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Abstract Let R be a commutative ring with identity. R is called clean (respectively, almost clean) if

every element in R is a sum of an idempotent and a unit (respectively, a regular element). In this

paper, we clarify conditions under which the two overrings RðxÞ and Rhxi of the ring of polynomi-

als R½x� are (almost) clean rings.
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1. Introduction

Throughout this paper a ring R will be commutative with

identity, UðRÞ denotes the set of all units of R; regðRÞ the set
of regular elements of R;ZðRÞ the set of all zero divisors of
R and IdðRÞ the set of all idempotent elements of R. If

f 2 R½x�, the ring of all polynomials over R, then CðfÞ denotes
the ideal of R generated by the coefficients of f. Let
S ¼ ff 2 R½x� : CðfÞ ¼ Rg and W ¼ ff 2 R½x� : f is monic}.
Then S and W are regular multiplicatively closed subsets of

R½x� and the rings of fractions S�1R½x� and W�1R½x� are
denoted by RðxÞ and Rhxi respectively. As clearly W#S, then

RðxÞ is itself a ring of fractions of Rhxi, see Theorem 3.16 in
[1]. Some basic properties and related theorems of RðxÞ and
Rhxi can be found in [2–5] where we can see that the rings
R;RðxÞ and Rhxi share many properties. In the following
lemma, we survey some properties of the rings R½x�;RðxÞ
and Rhxi that will be needed in this paper.

Lemma 1.1. Let R be a ring. Then

(1) If f and g are two nonzero polynomials in R½x� with
degðf Þ ¼ k, then cðgÞkþ1cðf Þ ¼ cðgÞkcðfgÞ.

(2) If R is a finite dimensional ring, then dimðRðxÞÞ ¼
dimðRhxiÞ ¼ dimðR½x�Þ � 1.

(3) IdðRðxÞÞ ¼ IdðRhxiÞ ¼ IdðRÞ.
(4) UðRðxÞÞ ¼ f

g 2 RðxÞ : cðf Þ ¼ cðgÞ ¼ R
n o

.

(5) There is a one to one correspondence between the maximal
(minimal) ideals of R and the maximal (minimal) ideals

of RðxÞ (or Rhxi) given by, P $ PRðxÞ (or P $ PRhxi).
(6) If I is an ideal of R, then IRðxÞ \ R ¼ IRhxi \ R ¼ I .
(7) If R ¼ R1 � R2 � � � � � Rn is a direct product of rings, then

RðxÞ ¼ R1ðxÞ � R2ðxÞ � � � � � RnðxÞ and Rhxi ¼ R1hxi �
R2hxi � � � � � Rnhxi.

(8) If R is an indecomposable ring, then RðxÞ and Rhxi are
also indecomposable.

(9) If R is a Noetherian ring, then RðxÞ and Rhxi are also
Noetherian.
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Proof. See [2,5,4]. h
Let R be a ring. An element r 2 R is called clean (respec-
tively, almost clean) if r ¼ uþ e where u 2 UðRÞ (respectively,
u 2 regðRÞ) and e 2 IdðRÞ. If every element in R is clean

(respectively, almost clean), then R is called a clean (respec-
tively, almost clean) ring. Since clearly every unit in a ring R
is regular, then the class of almost clean rings is a generaliza-
tion of the class of clean rings. This generalization is proper

since any non quasi-local integral domain is almost clean
which is not clean, see [6]. The class of clean rings (not neces-
sarily commutative) was first introduced by Nicholson [7] as

early as 1977 in his study of lifting idempotents and exchange
rings. In fact, he proved that the class of commutative clean
rings coincide with the class of commutative exchange rings.

Since then, a great deal is known about clean rings and their
generalizations. In particular in 2002, Anderson and Camillo
[6] studied commutative clean rings and gave a characteriza-
tion for a Noetherian clean rings. Then Ahn and Anderson

[8] in 2006, defined and studied weakly clean and almost clean
rings as two important generalizations of clean rings. In 2012,
Anderson and Badawi [9] gave a complete classification of the

clean elements of the ring R½x�. More results about clean
rings and some of their generalizations can be found also in
[10,11].

In this paper, we clarify conditions under which the follow-
ing statements are equivalent for a ring R:

(1) R is clean (almost clean).
(2) Rhxi is clean (almost clean).
(3) RðxÞ is clean (almost clean).

2. When RðxÞ and Rhxi are (almost) clean rings

In this section, we clarify conditions on a ring R under which

the ring RðxÞ and Rhxi are clean rings or almost clean rings.

