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Background

Many physics and engineering problems are modeled by partial differential equations
(PDEs). In many instances, these equations are nonlinear and the exact solutions are dif-
ficult to be obtained. Several methods were developed over some time to find approxi-
mate solutions to these nonlinear equations, such as homotopy analysis method (HAM)
[1-4], homotopy perturbation method (HPM) [1, 5, 6], and Adomian decomposition
method (ADM) [7-15]. In this paper, we introduce an accelerated version of the ADM
for solving some classes of NPDEs. In ADM, the nonlinear term is replaced by a series of
what are called Adomian polynomials which were introduced by Adomian and his col-
leagues have so far. Some other authors have suggested different formulas for computing
Adomian polynomials [16-23]. This work aims to apply the accelerated formula pro-
posed by El-Kalla in [21] for solving some classes of nonlinear partial differential equa-
tions. The main advantages of this accelerated version of Adomian polynomials can be
summarized in the following main three points:

1. It is recursive and does not have derivative terms so, it is easy in programming, and,
on the same processor, it saves time compared with the traditional formula;

2. Solution using it converges faster than the traditional Adomian polynomials;

3. It is used in convergence analysis and consequently in estimating the maximum
absolute truncated error of the series solution.
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The paper is organized as follows. In “The method” section, the standard ADM and the
accelerated version of ADM are introduced. In “Convergence analysis” section, the conver-
gence analysis of the accelerated version is introduced, while in “Numerical examples” sec-

tion, some examples are solved to illustrate the effectiveness of this version.
The method
Consider the nonlinear partial differential equation given in the operator form:
Lﬂ/i(x, t) +R(I/t(x, t)) —|—N(u(x, t)) Zg(x¢ t): (1)

k

where L;(.) = %, R is the linear remainder operator that could include partial deriva-

tives with respect to x, N is the nonlinear operator, and g is the nonhomogeneous term.
Put (1) in the following form

Liu(x,t) = g(x,t) — R(u(x,t)) — N(u(x,t)). (2)
Applying L;l to both sides of (2), we obtain
u(x, 1) = D(x, 1) + Ly 'g(x, ) — L R(u(x, 1) — L "N (u(x, 1)), (3)

where @ (x, ¢) is the solution of L;u(x, t) = 0 satisfied by the given initial conditions and
t ¢

L7Y) = [...kfold... [ ()dt..de.
0 0
ADM assumes that the solution # can be decomposed into infinite series

u(x, t) = Z Uy (%, 1), (4)
n=0

and the nonlinear term Nu by:

Nu = ZA”' (5)
n=0

The components u,, n > 0 of the solution u can be determined by using the recursive

relation:

up=d(x,t) + L g(x, 1),

-1 -1 (6)
Upt+1 = _Lt (Ruy) — Lt Ay, n=0,

where A, = A, (uo, u1,...,u,) is Adomian polynomials that can be determined by the

traditional polynomials formula,
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1 d” =
A,,:Edin [N(;A’u,)] 0, n=012,..., 7)
1=l =

or by El-Kalla formula [21],

n—1
ZVIZN(SH)_ZZL'» n=0,1,2,..., (8)
i=0

where the partial sum S, = > 7 u;(x, £).

For example, Table 1 shows the first four polynomials of the nonlinear term u? gen-
erated by both the traditional polynomials formula (7) and El-Kalla polynomials for-
mula (8).

Clearly, the first four polynomials generated by El-Kalla formula (8) include the first
four polynomials generated by the traditional formula (7) in addition to other terms
that should appear in As, As, ... using formula (7). Thus, the solution obtained using
El-Kalla polynomials converges faster than the solution obtained using the traditional

polynomials.

Convergence analysis

Theorem 1 (Uniqueness theorem) Assume that R and N are Lipschitzian with
respect to u such that |R(u) — R(v)| < Lilu —v| and |N(u) — N(v)| < Lalu —v|. Let
E = (C[2], ||.Il) denote the Banach space of all continuous functions on the domain of x
and t; Q = [0,x] x [0, T with the norm ||u(x, t)|| = maxq |u(x, t)|. Then, problem (1) has
a unique solution whenever0 < a < 1, a = (L""k#,z)Tk

Proof Define a mapping F:E—E such that
F(u) = d(x,t) + L7 g(x,£) — L7 R(u(x, £)) — L7 N (u(x, t)) and let u, u* € E. Then,

Table 1 The first four Adomian polynomials and the first four El-Kalla polynomials of the nonlinear

term 2

Adomian polynomials of u? El-Kalla polynomials of u?
AO = ué Zo = Ué

A1 = 2ugu; A1 = 2uouy + U3

Ay = U2 + 2upu; Ay = 2uouz + 2uruy + U3

Az = 2uqUs + 2ugus A3 = 2upu3 + 2u1u3 + 2uau3 + U3
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HFu — Fu*” = max ‘L;I(Ru — Ru*) + L7 (Nu — Nu*)

IA

mg;zixL;I(L1|u — u*’ +L2|u — u*|)
t

t
(L1 +L2)m§x‘u—u*|/...k—fold.../dt...dt
0 0

IA

k
- L1+ Ly)T
- k!

