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Abstract The problem of free convection heat with mass transfer for MHD non-Newtonian

Eyring–Powell flow through a porous medium, over an infinite vertical plate is studied. Taking into

account the effects of both viscous dissipation and heat source. The temperature and concentration

are of periodic variation. The governing non-linear partial differential equations of this phenome-

non are transformed into non-linear algebraic system utilizing finite difference method. Numerical

results for the velocity, temperature and concentration distributions as well as the skin friction, heat

and mass transfer are obtained and reported in tabular form and graphically for different values of

physical parameters of the problem. Also, the stability condition is studied.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

The most common type of body force, which acts on a fluid, is
due to gravity, so that the body force can be defined as in mag-
nitude and direction by the acceleration due to gravity. Some-

times, electromagnetic effects are important. The electric and
magnetic fields themselves must obey a set of physical laws,
which are expressed by Maxwells equations. The solution of

such problems requires the simultaneous solution of the equa-
oo.com (N.T.M. Eldabe).
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tions of fluid mechanics and electromagnetism. One special

case of this type of coupling is known as magnetohydro-
dynamic.

Coupled heat and mass transfer phenomenon in porous

media is gaining attention due to its interesting applications.
The flow phenomenon in this case is relatively complex than
that in pure thermal/solutal convection process. Processes

involving heat and mass transfer in porous media are often
encountered in the chemical industry, in reservoir engineering
in connection with thermal recovery process, in the study of
dynamics of hot and salty springs of a sea. Underground

spreading of chemical waste and other pollutants, grain stor-
age, evaporation cooling, and solidification are a few other
application areas where combined thermosolutal convection

in porous media are observed. However, the exhaustive vol-
ume of work devoted to this area is amply documented by
the most recent books by Ingham and Pop [6], Nield and Bejan
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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Nomenclature

a and b characteristics of Eyring–Powell model

B0 strength of uniform magnetic field
C concentration of the species
CE Ergun constant
Cp specific heat at constant pressure

Cs concentration susceptibilty
Da Darcy number ¼ K

mtR
Df Dufour number ¼ DDCKT

mCsCpðTx�T1Þ
D coefficient of mass diffusivity

Ec Eckert number ¼ U2
0

CpðTx�T1Þ
go gravity acceleration

I
ffiffiffiffiffiffiffi
�1
p

k thermal conductivity
K permeability constant
KT thermal diffusion ratio

M magnetic parameter ¼ rB2
0tR
q

N (buoyancy ratio)¼ bHDC
bðTx�T1Þ

Pr Prandtl number
mqCp

k

Q0 volumetric rate of heat generation
Sc Schmidt number ¼ m

D

Sr Soret number ¼ DKtDT
mTmDC

t time

T temperature of the fluid
Tm the mean temperature
Vi velocity vector =(u(y,t),0,0)

Greek symbols

â non-dimensional parameter ¼ tR
qabL2

R

b volumetric coefficient of thermal expansion
bw volumetric of expansion with concentration

d non-dimensional parameter ¼
ffiffi
c
p

â

c non-dimensional parameter ¼ u2R
a2L2

r
l viscosity
m kinematic viscosity ¼ l

q

x frequency of the oscillating plate
q density of the species
r electrical conductivity of the fluid

C stress tensor in the Eyring–Powell model

Superscripts and subscripts
1 free stream condition
x wall or plate condition
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[9] and Vafai [15], Pop and Ingham [10] studied the problem of
transient flow of a fluid past a moving semi-infinite vertical

porous plate. However, many problem areas which are impor-
tant in applications, as well as in theory still persist.

Trevisan and Bejan [14] have studied the problem of com-

bined heat and mass transfer by free convection in a porous
medium. They studied the natural convection phenomenon
occurring inside a porous layer with both heat andmass transfer

from the side and derived the natural circulation by a combina-
tion of buoyancy effects due to both temperature and concentra-
tion variations. The problem of convective heat transfer in an
electrically conducting fluid at a stretching surface with uniform

free stream is investigated by Vajravelu and Hadjinicolaou [16].
AbdEl-naby et al. [1] carried out the finite differencemethod for
the problem of radiation effects onMHDunsteady free-convec-

tion flow over vertical plate with variable surface temperature.
The problem of flow of a micropolar fluid past a moving semi-
infinite vertical porous plate with mixed radiative convection

is studied by Kim and Fedorov [8]. Kafoussias [7] discussed
the effects of mass transfer on free convective flow of a viscous
fluid past a vertical isothermal cone surface. He obtained the ef-
fects of the buoyancy parameter and Schmidt number on the