Theorem 2.1. Let R be a ring and consider the following
statements

(1) R is clean.
(2) Rhxi is clean.
(3) RðxÞ is clean.

then we have ð3Þ ) ð1Þ and ð2Þ ) ð1Þ.

Proof. ð3Þ ) ð1Þ: Suppose that RðxÞ is a clean ring and

let r 2 R#RðxÞ. Since RðxÞ is clean, then there exists
f
g
2 UðRðxÞÞ and f0

g0 2 IdðRðxÞÞ such that r ¼ f
g
þ f0

g0. Hence by

Lemma 1.1, we have cðgÞ ¼ cðfÞ ¼ R and f0

g0 ¼ e 2 IdðRÞ. There-
fore, f

g
¼ r� e 2 UðRðxÞÞ \ R. It is enough now to prove that

UðRðxÞÞ \ R ¼ UðRÞ. Let f
g
¼ r 2 UðRðxÞÞ \ R, then f ¼ rg

where cðgÞ ¼ cðfÞ ¼ R and so again by Lemma 1.1, cðgÞ1

cðrÞ ¼ cðgÞ0cðrgÞ ¼ cðrgÞ. Hence, ðrÞ ¼ cðrÞ ¼ cðrgÞ ¼ cðfÞ ¼ R

and so f
g
¼ r 2 UðRÞ. The other containment is obvious. There-

fore, R is a clean ring.

ð2Þ ) ð1Þ: As R#Rhxi#RðxÞ, we have UðRÞ#UðRhxiÞ\
R#UðRðxÞÞ \ R#UðRÞ and so UðRhxiÞ \ R ¼ UðRÞ. Since

2

also IdðRÞ ¼ IdðRhxiÞ, then similar to the proof of ð3Þ ) ð1Þ,
we see that R is a clean ring. h

Let R be a ring and let P
_

be a prime ideal of RðxÞ. Then
P
_

¼ S�1Q where Q is a prime ideal of R½x� and so

P
_

\R½x� ¼ S�1Q \ R½x� ¼ Q. Therefore, P
_

\R ¼ Q \ R is a

prime ideal of R. Similarly, P
v

\ R is a prime ideal of R for

any prime ideal P
v

of Rhxi.
We recall that a ring R is called a pm-ring if each prime

ideal of R is contained in a unique maximal ideal. In the fol-
lowing lemma, we clarify a condition under which RðxÞ and
Rhxi are pm-rings.

Lemma 2.2. Let R be a ring. Then the following are equivalent

(1) R is a pm-ring.

(2) RðxÞ is a pm-ring.
(3) Rhxi is a pm-ring.

Proof. ð1Þ ) ð2Þ: Suppose that R is a pm-ring and let P
_

be a
prime ideal of RðxÞ and suppose that there are two distinct

maximal ideals M1

_

and M2

_

of RðxÞ such that P
_

# M1

_

and P
_

# M2

_

. By Lemma 1.1, M1

_

¼M1RðxÞ and M2

_

¼M2RðxÞ for
some distinct maximal ideals M1 and M2 of R. Thus,

P
_

\R#M1RðxÞ \ R ¼M1 and P
_

\R#M2RðxÞ \ R ¼M2.

But, P
_

\ R is a prime ideal of R which contradicts that R is

a pm-ring. Therefore, any prime ideal of RðxÞ is contained in
a unique maximal ideal and so RðxÞ is a pm-ring.

ð2Þ ) ð3Þ: Suppose RðxÞ is a pm-ring and let P
v

be a prime

ideal of Rhxi. As RðxÞ ¼ T�1Rhxi for some multiplicatively

closed subset T of Rhxi, then T�1 P
v

is a prime ideal of RðxÞ.
Thus, there is a unique maximal ideal M

_

of RðxÞ such that

T�1 P
v

# M
_

. Write M
_

¼ T�1Q where Q is a prime ideal

of Rhxi. Then it follows clearly that M
_

\Rhxi ¼ T�1Q\
Rhxi ¼ Q is the unique maximal ideal of Rhxi containing P

v

.

Therefore, Rhxi is a pm-ring.

ð3Þ ) ð1Þ: Suppose Rhxi is a pm-ring. Let P be a prime

ideal of R and suppose that there are two distinct maximal
ideals M1 and M2 of R such that P#M1 and P#M2. Then
PRhxi is a prime ideal of Rhxi with PRhxi#M1Rhxi and

PRhxi#M2Rhxi. But, M1Rhxi and M2Rhxi are distinct
maximal ideals of Rhxi which is a contradiction. Thus, R is
a pm-ring. h

In [6], it has been proved that every clean ring is a pm-ring.
The converse is true under a certain condition as we can see in

the following Lemma.