< allu—u]|

oo = "]

Under the condition 0 < o < 1, the mapping F is contraction; therefore, by the Banach
fixed-point theorem for contraction, there exists a unique solution to problem (1).

Theorem 2 (Convergence theorem) The series solution (4) of problem (1) using ADM
converges whenever 0 < a < land |u(x,t)| < coon .

Proof Let, S, and S, be arbitrary partial sums with #n > m. We are going to prove that
{S} is a Cauchy sequence in Banach space E. From Theorem 1, we write

ISmt1 = Smll < &liSm = Small < @211 = Small < -+ < ™ S1 — Soll.
Using the triangle inequality, we have

1S5 = Sunll < ISt = Sonll + [Sma2 = Sl + <<+ 1S = S |
< [o @t a1 - Sol

§am[1+(x+a2+--~+an_m_l} IS1 — Sol

y—
< a”’()llm(x,t)ll'

l—«o

Since0 < o < 1s0,1 —a” < 1, then

am
IS0 = Smll = 7 max |u1 (x, £)], )
-0 Q

but maxgq |u1(x,t)| < oo then ||S, — S,u|| = oc as m — o0, then we conclude that {S,,}
is a Cauchy sequence in E and the series Y - u;(, t) converges to the unique solution
u(x, t).

Theorem 3 (Error estimate) An estimate for the truncation error of the series solution
(4) to problem (1) is given by:

(XWI

<

u(x,t) — Z u;(x, t)

i=0

max max |uj(x,t)|.
12 =g maxlm(x D)l

Proof From (9) in Theorem 2, we have

m

o
I1Sn = Smll <

mszzix |u1(x, 1),
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asn — oothen S, — u(x,t) so, we have

m

o
lue(e, £) — Sl <
l—«o

max |uj(x,t)|.
ax g (o, )|
Finally, the truncation error in the region Q2 is estimated to be

m
=

u(x, t) — Z u;i(x,t)

i=0

max max |u1(x,t)|.
o 1—a Qll(w)'

Numerical examples
In this section, we present some numerical examples to illustrate the effectiveness of the
proposed version of ADM. All the results are calculated using Mathematica 11.

Example 1 Consider the following nonlinear partial differential equation:

ou
e + uy, = x + xt>, (10)

with initial condition
u(x,0) =0, (11)
which has exact solution u(x, t) = xt.
Solution Equation (10) is rewritten in the form:
Liu = x + xt> — uuy, (12)

where Nu = uu, and L; = %.
¢

Applying L; () = [ (.)dt to (12), we get
0
U = u(x,0) +L;1(x+xt2) — L7 (Nw). (13)
Based on the recurrence relation (6) and substituting the initial value, we get

1 3
uozxt—l—gxt,

(14)
Upi1 = —L; H(Ap),n > 0,
using the traditional polynomials formula (7),
Ao = upto,
Ay = upu1y + urtox, (15)

Ay = uguoy + Uity + Up oy

Then, from (14) and (15) we get

Page 5 of 11
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m=——=— -,

3 15 63
17t%% N 20¢8x N 206¢10x N 141212 N 13t1%x
Uy = s
2 45 63 2025 93555 14553

and using El-Kalla polynomials formula (8),

Ao = uotoy,
Al = uou1x + urthox + U1l1yx,

Ap = uguy + Uity + Upioy + U1y + Uz Uy

Then, from (14) and (17) we get

1 3
uyg = xt + —xt°,

3
Bx 2% x
=—— == - —
3 15 63
26%x 177 28%9x  4¢llx 413y 15
Uy = —+

15 315 567 2475 12285 59535

Table 2 shows the absolute relative error (ARE) for the sixth-order approximate solu-

tion using the proposed version of ADM and the seventh-order approximate solution

using the standard ADM at ¢ = 1 for some values of x in Example 1.

