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Introduction
The Bernoulli numbers were probably first appeared in the book of Jakob Bernoulli 
which was published in 1713. There are numerous applications of Bernoulli numbers 
in innumerable fields such as algebraic topology, number theory, combinatorics and the 
calculus of finite differences [11–14]. Many authors[3, 7, 9, 13, 15, 21, 25] studied the 
solutions of differential equations by Bernoulli polynomials. Dilcher [5] discussed the 
sums of products of Bernoulli numbers. Later, Tuenter [22] discussed a symmetry of 
power sum polynomials and Bernoulli numbers.

Srivastava and Todorov [16] gave an explicit formula for the generalized Bernoulli pol-
ynomials while Granville and Sun [6] investigated values of polynomials in the context 
of a problem posed by Emma Lehmer in 1938. A simple property of the Bernoulli and 
the Euler polynomials was studied by Cheon [2]. Also, a new approach to Bernoulli poly-
nomials was investigated by Costabile et al. [4]. An identity related to symmetry for the 
Bernoulli polynomials was discussed by Yang [24]. Recently, Boutiche et al. [1] obtained 
explicit Formulas associated with some families of generalized Bernoulli and Euler 
Polynomials. Srivastava et  al. [19] studied parametric type of the Apostol-Bernoulli, 
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Apostol-Euler and Apostol-Genocchi polynomials and He et al. [8] investigated Higher-
Order Convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi 
Polynomials.

Very recently, Srivastava et al. [17, 19] obtained some new generalizations and applica-
tions of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials and a 
study on identities and relations involving the modified degenerate hermite-based Apos-
tol-Bernoulli. Srivastava et al. [18] introduced the notions of modified degenerate Her-
mite-based Apostol-Bernoulli, the modified degenerate Hermite-based Apostol-Euler 
and the modified Hermite-based Apostol-Genocchi polynomials.

The classifications of oscillating systems are expressed in Thomsen [20] and Rama and 
Dukkipati [10]. The mechanism that outcomes in dissipation of the energy of an oscil-
lator is named damping. In mechanical oscillator, the damping may be due to (a) vis-
cous drag (b) friction and (c) structure. An oscillator to which a continuous excitation is 
allowed by some outside agency is called forced oscillator.

Assume a mass M involved to the end of a spring of stiffness constant. A rigid support 
attached on one end of the spring. Let the driven force acting on the system be F(t). At 
any instant of time, the system will work under the influence of following forces: 

(a)	 Restoring force, F1 = −Sx , where x is the displacement of the mass from the equi-
librium position,

(b)	 Damping force, F2 = −r dxdt  , where r is damping constant,
(c)	 Driven force, F3 = F(t).

The negative sign in the first two above expressions shows that both the restoring and 
damping forces opposes the displacement. By Newton second law of motion yields

An asymptotic perturbation solution for a linear oscillator of free damped vibrations in 
fractal medium described by local fractional derivatives was undertaken by Yang and 
Srivastava [23].

Motivated by the work of Yang and Srivastava [23], we investigated the numerical 
solutions of damped forced oscillator problems by operational matrix of integration on 
Bernoulli orthonormal polynomials. In fact, used the operational matrix of integration 
of the Bernoulli orthonormal polynomials to find the approximate solutions of damped 
forced oscillator and spring problems and compared these solutions with their exact 
solutions.

Bernoulli polynomials
The Bernoulli polynomials of nth degree are defined on the closed interval [0, 1] as

where Bk = Bk(0) is the Bernoulli number for each k = 0, 1, . . . , n.

Leopold Kronecker expressed the Bernoulli number Bn in the following form:

M
d2x

dt2
= −Sx − r

dx

dt
+ F(t).

(1)Bn(x) =
n

∑

k=0

(

n
k

)

Bkx
n−k ,
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Thus the first few Bernoulli numbers are given by

Substituting value of Bn from relation (2) in Eq. (1), the first ten Bernoulli polynomials 
are given by

Bernoulli polynomials satisfy the following well-known properties

The integral formula for Bernoulli polynomials Bn(x) is obtained by integrating equation 
(3) as

Orthonormal Bernoulli polynomials
Using Gram–Schmidt  process on Bernoulli polynomials Bm(x) and normaliz-
ing them, a class of orthonormal Bernoulli polynomials of order m , denoted by 
w0m,w1m, . . . ,wmm has been obtained [15].

