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Introduction
The theory of discrete dynamical system has many applications in applied sciences.
Mathematical modeling of a physical, biological or ecological problem mostly leads to a
nonlinear difference system. (See [1-10].)

In [4], Papachinopoulos et al. proposed a system of equation with exponents as

forl =a+bf_1e¥, g =c+dg,_1e ", n=01,2,..., (1)

where a, b, ¢, d and the initial conditions f_1,fy,g—1,80 are positive real values. They
studied the existence, boundedness and asymptotic behavior of the positive solutions of
(1).

In [5], G.Papaschinopoulos and C.J.Schinas together modified the system as

Srri=a+ bgy,_le_f”,g,,,+1 =c+ dfn—le_gn:
fur1 =a+bgi 1678, gui1 = c+dfy_re,

and put forward conditions for the positive solutions to be asymptotic.
In [11], authors multiplied f, and g, with a and ¢, respectively, in (2) and formed a new
system of difference equations

f;’lJrl = ﬂf;ll + bgnfleif";grﬂrl = C4n + df;ﬁfleignyn = O; 1) o
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and described the existence of a unique positive equilibrium, the boundedness, persis-
tence and global attractivity of the positive solutions.
Parallelly in [12], the authors worked on the asymptotic behavior of the positive solu-

tions of a similar difference system
frut1 = agy + bfu—1e7®, gy = ofy + dgu_1e ", n=0,1,....
N.Psarros and G.Papaschinopoulos in [13] proposed a new first-order model
i1 = agn + bfue ™8, gy = ofy + dgae P,

and studied the asymptotic behavior of the positive solutions of the system.
Motivated by the above research articles, we propose a new second order difference
system

Xpt1 = a1 +ae 1 + by,e 1,

3

Yyl = 0 +ce N +dxye ™1 n=0,1,2,... ®)
where o1, a2, 4, b, ¢, d are positive real numbers and the initial conditions x_1,x0,y_1, Y0
are arbitrary nonnegative numbers, and investigate the persistence, boundedness, con-
vergence, invariance, and global asymptotic behavior of the positive solutions of the

system.

Methods

We use Theorem 1.16 of [14] to prove the lemma which we use to derive a condition for
the existence, uniqueness of equilibrium solutions and the convergence of positive solu-
tions to the equilibrium solution. We also use Remark 1.3.1 of [15] to obtain conditions
for global asymptotic stability of the unique equilibrium point.

Results and discussion
The following theorem proposes conditions for persistence and boundedness for the

positive solution (xy, y,,) of (3).

Theorem 1 Every positive solution (x,,y,) of (3) is bounded and persists whenever
bde™*17% < 1.

Proof
Xn = 01, Vn >aog,n=3,4,....

Hence, (xy, y1) of system (3) persists.

Also, (3) becomes

Xl = 00 + ae ™ + be *? [O{z —+ dxnilefxn—z + Ce*yn_z]'
<A+ bdx,_1e”*1 "%

where A = o1 + ae™* + bage %2 + bce %22,
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Similarly,
Ynt1 < C + bdy,_1e”*1 "% (5)
where C = ay + ce ™2 + daje ¥ + ade *17%,

Now, consider the difference equations

Zyy1 = A+ Bz,

Vny1 = C+Dvy_y, ©)

where B =D = bde *17% < 1. Therefore, an arbitrary solution (z;,v,) of (6) can be

written as
n/2 npn/2 A
zy =rB"* +ry(—=1)"B +ﬁ’ n=0,1,2,... (7)
n/2 npn/2 C
v, = 1B +50(—1)"B +ﬁ’ n=0,1,2,... (8)

where ry, rp rely on the initial conditions z_1, zp and s, sp rely on the initial conditions

v_1, vo. Hence, (z,, v,) is bounded.

Let us examine the solution (z,, v,;) such that z_1 = x_1,z9 = %9, v_1 = y_1, Vo = Yo.

Hence by induction, x, < z,and y, <v,,n=0,1,2,...

Therefore, we get (x,, y,) is bounded. [l
The following two theorems confirm the existence of invariant boxes of (3).

Theorem 2 Let bde 7% < 1. Let (x,,y,) denote a positive solution of (3). Then
o1 + ae”* + baye™*2 + bce”*2*2 ay +ce 2 +daje® +ade 1™
[a1, 1 x[ay, is

(1 — bde—21—2) (1 — bde—21—22)
an invariant set for (3).

Proof “ g P
ae” 1 —Qa2 —a2—a)
Let I = [y, LT Ae "+ Oome 7 bee ] and
(1 — bde—21—22)
oy +ce” 2 +daje™™ + ade 17N

(1 — bde~1—2)

I = [ay,
Letx_1,x0 € [1and y_1,y0 € D>.