flow field. Seddeek [11] discussed the problem of thermal radia-
tion and buoyancy effects on MHD free convective heat gener-
ating flow over an accelerating permeable surface with

temperature-dependent viscosity.
Eldabe [4] studied the problem of free convective flow

through a porous medium bounded by an infinite, porous, ver-

tical plate whose temperature fluctuates harmonically with
time from a constant mean. The method of implicit finite dif-
ference analysis of transient free convective flow past a semi

infinite vertical flat plate with mass transfer was carried out
by Soundalgekar and Ganesan [13]. Eldabe et al. [3,5] pre-
sented numerical solutions for the problem of unsteady flow
of a magnetohydrodynamic convective heat and mass transfer
in an electrically conducting fluid over an infinite solid surface

and unsteady flow of an electrically conducting non-
Newtonian fluid (Eyring–Powell model) past a porous plate
through a non-Darcy porous medium with heat and mass

transfer in the presence of viscous and Joulean dissipations.
The plate is oscillating in its own plane with superimposed
injection or suction. They took into consideration a uniform

magnetic field and internal heat generation.
The aim of this work is to study the thermaldiffusion and

diffusionthermo effects on free convective heat with mass
transfer of flow of an electrically conducting Eyring–Powell

incompressible fluid through a porous media. This fluid is
flowing past an infinite vertical plate under periodic plate tem-
perature/concentration with frequency x. Also, we take into

our consideration the effects of transverse magnetic field with
a uniform intensity as well as the effects of both viscous dissi-
pation and internal heat generation. After transforming the

system of non-linear partial differential equations which gov-
erns the problem into algebraic system of non-linear equations
by using finite difference method, the numerical formulas for
the velocity, temperature and concentration as well as the skin

friction, the rate of heat and mass transfer are obtained.
Therefore, the main idea of the present work is to make a

mathematical modeling of this phenomenon and the out pur-

pose is to find the relation between the different parameters
and the external forces with the solutions of the problem.
2. Mathematical formulation

We choose the Eyring–Powell model, Eldabe [5], to describe
the non-Newtonian fluid, which is in the usual notation given

as:



Figure 2 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;
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Cm ¼ l
@vi
@xj

þ 1

b
sinh�1

1

a

@Vi

@xj

� �
ð1Þ

Consider the infinite vertical plate embeded an infinite

mass of the fluid. Initially the temperature and concentration
of both being assumed at T1 and C1. At time t > 0, the
plate temperature and concentration are raised to Tx and
Cx, and a periodic temperature and/concentration are as-

sumed to be superimposed on this mean constant tempera-
ture/concentration of the plate (see Figure 1). A magnetic
field of uniform strength B0 is applied transversally to the

direction of the flow. The magnetic Reynold’s number of
the flow is taken to be small enough so that the induced mag-
netic field can be neglected. The origin of the coordinate sys-

tem is taken to be at any point of the flat vertical infinite
plate, the x-axis is chosen along the plate vertically upwards,
and the y-axis perpendicular to the plate. The problem is gov-
erned by the following set of equations, Eldabe et al. [3] and

Eckert and Drake [2].

@u

@t
¼ m

@2u

@y2
þ 1

qab
@2u

@y2

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a2

@u
@y

� �2
þ 1

r � rB2
0

q
þ m
K

� �
u

þ g0bðT� T1Þ þ g0B
HðC� C1Þ ð2Þ

@T

@t
¼ k

qCp

@2T

@y2
þ m
Cp

@u

@y

� �2

þ 1

qbCp

@u

@y

� �
sinh�1

1

a

@u

@y

� �

þ rB2
0u

2

qCp

þDmKT

CpCs

@2C

@y2
þQ0ðT� T1Þ ð3Þ

@C

@t
¼ D

@2C

@y2
þDmKT

Tm

@2T

@y2
ð4Þ

with the following initial and boundary conditions

u ¼ 0; T ¼ T1; C ¼ C1 for all t 6 0

u ¼ 0; T ¼ T1 þ �ðTx � T1Þcosxt

C ¼ C1 þ �ðCx � C1Þcosxt; at y ¼ 0; t > 0

and u! 0; T! T1; C! C1 as y!1; t > 0

8>>><
>>>:

ð5Þ
Figure 1 Sketch of the diagram.
Let us introduce the following dimensionless quantities:

tH ¼ t

tR
; xH ¼ tRx; g ¼ y

LR

; f ¼ u

uR

h ¼ T� T1
Tx � T1

; / ¼ C� C1
Cx � C1

; QH

0 ¼ Q0tR

ð6Þ

where

uR ¼ ðmg0bDTÞ
1
3; LR ¼

g0bDT
m2

� �1
3

and tR

¼ ðg0bDTÞ�
2
3m

1
3 ð7Þ

The Eqs. (2)–(4) and the boundary conditions (5) are obtained

in the dimensionless form after dropping the star mark as
follows:

@f

@t
¼ 1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c @f
@g

� �2
þ 1

r
0
BB@

1
CCA @2f

@g2
� Mþ 1

Da

� �
fþ hþNw ð8Þ
Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of M.