The first ten Bernoulli orthonormal polynomials are given by

(2)










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n+1
�
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(−1)k
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2
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6
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, and Bn = 0, for all odd n ≥ 3.

B0(x) = 1, B1(x) = x −
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2
, B2(x) = x2 − x +

1

6
,

B3(x) = x3 −
3

2
x2 +

1

2
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1

30
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5

2
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3
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6
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2
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2
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42
, B7(x) = x7 − 7

2
x6 + 7
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6
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6
x,

B8(x) = x8 − 4x7 +
14

3
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7

3
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2

3
x2 −

1

30
, B9(x) = x9 −

9

2
x8 + 6x7 −

21

5
x5 + 2x3 −

3

10
x.

(3)
d

dx
Bn(x) =nBn−1(x),

(4)
∫ 1

0
Bn(x) dx =0, for all n ≥ 1.

(5)Bn(x) = n

∫ x

0
Bn−1(t) dt + Bn

(6)

w09(x) = 1,

w19(x) =
√
3(−1+ 2x),

w29(x) =
√
5(1− 6x + 6x2),

w39(x) =
√
7(−1+ 12x − 30x2 + 20x3),

w49(x) = 3(1− 20x + 90x2 − 140x3 + 70x4),

w59(x) =
√
11(−1+ 30x − 210x2 + 560x3 − 630x4 + 252x5),

w69(x) =
√
13(1− 42x + 420x2 − 1680x3 + 3150x4 − 2772x5 + 924x6),

w79(x) =
√
15(−1+ 56x − 756x2 + 4200x3 − 11550x4 + 16632x5 − 12012x6 + 3432x7),

w89(x) =
√
17(1− 72x + 1260x2 − 9240x3 + 34650x4 − 72072x5 + 84084x6 − 51480x7 + 12870x8),

w99(x) =
√
19(−1+ 90x − 1980x2 + 18480x3 − 90090x4 + 252252x5 − 420420x6 + 411840x7

− 218790x8 + 48620x9)
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A function g ∈ L2[0, 1] may be written as

where cin = �g ,win� and 〈, 〉 is the standard inner product on L2[0, 1].
If the series (7) is truncated at n = m , we get an approximation g̃  of g as,

where

and

The operational matrix of integration
Integrating Bernoulli orthonormal polynomials given in Eq. (6) w.r.t. x from 0 to t can be 
written as

Equation (11) can be written as

where Pm+1 is the tridiagonal operational matrix of integration of order 
(m+ 1)× (m+ 1) associated with orthonormal Bernoulli polynomials and is given as

and P1 =
[

1
2

]

.

(7)g(t) = lim
n→∞

n
∑

i=0

cinwin(t),

(8)g ∼= g̃ =
m
∑

i=0

cimwim(t) = CT
B(t),

(9)C = [c0m, c1m, . . . , cmm]T ,

(10)B(t) = [w0m(t),w1m(t), . . . ,wmm(t)]T .

(11)

∫ t

0
wim(x) dx = ζi(t), 0 ≤ t < 1, i = 0, 1, . . . ,m.

=
m
∑

j=0

cijmwjm(t), where cijm = �ζi,wjm�,

or

∫ t

0
wim(x) dx = [ci0m, ci1m, . . . , cimm]B(t) , for 0 ≤ i ≤ m.

(12)
∫ t

0
B(x) dx = Pm+1B(t),

(13)

Pm+1 =
1

2
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Numerical examples
In this section, we obtain solutions (approximate) to two differential equations for 
damped motion and forced motion using operational matrix of integration of Bernoulli 
orthonormal polynomial and examine its capability and exactness. First, we discuss the 
differential equation for damped motion.

Example 1  Consider the basic differential equation for the damped motion

where m is the mass of spring, a > 0 is the damping constant, k is the spring constant, 
and F(t) is any external impressed force that acts upon the mass [12].