Then

x1 < a1 +ae”* + be” %y
oy +ce”? +daje”® + ade Y174

—o] —Q
<oy +ae " + be T~ bde—c1—
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o1 +ae”* + boagye %2 4 bce”*2 %2

<
Hence, we get x1 < 1 — bde—1—%

., l.e, x1 € I;. Similarly, we get

y1 € .
Hence, the proof follows by applying the method of induction. O

Theorem 3 Let bde™“1~*2 < 1. Consider the intervals

[ a1 4+ ae ™ + base™* + bce %272 4 e}
I3 = |ai,
1 — bde—o1—2
and
{ oy +ce 2 +daje™™ + ade 179 + e}
Iy = |ay,
1 — bde— 21—

where € is an arbitrary positive number. If (x,,y,) is any arbitrary solution of (3), then
there exists an N € N such that x,, € Isand y,, € Is,n > N.

Proof
Let (%, yu) denote an arbitrary solution of (3).

Then by Theorem 1, lim sup,,_, ., ¥, = M < coand limsup,_, ..y, = L < oo.

Hence from Theorem 1, x,,+1 < A + bdx,—1e7*1"*2and y,,+1 < C + bdy,_1e” %1 7%

A C
Hence M < PR p——— and L < T bde—o a2’
Hence, there exists an N € N such that the theorem holds. O

Now we prove a lemma which is an alteration of Theorem 1.16 of [14].

Lemma 4 Let [a, D] and [c, d] denote intervals of real numbers. Let
f la,b] x [c,d] x [¢c,d] — |a,b] and g : [a,b] x [a,b] X [c,d] — [c,d] be continuous
Sfunctions. Consider the difference system

Xn+1 :f(xn—l;ynryn—l)r (9)
Yl = 8K Xn—1,¥n-1), n=0,12,. ..

such that the initial values x_1,x0 € [a,b] and y_1,y0 € [c,d]. (or Xy, %ny+1 € [a, D],
Yo Yno+1 € 16, d], no € N). Suppose the following are true.

1. Iffix, y, z) is nonincreasing in x, fix, y, z) is nondecreasing in y and fix, y, z) is nonin-
creasing in z.

2. If g, v, z) is nondecreasing in x, g(x, y, z) is nonincreasing in y and g(x, y, z) is nonin-
creasing in z.
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3. If (m1, My, ma, M) € [a,b]* x [c,d)?* satisfies the systems my = f(My, may, M),
= f(m1, Mo, m3) and my = g(my, M1, M), My = g(My, m1, my) then My = my
and My = mo,

then there exists a unique equilibrium solution (x,y) of (9) with x € [a,b], y € [c,d].

Also every solution of (9) converges to (x,y).

Proof

Setml_ =a, m(l)—a,mz1 —c,mg:c.

MY =bM) =b M, =d,M)=d.
For eachi > 0, let m’Jrl —f(Mi_l,mé,Mé b, M""1 —f(m’ 1 M‘ m’ 1y and
z+1 — g(Mi,m ,mz )’Mé'—i-l :g(mipMi_l:Mé_l)«
Hence ml =fMy ,mZ,M_l) <f(m_1 M0 ) :M%,and
= g(m, M ', My ) < g7, myt my ) = M.
Therefore,

1

Mt M) > M} > ml > m® > mt and

— 0 1
M, >M2>M2>m2>m2>m2.
Alsom?:afx,,§b=M?,n20andmg=c§ynSdzMg,nZO.

For all # > 0, we have

= M7V, md, My < f (1, Ym0 Yn—1) < f(myt, MY, m7t) = My,
=g, M, My < g %n—1,yn-1) < gMO,mT, MD) = M3,

Hencem} <xu SM},nZ landm% <Y EM%,nz 1.

We then obtain by induction that for i > 0, the following are true.

La=m'<m<ml.. . <mit<m <M .. <M <M <M;'=h.
_ -1 0 1 i—1 i i 1 0 4
2.c=my <my<my...<my =<my<Mj...<M, <M; <M, =d.

3.my <x, <Mi{,n>1landm}) <y, <M),n=>1

Set m; = lim;_ o m’i, my = lim;_ oo m’2 and M; = lim,'_moMi,Mz = limi_woMé.
Since f and g are continuous, we get mi =f (M1, ma, M), M1 = f(m1, M2, ma) and
= g(my, M1, M), My = g(Mr, m1, ma).

Hence M1 = m1 = x and My = my =y, from which we get the proof. O

The following theorem proposes conditions for the convergence of the equilibrium

solution of (3).
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Theorem 5 Suppose
bde ™7 < 1,ce™® < l,ae * < 1 (10)
and

bde %172 [1—bde *17%2 4+ ay + ce™*2 + daje™*! + ade 17 %1]
[1 — bde—*1—a2]2 [1—age 1]
[1—bde *17%2 4+ a1 + ae™ ! + baze™*2 + bce™¥27%2]
x [1— ce—o2] =

(11)
L.

Then (3) has a unique positive equilibrium E (X, ). Also, every solution of (3) converges to
E(x, ).

Proof
Let f:RT x RT x RT - RT,g: RT x Rt x Rt — RY be continuous functions such
that f(x,y,2) = a1 +ae ™ + bye™%, g(x,9,2) = ag + ce % + dxe™.