Figure 3 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of a.



Figure 4 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4,

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Da.

Figure 6 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4,

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sc.

Figure 7 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4,

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Df.

Figure 5 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4,

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Pr.
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@h
@t
¼ 1

Pr

@2h
@g2
þ Ec

@f

@g

� �2

þ Ec

d
@f

@g

� �
sinh�1

ffiffiffi
c
p @f

@g

� �

þQ0hþDf

@2w
@g2

ð9Þ

@w
@t
¼ 1

Sc

@2w
@g2
þ Sr

@2h
@g2

ð10Þ
with initial and boundary conditions
f ¼ 0; h ¼ 0; w ¼ 0 for all g; t 6 0

f ¼ 0; h ¼ �cosxt; w ¼ �cosxt; at g ¼ 0; t > 0

and f! 0; h! 0; w! 0 as g!1; t > 0

ð11Þ

We shall solve the system of non-linear partial differential
equations numerically using the finite difference technique
and Eqs. (8)–(10) yield.
fnþ1i � fni
Ds

¼ fniþ1 � 2fni þ fni�1

ðDgÞ2

 !
1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
fn
iþ1�f

n
i

Dg

� �2
þ 1

r
0
BB@

1
CCA

� Mþ 1

Da

� �
fni þ hn

i þNwn
i ð12Þ

hnþ1
i � hn

i

Ds
¼ 1

Pr

hn
iþ1 � 2hn

i þ hn
i�1

ðDgÞ2

 !
þEc

fniþ1 � fni
Dg

� �2

þMEc fni
� �2

þEc

d

fniþ1 � fni
Dg

� �
sinh�1

ffiffiffi
c
p fniþ1 � fni

Dg

� �� �

þDf

wn
iþ1 � 2wn

i þwn
i�1

ðDgÞ2

 !
þQ0h

n
i ð13Þ

wnþ1
i � wn

i

Ds
¼ 1

Sc

wn
iþ1 � 2wn

i þ wn
i�1

ðDgÞ2

 !

þ Sr

hn
iþ1 � 2hn

i þ hn
i�1

ðDgÞ2

 !
ð14Þ



Figure 8 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sr.

Figure 9 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of N.
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where the indices i and n refer to g and t respectively. The ini-
tial and boundary conditions (11) yield.

fni ¼ 0; hn
i ¼ 0; wn

i ¼ 0 for all g; t6 0

fni ¼ 0; hn
i ¼ �cosxðnðDsÞÞ; wn

i ¼ �cosxðnðDsÞÞ; at g¼ 0; t> 0

fni ! 0; hn
i ! 0; wn

i ! 0 as g!1; t> 0

8><
>:

ð15Þ
3. Consistency of the finite difference scheme

The term consistency applied to a finite difference procedure
means that the procedure may in fact approximate the solu-

tion of the partial differential equation under study and not
the solution of any other partial differential equation. The
consistency is measured in terms of the difference between

a differential equation and a difference equation. Here, we
can write
@f
@t
¼ fnþ1

i
�fn

i

Ds þOðDsÞ

@h
@t
¼ hnþ1

i
�hni

Ds þOðDsÞ

@w
@t
¼ wnþ1

i
�wn

i

Ds þOðDsÞ

@f
@g ¼

fn
iþ1�f

n
i

Dg þOðDgÞ

@2f
@g2 ¼

fn
iþ1�2f

n
i
þfn

i�1
ðDgÞ2 þOðDgÞ2

@2h
@g2 ¼

hniþ1�2h
n
i þhni�1

ðDgÞ2 þOðDgÞ2

@2w
@g2 ¼

wn
iþ1�2w

n
i þwn

i�1
ðDgÞ2 þOðDgÞ2

For consistency of Eq. (12), we estimate

fnþ1i � fni
Ds

� fniþ1 � 2fni þ fni�1

ðDgÞ2

 !
1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
fn
iþ1�f

n
i

Dg

� �2
þ 1

r
0
BB@

1
CCA

8>><
>>:

þ Mþ 1

Da

� �
fni � hn

i �Nwn
i

	

