (i) From (21)-(23), we have

OlEBS2 — XEBSI = XEBSI — XEBS3

:lfw(r_‘_ u ){S+ZTln (T+s) _2].
s u+v s T

(A.1)

For —-l<x<l, we have:
In(l +x)=x—% %—%-F"':Zf:l(_l)kq% Let x =4
when 0 < s < 7,0 < <1, we get:
[ In () = 2]
s S 32 .3'3 A4 SS
=2 (5) =37+ - 1) +16) -] -2
S T2 V3 S4 S 5
=[G -1+ -0+ -] -2
N 03 o\ 4
2=+ -0 30 - )
- (G-#)+ -+
= (1= g O-5)+ -
>0
(A.2)

According to (A.1) and (A.2), we have

Opps2 — gpst = Opps) — Oggs3 > 0,
that is
Ogps3 < Ogpst < OEBs2.

(i) From (A.1) and (A.2), we get

}HEC(&EBQ - &EBSI) = }ijrolo(&EBSI - 5‘5353)
o Y im (122
s u+v) x| 67 T.

st 8s
+W(9‘7)+”'}:°'

That is, limr_0ggs1 = iMoo 0ppsy = iMoo Ogpss.
Thus, the proof is complete. [

Proof of Proposition 4.2. From (24)—(26), we get

1im (Reass — Ressi) = lim (Ripsi — Reas)

: - [* b+T \"
_}E]olo{ 52 /0 (Zb_s)<b+T+r)

b+T
XF];l <L{,L{+ Vi In <m))db} =0.

lim REBSI = lim REBSZ = lim R5353.
T—o0 T—oo T—oo

That is,

Thus, the proof is complete. [
Proof of Proposition 4.3. (i) From (27)-(29), we have

hgpsy — hesst = hgsst — hesss

~(i5) (5 () () -1

(A3)

According to (A.2) and (A.3), we have

hessy — hepsi = hepsi — hepss > 0,

that is

hegss < hggsi < hepsa.
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(i) From (A.2) and (A.3), we get

}1_%10 (};EBS2 — 125351) = }1_{1010 (};5551 — l;EBS3)

:<1+ﬁﬁr)(l_sw> (ﬂi)

. 5 S st 8s
XE&L{@(“?)*W(”?) +}
=0.

That is,
lim hEBSl = lim hEBSZ = lim /’lEgs3.
T—o0 T—o0 T—o0

Thus, the proof is complete. [
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