Lemma 2.3 [6]. Let R be a ring with a finite number of minimal
prime ideals. Then the following are equivalent:

(1) R is a finite direct product of quasi-local rings.
(2) R is a clean ring.
(3) R is a pm-ring.
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Now, we use the above two lemmas to prove the following
main theorem in this paper.

Theorem 2.4. Let R be a ring with a finite number of minimal

prime ideals. The following are equivalent.

(1) R is a clean ring.

(2) RðxÞ is a clean ring.
(3) Rhxi is a clean ring.

Proof. ð1Þ ) ð2Þ: If R is a clean ring, then it is a pm-ring by

Corollary 4 in [6] and so RðxÞ is a pm-ring by Lemma 2.2.
By Lemma 1.1, there is a one to one correspondence between
minimal prime ideals of R and those of RðxÞ. It follows that

RðxÞ also has a finite number of minimal prime ideals. There-
fore, RðxÞ is a clean ring by Lemma 2.3.

ð2Þ ) ð3Þ: As RðxÞ is a clean ring, it is a pm-ring. Again we
use Lemma 2.2 to conclude that Rhxi is a pm-ring. Since also,
Rhxi has a finite number of minimal prime ideals by Lemma

1.1, then Rhxi is a clean ring.

ð3Þ ) ð1Þ: This is followed by Theorem 2.1. (in this

direction we do not need the condition that R has a finite
number of minimal prime ideals). h

In the following Theorem we give other conditions under
which RðxÞ and Rhxi are clean rings.

Theorem 2.5. If R is a zero dimensional ring or a finite direct
product of quasi-local rings, then RðxÞ and Rhxi are clean rings.

Proof. Suppose that dimðRÞ ¼ 0, then by Lemma 1.1, we get
dimðR½x�Þ ¼ 1. But, then by Lemma 1.1 again, we conclude
that dimðRðxÞÞ ¼ dimðRhxiÞ ¼ dimðR½x�Þ � 1 ¼ 0. The result

follows now by Corollary (11) in [6].

Now, suppose R ¼ R1 � R2 � � � � � Rn is a direct product

of quasi-local rings. Then RðxÞ ¼ R1ðxÞ � R2ðxÞ � � � � � RnðxÞ
is also a direct product of quasi-local rings by Lemma 1.1.
Now, the result follows by Proposition 2 in [6]. The proof for
Rhxi is similar. h

Now, for a ring R, we study conditions under which RðxÞ
and Rhxi are almost clean rings. First we note that If R is an
integral domain, then one can easily prove that both RðxÞ
and Rhxi are integral domains. Hence RðxÞ and Rhxi are
almost clean rings. In the following two lemmas, we can see

characterizations for indecomposable almost clean and
Noetherian almost clean rings.

Lemma 2.6 [8]. A ring R is an indecomposable almost clean

rings if and only if for prime ideals P and Q of R where P,
Q#ZðRÞ, we have PþQ – R.

Lemma 2.7 [8]. A Noetherian ring R is almost clean if and only
if for prime ideals P and Q of R where P;Q#ZðRÞ and

PþQ ¼ R, there exists an idempotent e in R with e 2 P and
1� e 2 Q.

Theorem 2.8. Let R be a ring. If RðxÞ or Rhxi is an almost clean
ring, then R is an almost clean ring.
Proof. Suppose RðxÞ is almost clean and let r 2 R#RðxÞ. As

RðxÞ is almost clean and IdðRðxÞÞ ¼ IdðRÞ, then r ¼ f
g
þ e

where f
g
2 regðRðxÞÞ and e 2 IdðRÞ. Thus f

g
¼ r� e 2

regðRðxÞÞ \ R. It is enough to prove that regðRðxÞÞ \ R ¼
regðRÞ. Let t 2 regðRðxÞÞ \ R and suppose that there exists

0 – a 2 R such that ta ¼ 0. Then 0
1

– a
1
2 RðxÞ with

t a
1
¼ ta

1
¼ 0

1
which is a contradiction. Therefore, t 2 regðRÞ.

The other containment is clear. Hence, regðRðxÞÞ \ R ¼
regðRÞ and R is an almost clean ring. Similarly, one can prove
that regðRhxiÞ \ R ¼ regðRÞ and so Rhxi is an almost clean
ring implies that R is almost clean.