� @f

@t
� 1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c @f
@g

� �2
þ 1

r
0
BB@

1
CCA @2f

@g2
þ Mþ 1

Da

� �
f� h�Nwn

i

8>><
>>:

9>>=
>>;

i;n

¼ OðDsÞ þOðDgÞ ð16Þ

and for consistency of Eq. (13), we estimate

hnþ1
i � hn

i

Ds
� 1

Pr

hn
nþ1 � 2hn

i þ hn
i�1

ðDgÞ2

 !
� Ec

fniþ1 � fni
Dg

� �2

�
(

MEcðfni Þ
2

� Ec

d

fniþ1 � fni
Dg

� �
sinh�1

ffiffiffi
c
p fniþ1 � fni

Dg

� �� �

�Df

wn
iþ1 � 2wn

i þ wn
i�1

ðDgÞ2

 !
�Q0h

n
i

)

� @h
@t
� 1

Pr

@2h
@g2


 	
� Ec

@f

@g

� �2

� Ec

d
@f

@g

� �
sinh�1

ffiffiffi
c
p @f

@g

� �

�Q0h�Df

@2w
@g2

	
i;n

¼ OðDsÞ þOðDgÞ ð17Þ

similarly with respect to Eq. (14)

wnþ1
n � wn

i

Ds
� 1

Sc

wn
iþ1 � 2wn

i þ wn
i�1

ðDgÞ2

 !
� Sr

hn
iþ1 � 2hn

i þ hn
i�1

ðDgÞ2

 !( )

� @w
@t
� 1

Sc

@2w
@g2
� Sr

@2h
@g2


 	
¼ OðDsÞ þOðDgÞ ð18Þ

Here, R.H.S. of Eqs. (16)–(18) represent truncation error as
Ds fi 0 with Dg fi 0, the truncation error tends to zero. Hence
our explicit scheme is consistent.



Figure 10 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Q0.

Figure 11 The velocity distribution is plotted vs. g, for a system

having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Ec.
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4. Stability condition of the scheme

The Von Neumann method is used to study the stability con-
dition for the finite difference equations. Assume a Fourier

component for fni ; hn
i and wn

i as

fni ¼ FðsÞIpðDgÞi
; hn

i ¼ HðsÞIpðDgÞi
and wn

i ¼ WðsÞIpðDgÞi

where p is the wave number in y-direction. Let / = p(Dg) then

fni ¼ FðsÞeI/i; hn
i ¼ HðsÞeI/i and wn

i ¼ WðsÞeI/i ð19Þ

Similarly,

fni�1¼FðsÞeI/ði�1Þ; hn
i�1¼HðsÞeI/ði�1Þ and wn

i�1¼WðsÞeI/ði�1Þ

ð20Þ
and

fnþ1i ¼ FðsÞeI/i; hnþ1
i ¼ HðsÞeI/i and wnþ1

i ¼ WðsÞeI/i

ð21Þ

Substituting Eqs. (19)–(21) into Eqs. (12)–(14) we get

F0 � F

Ds
¼ FðeI/ � 2þ e�I/Þ

ðDgÞ2
1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
fn
iþ1�f

n
i

Dg

��� ���2 þ 1

r
0
BB@

1
CCA

� Mþ 1

Da

� �
FþHþNW ð22Þ

H0 �H
Ds

¼ 1

Pr

HðeI/ � 2þ e�I/Þ
ðDgÞ2

 !

þ Ec

fniþ1 � fni
Dg

����
���� FðeI/ � 1Þ

Dg

� �
þMEcFjFn

i j

þ Ec

d
FðeI/ � 1Þ

Dg

� �
sinh�1

ffiffiffi
c
p j f

n
iþ1 � fni

Dg
j

� �

þDf

WðeI/ � 2þ eI/Þ
ðDgÞ2

 !
þQ0H ð23Þ

W0 �W
Ds

¼ 1

Sc

WðeI/ � 2þ 2�I/Þ
ðDgÞ2

 !