Example 2 Consider a nonlinear partial differential equation:

?u  %u n n? e 9 . o TL
— — —5 + —u+u" =x"sin” —,
a2 w2 4 2

Table 2 The absolute relative error for Example 1

(ARE) of solution using the standard ADM

(ARE) of solution using
the proposed version
of ADM

X t=1

0.1 13965 x 1074
0.2 2.79299 x 10~*
03 418949 x 10™*
04 558599 x 10~*
0.5 6.98249 x 1074
06 837898 x 1074
0.7 9.77548 x 1074
08 11172 x 1073
0.9 125685 x 1073
1 13965 x 1073

The time elapsed of the program that calculates the solution
531835

3.27534 x 107°
6.55068 x 107°
9.82602 x 107°
131014 x 107°
163767 x 107>
19652 x 10~

229274 x 10>
262027 x 107
294781 x 107>
327534 x 10~

3.6548's

Page 6 of 11
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Table 3 The absolute relative error for Example 2

(2021) 29:7

(ARE) of solution using the standard ADM

(ARE) of solution using
the proposed version

of ADM

X =02
0.1 3.71362 x 107" 208449 x 107"
0.2 248603 x 107 121807 x 107"
03 857263 x 10712 2654 x 10712
04 119764 x 1071 777757 x 10712
05 3.70427 x 107" 191576 x 10~
06 668882 x 107" 3.15307 x 107"
0.7 101782 x 10710 449427 x 1071
08 141997 x 10710 594405 x 107"
0.9 187817 x 10710 750722 x 10~
1 23953 x 10710 9.18868 x 10~

The time elapsed of the program that calculates the solution

971545 45263

with initial condition

X
u(x,0) =0, u;(x,0) = -5

(20)

This problem was solved in [24] by using the standard Adomian decomposition method.

Now, we will apply the proposed accelerated version of ADM and compare the results in

Table 3.

Solution Equation (19) is rewritten in the form:

,Qnt+82u 7 2
sin® — + — — —u —u”,
2 0 4

Ltl/l = x2

52
a2

Applying L; 1() = [ [ (.)dedt to (21), we get
00

where Nu = u? and L; =
it

u=ux,0 1.2 27 1 92y 1 nj a1
= u(x,0) + fus(x,0) + L, " | x” sin +L; L, u L; " (Nu).

2 Ax2 4

Based on the recurrence relation (6) and substituting the initial value, we get

wxt  x? (5 2
=" gt g\t s )
3%u n?
-1 n -1 -1
Up+1 = Ll’ < 3x2 > — Lt (414;4) _Lt An,Vl > 0,

using El-Kalla polynomials formula (8),

(22)
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- 2
A() = Mo,
Ay = 2uguy + u?, (24)
Ao = 2uous + 2uius + u%
Then, from (23) and (24) we get
2 2
uy = ”Tx” - 2’;—2 + %(tz—k%cos(nt)),
£2 n £ 1 —cos(t) 2(47°83 + 24 — 12728%% + wt*x — 24x cos (1))
U =—-——-+ — —
22 24 4 19272
1
~ 180 x> (1078¢* — 2407 % tx — 407° %% + 677 7% — 94557 + 90717
T
— 1074 % %% + 7% — 1200273t — 8x + w2t2x) cos(wt)
— 1542 cos(27t) + 4807 2x sin(rrt) + 4807 tx? sin(rt)).
_143 1 3 2t t* t6 72t% 8 ¢10
2= g0V o8 T an® T ax? Tag T 1226 90x% 480 | 13447 51840
_ 18 cos(rrt) _ cos(t) n 442 cos(mt) B t* cos(rt) cos(2mt) B 12t sin(rt)
w10 2 w8 1276 8710 L4
N 41 N B N 565 N 70 nt N 73 19t cos(nt) N £ cos(rt) 15sin(me) £ sin(re)
"\ ax5 T 373 T 96x | 3840 3360 | 41472 475 2473 76 4t
b 353 1 L A +7n4t6_37t8 A +n2t10
T\ T4x® T 302 T 64 " 4n® 768 ' 4572 ' 7680 26880 129024 @ 41472

177 cos(wt)  cos(mt)  8t2cos(wt)  5t*cos(mt) cos(2mt)  49tsin(wt)  5t3 sin(rt)
t s 3212 6 W8t anS 77 T end >
+x3<@ 218 £ £ 7 ¢’ on?’ 7 5mf N el
8m° 3273 1277 607> 1280 = 63073 8960 259207 331776 ~ 105600