In general, we do not know whether the converse of
Theorem 2.8 is always true or not. However, in the following

Theorem, we prove that this is true in a special case. First,
we give the following definition

Definition 2.9. A ring R is said to satisfy the property ð�Þ if for
any multiplicatively closed subset S of R, we have

S�1ðPþQÞ \ R ¼ PþQ for any prime ideals P and Q of R.

If a ring R is a zero dimensional ring (such as Zn), then

every prime ideal of R is maximal. Thus, for any distinct prime

ideals P and Q of R, we have S�1ðPþQÞ \ R ¼ S�1R \ R ¼
R ¼ PþQ. Hence, R satisfies the property ð�Þ. Similarly,

one dimensional integral domains satisfy the property ð�Þ.
Also, if the set of all prime ideals of a ring R form a chain,
say P0 #P1 # � � �#Pn, then Pi þ Pj ¼ Pk where k ¼ maxfi; jg.
Therefore, S�1ðPi þ PjÞ \ R ¼ Pi þ Pj and also R satisfy the

property ð�Þ. In general, if I and J are any two ideals of a
valuation ring, then either I# J or J# I. Hence, one can easily

see that any valuation ring satisfies the property ð�Þ.

Theorem 2.10. Let R be a ring in which R½x� satisfies the
property ð�Þ. If R is an indecomposable almost clean ring, then,
RðxÞ and Rhxi are also indecomposable almost clean.

Proof. Let P
_

1 and P
_

2 be prime ideals of RðxÞ with

P
_

1;P
_

2 #ZðRðxÞÞ. Then P
_

1 ¼ S�1Q1 and P
_

2 ¼ S�1Q2 where

Q1 and Q2 are prime ideals of R½x�. Suppose that P
_

1 þ P
_

2 ¼
S�1Q1 þ S�1Q2 ¼ S�1ðQ1 þQ2Þ ¼ RðxÞ. Then as RðxÞ satisfies
the property ð�Þ, we have ðP

_

1 þ P
_

2Þ \ R½x� ¼ S�1ðQ1 þQ2Þ\
R½x� ¼ Q1 þQ2. Thus, ðQ1\RÞþðQ2\RÞ¼ ðQ1þQ2Þ\R¼
P
_

1þP
_

2

� �
\R¼RðxÞ\R¼R. Moreover, ðQ1 \ RÞ; ðQ2 \ RÞ

#ZðRÞ. Indeed, if r 2 Q1 \ R, then r
1
2 P

_

1 # ZðRðxÞÞ and so

there exists 0
1

– f
g
2 RðxÞ such that rf

g
¼ 0

1
. Therefore, rf ¼ 0.

If f ¼ a0 þ a1xþ � � � þ anx
n, then rai ¼ 0 for some nonzero

coefficient ai of f. Thus, r 2 ZðRÞ and Q1 \ R#ZðRÞ.
Similarly, Q2 \ R#ZðRÞ. But, this contradicts Lemma 2.6

and so P
_

1þ P
_

2 –RðxÞ. Hence, again by using Lemma 2.6, we
see that RðxÞ is almost clean. Since R is indecomposable,
then RðxÞ is also indecomposable by Lemma 1.1. Similarly,

Rhxi is indecomposable almost clean ring. h

Theorem 2.11. Let R be a ring in which R½x� satisfies the prop-
erty ð�Þ. If R is a Noetherian almost clean ring, then RðxÞ and
Rhxi are also almost clean.
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Proof. First, we note that RðxÞ and Rhxi are Noetherian rings

by Lemma 1.1. Let P
_

1 and P
_

2 be prime ideals of RðxÞ with
P
_

1;P
_

2 #ZðRðxÞÞ and P
_

1þ P
_

2 ¼ RðxÞ. Then as in the proof
of Theorem 2.10, we have ðQ1 \ RÞ þ ðQ2 \ RÞ ¼ R where

Q1 and Q2 are prime ideals of R½x�. Since R is a Noetherian
almost clean ring, then by Lemma 2.7, there is an element
e 2 IdðRÞ such that e 2 ðQ1 \ RÞ and 1� e 2 ðQ2 \ RÞ. Thus,
by Lemma 1.1, e 2 IdðRðxÞÞ with e 2 P

_

1 and 1� e 2 P
_

. There-

fore, RðxÞ is almost clean again by Lemma 2.7. Similarly, Rhxi
is an almost clean ring. h
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