þ Sr

HðeI/ � 2þ e�I/Þ
ðDgÞ2

 !
ð24Þ

The Eqs. (22)–(24) can be written as

F0 ¼ F 1þ 2ðDsÞ
ðDgÞ2

ðcos/� 1Þ 1þ âffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

fn
iþ1�f

n
i

Dg

��� ���þ 1

r
0
BB@

1
CCA

2
664

�ðDsÞ Mþ 1

Da

� �#
þHþNW ð25Þ

H0 ¼F Ec

Ds
Dg

� �
ðeI/�1Þ fniþ1� fni

Dg

����
����þ1

d
sinh�1

ffiffiffi
c
p fniþ1� fni

Dg

����
����

� �� ��

þðDsÞMEcjfni j

þH 1þ 2ðDsÞ

PrðDgÞ2
ðcos/�1ÞþQ0

" #

þW
2DfðDsÞ
ðDgÞ2

ðcos/�1Þ
" #

ð26Þ
W0 ¼ H
2SrðDsÞ
ðDgÞ2

ðcos/� 1Þ
" #

þW 1þ 2ðDsÞ
ScðDgÞ2

ðcos/� 1Þ
" #

ð27Þ

The Eqs. (25)–(27) can be written in the form

F0 ¼ A1Fþ A2Hþ A3W ð28Þ
H0 ¼ A4Fþ A5Hþ A6W ð29Þ
W0 ¼ A7Hþ A8W ð30Þ

where A1, A2, . . ., A8 are defined in the appendix.

The Eqs. (28)–(30) in matrix form can be expressed as
follows

F0

H0

W0

0
B@

1
CA ¼

A1 A2 A3

A4 A5 A6

0 A7 A8

0
B@

1
CA

F

H

W

0
B@

1
CA

where the amplification factor is A ¼
A1 A2 A3

A4 A5 A6

0 A7 A8

0
@

1
A.

For stability, the modulus of each of the eigenvalue km of
the amplification A must not exceed unity. Hence the stability
condition is:



Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD 145
ð
ffiffiffi
23
p

n2 � b1Þ
3PrSc 3PrScðn1 þ n2Þ½ �

1
3

þ 1

3
ffiffiffi
23
p

PrSc

ðn1 þ n3Þ
1
3 6 1 ð31Þ

where b1, n1, n2 and n3 are defined in the appendix.
The scheme is stable when the inequality (31) is satisfied.

The local truncation error by employing the procedure used
in Smith [12] is O(Ds) + O(Dg) and it tends to zero as
Ds fi 0 and Dg fi 0. Hence the scheme is compatible and then

convergent, because compatibility and stability are necessary
and sufficient conditions for convergence.

5. The skin-friction, heat and mass transfer

The skin-friction, heat and mass transfer in the non-dimen-
sional form can be defined as

sx ¼
@2f

@g2
1þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c @f
@g

� �2
þ 1

r
0
BB@

1
CCA

2
664

3
775

g¼0

ð32Þ

Q ¼ � @h
@g

� �
g¼0

ð33Þ

St ¼ �
@w
@g

� �
g¼0

ð34Þ
Figure 12 The temperature distribution is plotted vs. g, for a

system having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8;

c ¼ :4; d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4;

Q0 ¼ 1; Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Pr.

Figure 13 The temperature distribution is plotted vs. g, for a

system having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8;

c ¼ :4; d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4;

Q0 ¼ 1; Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of a.
We can write Eqs. (32)–(34) by using finite difference meth-
od as follows:

sx ¼
fn2 � 2fn1 þ fn0

ðDgÞ2

 !
1þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
fn
1
�fn

0

Dg

� �2
þ 1

r
0
BB@

1
CCA ð35Þ

Q ¼ � hn
1 � hn

0

Dg

� �
ð36Þ

St ¼ �
wn

1 � wn
0

Dg

� �
ð37Þ
6. Results and discussion

Discussions of the numerical results are carried out to show the
effects of the physical parameters entering the problem on the
velocity of the fluid f, temperature h, concentration w, the heat
and mass transfer Q and St respectively. These effects were
evaluated by setting x = 1, xt ¼ p

5
, c = 0.4 and e = 0.1.
Figure 14 The temperature distribution is plotted vs. g, for a

system having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sr.

Figure 15 The temperature distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Df.
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Figures 2–11 are plotted to illustrate the effect of different
parameters on the velocity distribution f. It is observed that
the velocity distribution decreases with the increase of the mag-

netic parameter M, which is obvious on Figure 2.
Figure 3 shows that the velocity distribution decreases as

the non-Newtonian parameter a increases but at g = 1, it

starts increasing with the increasing of a and at g > 3, it again
increases as a increases. From Figs. 4 and 5, it is found that the
velocity distribution f increases (or decreases) with the increas-

ing of both Darcy number Da and Prandtl number Pr. In Fig-
ure 6, it is found that f decreases with the increase of Sc. While
from Figure 7, it is observed that an increase in Df leads to de-
crease in the velocity distribution f. The effects of the Soret

number Sr and buoyancy ratio parameter N are shown on
Figs. 8 and 9. It is radically seen that the velocity increases
(or decreases) with the increasing of both Sr and N. From

Figs. 10 and 11, we see that the heat source parameter Q0

and Eckert number Ec play a dual role. It is observed that
the velocity distribution decreases with increasing the values

of both Q0 and Ec, but when g = 1.8, it increases as Q0 and
Ec increase.
Figure 16 The temperature distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of M.