N 64t cos(t)  23tcos(mwt)  16t3 cos(wt)  5t°cos(nt)  t° cos(wt)

tcos(2mt) 82sin(rrt)
70 3273 377 1927 1575 87 g0
11sin(rt)  24£2sin(wt)  5t*sin(wt)  3t*sin(rt)  3sin(2rt)
84 8 3272 4776 8710 >
4 (2703479 3811 95t 45¢ 83¢* 5t 13 151 . 13¢8
9216712 ' 25676 32710 12874 ' 38478 19272 2880 115207 ' 1792074
1517248 11410 22174410 12 9415 cos(nt) 477 cos(nt)  723t% cos(rt)
258048 25920072 16588800 | 760320 32712 3276 8710
23t2cos(t)  85ttcos(mt)  41t*cos(wt)  t®cos(mt) 897 cos(2mt)  5cos(2mt)
+ 84 O 24m8 76872 4076 10247 2567
39t2 cos(2mt)  t*cos(2mt)  cos(3wt)  467tsin(wt)  159tsin(mt)  65t3 sin(wt)
T 512710 153678 288712 27l 1675 379

1583 sin(wt)  23t°sin(t)  51tsin(@we) £ sin(27t)
3273 6077 128711 384779
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. 5<_ 39119t 53¢ N a7es 3 N 2978° 17731 249¢ cos(t) °
204877 19275 ' 1536073 1792w 138240 2534400 477
37t3 cos(wt)  5t°cos(mt)  179tcos(2mt)  tdcos(2wt)  327sin(wt) 22t sin(wt)
T T 963 204877 307275 T an® 76
59¢t* sin(rt) 249sin(27t) 2 sin(2rt)
%6t 102478 | 10240 )
. "<720131027+ 4112 511t N 499t 45748 4 10341 6lx?e™?
73728710 25678 307276 ' 92160mw% 129024072 ' 2073600 30412800
70115 cos(rt) 5663t cos(mt)  235t* cos(mt)  9t®cos(wt) 6917 cos(2rt)
256710 6478 64776 T 3207t 8192710
323t2cos(2wt)  5t*cos(2mwt)  5cos(3mt)  3567tsin(wt) 1753 sin(we)
20967° 1228876 2304710 167° 87
199t°sin(rt)  447tsin(2wt)  5t3 sin(27t)
48075  10247° 307277 >
7<1549169l_Lt3_ 17¢° N 2297 478 N et B
18432711 647° 128077 ' 16128075 8294473 | 126720m 2995200
32631t cos(mt) 923t cos(rt) 121¢° cos(mt) 7 cos(wt) 2091t cos(2rt)
6411 e 8077  120m5 20487l
10923 cos(2mt)  t°cos(2wt)  tcos(3mt)  4765sin(wt) 2142 sin(wt)  263t*sin(rt)
30722° 512007 | 576x11 | 8l 710 T 24x8
7t8sin(wt)  2817sin(2rt) 149t sin(2nt)  ttsin(2wt)  sin(37wt)
4876 2048712 512710 102478 2167112)
8(641700505_ 12035¢2 N 63t 19° Y N 12
884736714 4096712 ' 1024710 384078 14336076  5184007% ' 152064072
14 46525 cos(t)  33807t% cos(mt)  465t* cos(mt)  121t° cos(nt) 8 cos(wt)
T 41932800  64rls 128712 T 32710 48078 96076
13609 cos(2rt) 2119¢2 cos(27 ) 109¢* cos(2mt) % cos(27t) 17 cos(3rt) 2 cos(37t)
8192714 4096712 12288710 3072078 1728714 1152712
cos(4wt)  4989¢sin(mt) 174783 sin(wt)  263t°sin(wt) ¢ sin(wt) 2845t sin(2rt)
32768714~ 8713 2411 T 120190 4877 2048713
14963 sin(2wt)  t°sin(2wt)  tsin(3wt)
T T is36rT ' B12079 | 21678 >

Table 3 shows the absolute relative error (ARE) for the third-order approximate solu-
tion using the proposed version of ADM and the third-order approximate solution using
the standard ADM at ¢t = 0.2 for some values of x in Example 2. The exact solution of the
partial differential Eq. (19) is given in [24] by u(x, £) = x sin (%t)

Conclusion

An accelerated technique based on ADM is proposed. In this proposed technique, there
is no need for differentiation in calculations of the Adomian polynomials. Consequently,
it makes programming easier and saves much time on the same processor compared
with the calculations using traditional Adomian polynomials. Convergence analysis of
this version is discussed, and the error analysis of the series solution is estimated. Results
of numerical examples show the effectiveness of the proposed technique. Accordingly, in
the future, this accelerated version is recommended for solving nonlinear equations with
different complicated piece-wise differentiable nonlinearity terms.

Abbreviations
ADM: Adomian decomposition method; PDEs: Partial differential equations; NPDEs: Nonlinear partial differential equa-
tions; HAM: Homotopy analysis method; HPM: Homotopy perturbation method; ARE: Absolute relative error.
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