Taking, m = w
g = 16

32 = 1
2 , a = 2, k = 10 and F(t) = 5 cos 2t Eq. (14) becomes

The initial conditions are

The exact solution of this problem is

Let us now find an approximate solution for m = 2 of Eq. (15). Consider

and

Integrating Eq. (17) two times and using the initial conditions, we have

where C = [c02, c12, · · · , c22]T is to be determined and P3 =







1
2

1

2
√
3

0

− 1

2
√
3

0 1

2
√
15

0 − 1

2
√
15

0






. 

Substitution of Eqs. (17)–(20) in Eq. (15) gives

Since Eq. (21) holds for all t ∈ [0, 1] , it reduces to

(14)m
d2y

dt2
+ a

dy

dt
+ ky = F(t)

(15)d2y

dt2
+ 4

dy

dt
+ 20y = 10 cos 2t

(16)y(0) = y′(0) = 0

y(t) = e−2t

(

−
3

8
sin 4t −

1

2
cos 4t

)

+
1

2
cos 2t +

1

4
sin 2t.

(17)y′′(t) = CT
B(t)

(18)10 cos 2t = dTB(t).

(19)y′(t) =CT
P3B(t),

(20)y(t) =CT
P

2
3B(t),

(21)CT
B(t)+ 4CT

P3B(t)+ 20CT
P

2
3B(t) = dTB(t).
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where I is a unit matrix of order 3× 3.

Taking m = 2 and using Eq. (10) in Eq. (18), we have

Substituting the values of P3 and dT in Eq. (22) gives

The approximate solution ya(t) is obtained by using Eqs. (10), (13) and (24) in Eq. (20) 
for m = 2 as

(22)CT = dT [(I + 4P3 + 20P2
3 )]−1,

(23)dT =
[

4.54649,−4.38944,−0.749478
]

.

(24)CT =
[

−1.45209,−2.89489, 2.74164
]

.

Table 1  Numerical results of solutions y(t) corresponding to Example 1

t Exact solution Approximate numerical solution

m = 2 m = 3 m = 5 m = 7 m = 9

0.0 0.0000000000 0.0791342855 −  0.0867203112 0.0017122077 0.0000136462 −  0.0000009350

0.1 0.0430893512 0.1919158386 0.0630874540 0.0424955458 0.0430864782 0.0430890650

0.2 0.1440550329 0.2756498587 0.1858065079 0.1445339827 0.1440607936 0.1440552691

0.3 0.2625776389 0.3303363458 0.2814368505 0.2629329416 0.2625741070 0.2625775397

0.4 0.3658259586 0.3559752999 0.3499784820 0.3654360586 0.3658218164 0.3658258381

0.5 0.4316228960 0.3525667209 0.3914314023 0.4311192308 0.4316278591 0.4316231361

0.6 0.4489459081 0.3201106090 0.4057956114 0.4490846654 0.4489487670 0.4489457778

0.7 0.4165429404 0.2586069640 0.3930711092 0.4171549281 0.4165371068 0.4165428505

0.8 0.3404893353 0.1680557861 0.3532578958 0.3405669919 0.3404902893 0.3404895683

0.9 0.2314079965 0.0484570751 0.2863559712 0.2306662855 0.2314107365 0.2314077114

1.0 0.1018897407 −  0.1001891689 0.1923653355 0.1036007422 0.1019033887 0.1018888057