Figure 17 The temperature distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sc.
Figs. 12–19 illustrate the effects of Prandtl number Pr, the
non-Newtonian parameter a, Schmidt number Sc, Dufour
number Df, Soret number Sr, Eckert number Ec and the heat

source parameter Q0, in order, on the temperature distribu-
tion. Figure 12 shows that the temperature distribution in-
creases with the increasing of Pr this occur near the plate,

but an opposite effect occurs for g > 1.8. Figs. 13 and 14 show
that the temperature distribution decreases as the non-Newto-
nian parameter a and Soret number Sr increase but at g = 1.8,

it starts increasing with the increasing of a and Sr. From
Figs. 15 and 16, It is observed that the temperature distribu-
tion increases with the increasing of both Df and M. Figure 17
shows that an increase of Schmidt number Sc causes decrement

in the temperature profile. Figs. 18 and 19 reveal the influence
of Eckert number Ec and the heat source parameter Q0 on the
temperature distribution. It is observed that there is a rise in

the temperature due to the heat created by the viscous dissipa-
tion and heat source. This result qualitatively agrees with
expectations; since the effect of source and dissipation temper-

ature is to increase the rate of energy transport to the fluid and
accordingly increases the temperature of the fluid.
Figure 18 The temperature distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Ec.

Figure 19 The temperature distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Q0.
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The effects of a, Da, Ec, Sr, Df and Sc, on the concentration
distribution are indicated in Figs. 20–25, respectively. Since the
concentration distribution is a periodic function, then it will in-

crease or decrease with the increase of the different parameters.
From Figs. 20 and 21, it is found that the concentration distri-
bution increases as a and Pr increase (or decrease) as shown in

different regions. The effects of both the heat created by the
viscous dissipation (Eckert number Ec) and Soret number Sr

is to decrease the concentration profile, but when g = 1.8, it

starts increasing as Ec and Sr increase as shown in Figs. 22
and 23. Figs. 24 and 25 show the effects of both Dufour num-
ber Df and Schmidt number Sc on the concentration profiles. It
is observed that the concentration decreases with increasing

values of both Df and Sc.
The values of heat transfer Q and mass transfer St are plot-

ted vs. s through Figs. 26–33 for various values of Pr, Sc, Df

and Sr. Figs. 26 and 27 show that the heat transfer increases
and mass transfer decreases with increasing values of Pr for
s < 0.1p, while the heat transfer decreases and mass transfer

increases for s > 0.1p. From Figs. 28 and 29, it is observed
that the heat transfer decreases and mass transfer increases
with increasing values of Df. In Figs. 30 and 31, we see that

both of heat and mass transfer increase with the increasing
of Schmidt number Sc. The effect of Soret number Sr on both
of heat and mass transfer is to decrease them, but both of heat
Figure 20 The concentration distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of a.

Figure 21 The concentration distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Pr.
and mass transfer start increasing at s = 0.2p and s = 0.1p
respectively, which is clearly depicted in Figs. 32 and 33.

Tables 1–3 presents numerical results for the functions

f00(0), h0(0) and �w0(0) which are representative of the skin fric-
tion, heat and mass transfer rate respectively, for various val-
ues of all parameters. It is clear from Table 1 that an increase

in the non-Newtonian parameter â, Darcy number Da and the
magnetic parameter M give an increase in the values of dimen-
sionless quantity f00(0), but decreasing in the dimensionless

quantity �h0(0). Also, an increase in buoyancy ratio parameter
N decreases the values of dimensionless quantities f00(0) and
�h0(0) but increasing in the dimensionless quantity. In the case
of the values of both â and Da increase, but M decreases, it is

noted that the dimensionless quantity �w0(0) increases.
From Table 2, in the case where the values of Prandtl num-

ber, Eckert number and heat source parameter increase, an in-

crease in the values of dimensionless quantities f00(0) and
�w0(0) but decreasing in the dimensionless quantity �h0(0).

The values of f00(0),�h0(0) and �w0(0) for various values of
Schmidt number Sc, Soret number Sr and Dufour number Df

are presented in Table 3. It is noted that the dimensionless
quantities f00(0), h0(0) and w0(0) increase as Sc increases. Also,

an increase in Sr and Df gives an increase in the values of
dimensionless quantities f00(0) and �w0(0) but decreasing in
the dimensionless quantity �h0(0).
Figure 22 The concentration distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Ec.