Let My, m1, M2, my be positive real numbers satisfying

mi = aq +ae”™ + bimye ™2, My = a1 + ae”"™ + bMoe ™
and

My = ay +ce ™2 + dmie™, My = ay + ce"™ + dMe ™. (12)
Therefore, M; — m = ale™™ — e~ M1 + b[Mye "2 — mge M2],

My —my = ale”™ — e M) 4 be "2 M2 Mo M2 — 062, (13)
Also, there exists a ¢, my < ¢ < M satisfying

Moe™ — mye™ = (14 §)ef (M — my). (14)
From (13) and (14), we get

My —my = ale™™ — e M)+ be ™M (1 4 £)[ My — my]. (15)

Now, ale™" — e M| = ge7Mm—MM _ g,

Also there exists a 4, m; < 4 < M satisfying

ale™™ — =M = gemM Mt A gy, (16)
Since M1, m1 > ayjand A < My,

ale™™ — e M| < ge™ N [M; — m]. (17)

Thus, from (15) and (17) we get,
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My —my < ae” [My — my] +be ™ "M (14 )My — m). (18)
Since My, my > azand { < My, (18) becomes

My —my < ae” "' [My — mi] + be”**(1 + {)[My — ma]. (19)
, e,

(1 —ae " |[My — mi] < be™**(1 4 §)[My — my]. (20)
Also, (12) can be written as

My = ay +ce™™ +dlag + ae™™ + bMe " ]e” ™. (21)

oy +ce” 2 + daje™ 4 ade™ 17"
M, < e —— : (22)

Since { < My we get,

oy +ce” 2 +daje ¥ + ade 174

5= 1 — bde—1—a2 (23)
Therefore, (20) becomes
[1—ae " [M; — m]
| 1 — bde™1 7% +ay + ce™ + daje™* + ade”*1 7]
o
< be™*2 [ —— :| [My — m3].
(24)
Similarly, we get
[1 — ce *2][My — m5]
—o |1 —bde™*17%2 4 o) + ae™ 1 + baze™*2 + bce”*27*2]
o
st [ 1= bde—o1-2 [My — ).
(25)
From (24) and (25), we get
[My — m1]
< bde 1~ [1 —bde™17%2 4+ ¢y + ce™®2 4+ doje ™ + ade™*17%]
1 — (bde=1—2)]2 [1— ae—1]
[1 —bde 7% 4 o1 + ae™ ™ + bare™*2 + bce™*27%2]
x = [My — m].
[1— ce~22]
(26)
Therefore from (11) and (26), we get M1 = mj and My = mo.
Therefore by applying Lemma 4, the result is obtained. =

In the next theorem, we derive conditions for the global asymptotic stability of the
equilibrium solution of (3).

Theorem 6 Assume (10) and (11) holds.
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1—(a+ac+c)

1. Let(a+ac+c) <1 IfQ+x0+)) < vd

, then the unique equilib-

rium E(x,%) is globally asymptotically stable.

2. If(a+c+ac+ bd) + bd[lfﬁ + & + (ﬁg)z] < 1, where A, B and C are defined as

in (4) and (5), then the unique equilibrium E(x,9) is globally asymptotically stable.

Proof
First we show that E(x,Y) is locally asymptotically stable in both the cases. The Jacobian
JF (%, ) about the equilibrium point E(x,y) is given by

0 —ae™™  be?  —bye?
1 0 0 0

de™  —dxe ™ 0 —ce™V
0 0 1 0

Hence the characteristic equation of the Jacobian JF(x,y) about the equilibrium point
E(x,y)is given by

— 2 4 %2 (—ce? + bde FeV — ae™)
+ M(—bdye e — bdxe *e ) + bdxye *e ™ — ace Fe ™ = 0.

Then

| — ce™?| + |bde ¥ 77| + |ae™*|
+ |bdye *e 7| + |bdxe e Y| + |bdxye *e Y| + lace *e V| < 1
is satisfied whenever

lc| + |bd| + |a| + |bdy| + |bd%| + |bdxy| + |ac| < 1. 27)

1. From (27), we get

1—(a+ac+c)

1+x)A+y
A+x)1A+)) < bd (28)
Hence, by (28) and Remark 1.3.1 of [15], we get the result.
2. Since E(x, ) is the equilibrium point of (3), we get
x <oy +ae 4+ be “[ay + dxe”* + ce”*?].
,l.e.,
_ A
e S (29)

= (1 — bde—1—2)’

Similarly

Page 8 of 10
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C

V= 0 bdeeray 0

Substituting (29), (30) in (27), we get

A C AC
(a+c+ac+ bd) + bd +

1.
- t1-B T a—B2| "

Hence by Remark 1.3.1 of [15], we get the result.
Therefore by using Theorem 5, we obtain the conditions for global asymptotic stability. [J

Conclusions

In this paper, we analyzed the persistence, boundedness, convergence, invariance and
global asymptotic behavior of the positive solutions of a second-order difference system.
Here we expressed all the conditions in terms of the parameters occurring in the system.
We also obtained two conditions for the occurrence of global stability where in the first
one the condition was given in terms of the equilibrium point and in the second one the
condition was given in terms of parameters of the system.
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