Table 2  Absolute errors for Example 1 given by �ye − ya�

t m = 2 m = 3 m = 5 m = 7 m = 9

0.0 7.91342855 ×10
−2 8.67203112 ×10

−2 1.7122077 ×10
−3 1.36462 ×10

−5 9.350×10
−7

0.1 1.488264874 ×10
−1 1.99981028 ×10

−2 5.938054 ×10
−4 2.8730 ×10

−6 2.862×10
−7

0.2 1.315948258 ×10
−1 4.17514750 ×10

−2 4.789498 ×10
−4 5.7607×10

−6 2.362×10
−7

0.3 6.77587069×10
−2 1.88592116 ×10

−2 3.553027 ×10
−4 3.5319 ×10

−6 9.92×10
−8

0.4 9.8506587 ×10
−3 1.58474766 ×10

−2 3.899000 ×10
−4 4.1422 ×10

−6 1.205×10
−7

0.5 7.90561751 ×10
−2 4.01914937 ×10

−2 5.036652 ×10
−4 4.9631×10

−6 2.401×10
−7

0.6 1.288352991×10
−1 4.31502967 ×10

−2 1.387573 ×10
−4 2.8589 ×10

−6 1.303×10
−7

0.7 1.579359764×10
−1 2.34718312 ×10

−2 6.119877 ×10
−4 5.8336 ×10

−6 8.99×10
−8

0.8 1.724335492 ×10
−1 1.27685605 ×10

−2 7.76566 ×10
−5 9.540×10

−7 2.330×10
−7

0.9 1.829509214×10
−1 5.49479747 ×10

−2 7.417110 ×10
−4 2.7400 ×10

−6 2.851×10
−7

1.0 2.020789096 ×10
−1 9.04755948 ×10

−2 1.7110015 ×10
−3 1.36480 ×10

−5 9.350×10
−7
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In order to choose suitable value of m, convergence study has been accomplished for dif-
ferent values of y(t) for t = 0.0, 0.1, to 1.0 and for m = 2, 3, 5, 7, and 9. The results of this 
study are presented in Table 1. It is observed that the value of the approximate conver-
gence is nearing to the exact solution as we increase the value of m. Note that m is fixed 
at 9 as no further rectification or improvement was found. The calculations are worked 
out using Mathematica 7.0 by Wolfram.

Now, we give the calculations for the absolute error calculated using the formula 
�ye − ya� and presented in Table 2.

Next, we give Fig.  1, which depicts the exact and approximate numerical solutions of 
Eq. (15). Table 1 illustrates that value of exact and approximate solution of Eq. (15) for 
different values of t and m .

The graphs of absolute errors for m = 2, 3, 5, 7 and 9 can be seen in the Fig. 2.

(25)ya(t) = 0.0791343+ 1.27305 t − 1.45238 t2.

Fig. 1  The exact and the approximate values of Eq. (15) for m = 2 in Example 1

Fig. 2  The absolute errors for m = 2, 3, 5, 7 and 9
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In the following example, we shall discuss the approximate solution of the differ-
ential equation for forced motion using Bernoulli orthonormal polynomials compare 
the result with the exact solution of the equation.

Example 2  Consider the following forced motion equation given by

The initial conditions are

The exact solution of this problem is

Let us now find an approximate solution for m=2 of Eq. (26). Consider

and

Integrating (28) two times and using the initial conditions, we have

where C = [c02, c12, · · · , c22]T is to be determined and P3 =







1
2

1

2
√
3

0

− 1

2
√
3

0 1

2
√
15

0 − 1

2
√
15

0






.

Substitution of Eqs. (28)–(31) in Eq. (26) gives

Since Eq. (32) holds for all t ∈ [0, 1] , it reduces to

where I is a unit matrix of order 3× 3.

Taking m = 2 and using Eq. (10) in Eq. (29), we have

The approximate solution ya(t) is obtained by using relations (10), (13) and (34) in 
Eq. (31) for m = 2 as

(26)d2y

dt2
+ 4

dy

dt
+ 20y = 1.

(27)y(0) = y′(0) = 0

y(t) = −e−2t

[

1

20
cos 4t +

1

40
sin 4t

]

+
1

20
.

(28)y′′(t) = CT
B(t)

(29)1 = dTB(t).

(30)y′(t) =CT
P3B(t),

(31)y(t) =CT
P

2
3B(t),

(32)CT
B(t)+ 4CT

P3B(t)+ 20CT
P

2
3B(t) = dTB(t).

(33)CT = dT [(I + 4P3 + 20P2
3 )]−1,

(34)dT = [1, 0, 0].
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The convergence study suitable value of m has been done for different values of y(t) 
for t = 0.0, 0.1, to 1.0 and for m = 2, 3, 5, 7, and 9. The outcome of this study are given 
in Table 3. It has been observed that the value of the approximate convergence is suf-
ficiently near to the exact solution for the increasing value of m. Also,the value of m is 
fixed at 9 as no further improvement is found. The calculations are worked out using 
Mathematica 7.0 by Wolfram.

Table 3 shows that value of exact and approximate numerical solution of Eq. (26) for dif-
ferent values of t and m.

Figure 3 illustrates the exact and approximate numerical solutions of Eq. (26).

The calculations for the absolute error calculated using the formula �ye − ya� and pre-
sented in Table 4.

ya(t) = −0.00739372+ 0.141405 t − 0.0693161 t2.