Figure 23 The concentration distribution is plotted vs. g, for a

system having the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sr.



Figure 24 The concentration distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Df.

Figure 25 The concentration distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sc.

Figure 26 The heat transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Pr.

igure 27 The mass distribution is plotted vs. g, for a system

aving the parameters � ¼ :1; s ¼ p
5
; c ¼ 1; a ¼ :8; c ¼ :4;

¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Pr.

Figure 28 The heat transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Df.

Figure 29 The mass transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Df.
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7. Conclusion

The explicit-finite difference method is used to compute the ef-
fects of the external forces on coupled heat and mass transfer
F

h

d

equations for a non-Newtonian fluid flowing through a porous

medium obeying Darcy’s law and periodically heated from be-
low. The non-Newtonian fluid used is Eyring–Powell model.



Figure 31 The mass transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sc.

Figure 32 The heat transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sr.

Figure 33 The mass transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sr.

Figure 30 The heat transfer distribution is plotted vs. g, for a

system having the parameters �¼ :1; s¼ p
5
; c¼ 1; a¼ :8; c¼ :4;

d ¼
ffiffi
c
a

p
; M ¼ 2; Da ¼ :15; N ¼ 100; Pr ¼ 3; Ec ¼ 4; Q0 ¼ 1;

Sc ¼ :5; Sr ¼ :3 and Df = .1 for various values of Sc.
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The system is influenced by an external uniform magnetic field
and a heat source. This work is an extension of Kafoussias [7].
Table 1 Numerical results for the skin friction, for various

â M Da N

0.2 2 0.15 100

0.5 2 0.15 100

0.8 2 0.15 100

0.1 2 0.15 100

0.1 3 0.15 100

0.1 4 0.15 100

0.1 2 0.15 100

0.1 2 0.2 100

0.1 2 0.3 100

0.1 2 0.15 100

0.1 2 0.15 115

0.1 2 0.15 130
In this study, the governing non-linear partial differential
equations are transformed into system of algebraic non-linear
values of all parameters

f00(0) �H0(0) �W0(0)

�17.1397 �1.68165 0.30156

�16.5195 �1.71449 0.30806

�16.2637 �1.75303 0.315159

�16.2637 �1.75303 0.315159

�16.2037 �1.79708 0.314549

�16.1085 �1.83492 0.309281

�16.2637 �1.75303 0.315159

�16.0204 �2.12066 0.354251

�12.9001 �2.59304 0.404212

�16.2637 �1.75303 0.315159

�16.9934 �2.28751 0.374182

�17.3158 �2.84083 0.436229



Table 2 Numerical results for the heat mass transfer, for

various values of all parameters

Ec Pr Q0 f00(0) �H0(0) �W0(0)

2 3 1 �18.0394 �0.810661 0.246037

3 3 1 �17.1402 �1.29469 0.265207

4 3 1 �16.2637 �1.75303 0.315159

4 1 1 �18.1719 �0.975178 0.222993

4 1.5 1 �17.5867 �1.22894 0.252406

4 3 1 �16.2637 �1.75303 0.315159

4 3 0.5 �16.4195 �1.65824 0.305645

4 3 1 �16.2637 �1.75303 0.315159

4 3 2 �15.9246 �1.96311 0.335998

Table 3 Numerical results for the mass transfer, for various

values of all parameters

Sc Sr Df f00(0) �H0(0) �W0(0)

0.5 0.3 0.1 �16.2637 �1.75303 0.315159

0.7 0.3 0.1 �16.175 �1.32868 0.332237

0.9 0.3 0.1 �16.1306 �1.05632 0.339799

0.5 0.2 0.1 �17.6758 �1.68156 0.245472

0.5 0.3 0.1 �16.2637 �1.75303 0.315159

0.5 0.4 0.1 �14.67 �1.82259 0.391538

0.5 0.3 0.1 �16.2637 �1.75303 0.315159

0.5 0.3 0.5 �15.9103 �1.88824 0.332646

0.5 0.3 0.7 �15.7014 �1.96675 0.342822
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equations by using finite difference method. The numerical re-
sults indicate that as the non-Newtonian and magnetic param-

eters increase, the value of the velocity decreases. This
conclusion meets the logic of the magnetic field exerting a
retarding force on the free convection flow. Moreover, it is

noted that there is a rise in the temperature due to the heat cre-
ated by the viscous dissipation, free convection and heat
source, but the concentration increases (or decreases) as Eckert

number, buoyancy ratio and volumetric rate of heat genera-
tion increase. Also, the effect of the non-Newtonian parameter
is to decrease (or increase) the temperature and the concentra-
tion. This problem has many scientific and engineering appli-

cations such as

(a) Flow of blood through the arteries.