Table 3  Numerical results of solutions y(t) corresponding to Example 2

t Exact solution Approximate numerical solution

m = 2 m = 3 m = 5 m = 7 m = 9

0.0 0.0000000000 − 0.0073937153 − 0.0040027165 0.0001187872 0.0000022238 − 0.0000000886

0.1 0.0043242326 0.0060536044 0.0055340385 0.0042852305 0.0043240016 0.0043242054

0.2 0.0146277221 0.0181146026 0.0162203655 0.0146643552 0.0146284149 0.0146277447

0.3 0.0272688450 0.0287892791 0.0273042888 0.0272894001 0.0272682392 0.0272688349

0.4 0.0394275753 0.0380776340 0.0380338327 0.0393956406 0.0394272213 0.0394275646

0.5 0.0492917976 0.0459796673 0.0476570217 0.0492590084 0.0492925214 0.0492918201

0.6 0.0560187959 0.0524953789 0.0554218801 0.0560347104 0.0560189543 0.0560187830

0.7 0.0595522819 0.0576247689 0.0605764323 0.0595958489 0.0595515045 0.0595522742

0.8 0.0603722504 0.0613678373 0.0623687027 0.0603720403 0.0603725898 0.0603722720

0.9 0.0592403619 0.0637245841 0.0600467155 0.0591880351 0.0592405489 0.0592403351

1.0 0.0569836042 0.0646950092 0.0528584952 0.0571023372 0.0569858282 0.0569835156

Fig. 3  The exact and the approximate solution of Eq. (26) for m = 2



Page 10 of 11Singh et al. J Egypt Math Soc            (2021) 29:6 

Let us now see the graphs of absolute errors for m = 2, 3, 5, 7 and 9 in the figures given 
below (Fig. 4):

Conclusions
Damped forced oscillatory differential equations have a very important role in physics, 
mathematics and engineering. Through this work, we use the operational matrix of inte-
gration of Bernoulli orthonormal polynomials to find approximate solutions of damped 
forced oscillator and spring problems. A simple procedure of forming the operational 
matrix of integration of the Bernoulli orthonormal polynomials is given. It is observed 
that the exact and approximate solutions of these problems are approximately coincid-
ing. This method is more precise, easy to use and stable as shown in the given numerical 
examples.
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Table 4  Absolute errors for Example 2 given by �ye − ya� are

t m = 2 m = 3 m = 5 m = 7 m = 9

0.0 7.3937153 ×10
−3 4.0027165 ×10

−3 1.187872 ×10
−4 2.2238 ×10

−6 8.86×10
−8

0.1 1.7293718 ×10
−3 1.2098059 ×10

−3 3.90021×10
−5 2.310 ×10

−7 2.72 ×10
−8

0.2 3.4868805 ×10
−3 1.5926434 ×10

−3 3.66331 ×10
−5 6.928 ×10

−7 226×10
−8

0.3 1.5204341 ×10
−3 3.54438×10

−5 2.05551 ×10
−5 6.058 ×10

−7 1.01 ×10
−8

0.4 1.3499413 ×10
−3 1.3937426 ×10

−3 3.19347 ×10
−5 3.540×10

−7 1.07×10
−8

0.5 3.3121303×10
−3 1.6347759 ×10

−3 3.2789/2 ×10
−5 7.238 ×10

−7 2.25 ×10
−8

0.6 3.5234170 ×10
−3 5.969158 ×10

−4 1.59145×10
−5 1.584 ×10

−7 1.29 ×10
−8

0.7 1.9275130 ×10
−3 10241504 ×10

−5 4.35670 ×10
−5 7.774 ×10

−7 7.7×10
−9

0.8 9.955869 ×10
−4 1.9964523×10

−3 2.101 ×10
−7 3.394 ×10

−7 2.16 ×10
−8

0.9 4.4842222 ×10
−3 8.063536 ×10

−4 5.23268 ×10
−5 1.870×10

−7 2.68 ×10
−8

1.0 7.7114050×10
−3 4.1251090 ×10

−3 1.187330 ×10
−5 2.2240 ×10

−6 8.86 ×10
−8

Fig. 4  The absolute errors for m = 2, 3, 5, 7 and 9
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