(b) Soil mechanics, water purification, and powder
metallurgy.

(c) Study of the interaction of the geomagnetic field with in

the geothermal region.
(d) The petroleum engineer concerned with the movement

of oil, gas and water through the reservoir of an oil or
gas field.

It is hoped that the present work will serve as a vehicle for
understanding more complex problems involving the various

physical effects investigated in the present problem.
Appendix A.
A1 ¼ 1þ ca3 � a1

A2 ¼ 1

A3 ¼ N

A4 ¼ c2 a2 þ 1
d sinh

�1 ffiffiffi
c
p

a2

� �� 
� ðDsÞMEcjfni j

A5 ¼ 1þ 2
Pr

c1 þQ

A6 ¼ 2Dfc1

A7 ¼ 2Src1

A8 ¼ 1þ 2
Sc

c1

a1 ¼ ðDsÞ Mþ 1
Da

� �

a2 ¼
fn
iþ1�f

n
1

Dg

��� ���
a3 ¼ 1þ âffiffiffiffiffiffiffiffiffi

ca2
2
þ1

p

c1 ¼ 2ðDsÞ
ðDgÞ2 ðcos/� 1Þ

c2 ¼ Ec
Ds
Dg

� �
ðeI/ � 1Þ

b1 ¼ PrScdð3þQ0 � a1 þ a3c3Þ þ 2c1dðPrþ ScÞ

b2 ¼ PrScd 3þ 2Q0 � 2a1 þ Ecjfni jMDs� a1Q0 þ 2a3c1 þ a3c1Q0 � a2c2
� �

� PrScc2sinh
�1 ffiffiffiffiffiffiffi

ca2

pð Þ þ 2c1dPrð2þQ0 � a1 � 2DfSrScc1 þ a1c1Þ þ Scð2
� a1 þ a3 þ 2c1Þ

b3 ¼ Pr3Q2
0Sc

3d3ð2Q0 þ 3a1Þ þ 9EcPr3Sc3d3jfni jMDsðQ0 � a1Þ
b4 ¼ Pr3Sc3d3ð3Q0 � 2a1Þ � 6Pr2Q2

0Sc
2d3c1ðPr� 2ScÞ

b5 ¼ �18EcPr2Sc2d3jfni jMc1Dsð2Pr� Sc� 3NPrScSrÞ
b6 ¼ 6Pr3Sc2d3a1c1ð4Q0 � a1Þ þ 6Pr2Sc3D3a1c1ð2Q0 � a1Þ

b7¼ 3Pr3Sc3d3a3c1 Q2
0þ3Ecjfni jMDsþ2Q0a1

� �
b8¼ 6Pr2Sc2d3c1 PrSca3a2

1�4Q0c1
� �

�12PrScQ0d
3c21ðPr2�2Sc2Þ

b9¼ 12Pr2Sc2d3c21ð3DfPrScSrQ0�4a1Þþ12PrSca1d
3c21ðPr2þSc2Þ

b10¼ 12Pr2Sc2d3c21ð3DfPrScSra1þ2PrQ0a3�ScQa3Þ
b11¼�3Pr2Sc2d3c21a3ð4Pra1�4ScQ0a3þ2PrSca3a1Þ
b12¼ 4d3c31ð4Pr3�6Pr2Sc�6PrSc2þ4Sc3Þ

b13 ¼ 72Pr2Sc2d3DfSrðPrþ ScÞ � 12Pr2Sca3d
3c31ðPr� ScÞ;

b14 ¼ �12PrSc3d3c31a3ð1þ 6Pr2DfSrÞ � Pr2Sc2a2
3d

3c31ðPrþ ScÞ
b15 ¼ 2Pr3Sc2d3c1ðSca3

3c
2
1 � 18a2c2Þ þ 9Pr3Sc3a2c2d

3ðQ0 � a1Þ
b16 ¼ 9Pr2Sc3a2c1c2d

3ð2þ 6NPrSrþ Pra3Þ

b17 ¼ 9Pr2Sc2c2d
2sinh�1

ffiffiffiffiffiffiffi
ca2

pð ÞðPrScQ0 � PrSca1 � 4Prc1

þ 2Scc1 þ 6NPrScSrc1 þ PrSca3c1Þ
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n1 ¼
X17
i¼3

bi; n2 ¼ b21 þ 3PrScdb2; n3 ¼ n2
1 þ 4n3

2
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