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Abstract This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy

topologies), introduced byYing [1]. It investigates topological notions defined bymeans of a-open sets
when these are planted into the framework of Ying’s fuzzifying topological spaces (by Łukasiewicz

logic in [0,1]) . The concept of a-irresolute functions and a-compactness in the framework of fuzzifying

topology are introduced and some of their properties are obtained.We use the finite intersection prop-

erty to give a characterization of fuzzifying a-compact spaces. Furthermore, we study the image of

fuzzifying a-compact spaces under fuzzifying a-continuity and fuzzifying a-irresolute maps.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

In the last few years fuzzy topology, as an important research
field in fuzzy set theory, has been developed into a quite
mature discipline [2–7]. In contrast to classical topology, fuzzy

topology is endowed with richer structure, to a certain extent,
which is manifested with different ways to generalize certain
classical concepts. So far, according to Ref. [3], the kind of

topologies defined by Chang [8] and Goguen [9] is called the
topologies of fuzzy subsets, and further is naturally called
L-topological spaces if a lattice L of membership values has

been chosen. Loosely speaking, a topology of fuzzy subsets
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(resp. an L-topological space) is a family s of fuzzy subsets
(resp. L-fuzzy subsets) of nonempty set X, and s satisfies the

basic conditions of classical topologies [10]. On the other hand,
Höhle in [11] proposed the terminology L-fuzzy topology to be
an L-valued mapping on the traditional powerset P(X) of

X. The authors in [5,6,12,13] defined an L-fuzzy topology to
be an L-valued mapping on the L-powerset LX of X.

In 1952, Rosser and Turquette [14] proposed emphatically

the following problem: If there are many-valued theories
beyond the level of predicates calculus, then what are the detail
of such theories? As an attempt to give a partial answer to this
problem in the case of point set topology, Ying in 1991

[1,15,16] used a semantical method of continuous-valued logic
to develop systematically fuzzifying topology. Briefly speaking,
a fuzzifying topology on a set X assigns each crisp subset of X

to a certain degree of being open, other than being definitely
open or not. In fact, fuzzifying topologies are a special case
of the L-fuzzy topologies in [12,13] since all the t-norms on I

are included as a special class of tensor products in these
paper. Ying uses one particular tensor product, namely Łukas-
iewicz conjunction. Thus his fuzzifying topologies are a special
class of all the I-fuzzy topologies considered in the categorical
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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frameworks [12,13]. Roughly speaking, the semantical analysis

approach transforms formal statements of interest, which are
usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation
rules, and then these inequalities are demonstrated in an alge-

braic way and the semantic validity of conclusions is thus
established. So far, there has been significant research on fuzz-
ifying topologies [17–20]. For example, Ying [21] introduced

the concepts of compactness and established a generalization
of Tychonoff’s theorem in the framework of fuzzifying topol-
ogy. In [17] the concepts of fuzzifying a-open set and fuzzifying

a-continuity were introduced and studied. Also, Sayed [22]
introduced and studied the concept of fuzzifying a-Hausdorff
separation axiom. In classical topology, a-irresolute mappings

and a-compact spaces have been studied in [23–25], respec-
tively. As well as, they have been studied in fuzzy topology
in [26–28], respectively. In [29] it was shown that a-compact-
ness (due to Ganter, Steinlage and Warren) of fuzzy topolog-

ical spaces is the categorical compactness (in the sense of
Herrlich et al. [30]) which arises from a factorization structure
on the category of fuzzy topological and fuzzy continuous.

Also, some characterizations of a-compactness were given. In
this paper, the concept of a-irresolute mappings between fuzz-
ifying topological spaces has been studied. Furthermore, the

concept of a-compactness in the framework of fuzzifying
topology has been reported. The finite intersection property
used to give a characterization of the fuzzifying a-compact
spaces. Moreover, we study the image of fuzzifying a-compact

spaces under fuzzifying a -continuity and fuzzifying a-irreso-
lute mappings. Thus we fill a gap in the existing literature on
fuzzifying topology. We use the terminologies and notations

in [1,15–17,21] without any explanation. We will use the sym-
bol � instead of the second ‘‘AND’’ operation

�̂
as dot is

hardly visible. This mean that [a] 6 [u fi w] () [a] �
[u] 6 [w]. Also, we need the following two facts: [u fi w] �
[u] 6 [w] and [(a fi c) � (b fi c)] = [(a � b) fi c].

A fuzzifying topology on a set X [7,11] is a mapping

s 2 IðPðXÞÞ such that:

(1) s(X) = 1,s(/) = 1;
(2) for any A,B,s(A \ B) P s(A) � s(B);

(3) for any fAk : k 2 Kg; s
S
k2K

Ak

� �
P
V
k2K

sðAkÞ.

The family of all fuzzifying a-open sets [17], denoted by

sa 2 IðPðXÞÞ, is defined as
A 2 sa:¼"x(x 2 A fi x 2 Int(Cl(Int(A)))), i.e., saðAÞ ¼

V
x2AIntðClðIntðAÞÞÞðxÞ

The family of all fuzzifying a-closed sets [17], denoted by

Fa 2 IðPðXÞÞ, is defined as A 2 Fa :¼ X� A 2 sa. The fuzzify-

ing a-neighborhood system of a point x 2 X [17] is denoted by

Na
x 2 IðPðXÞÞ and defined as Na

xðAÞ ¼
W

x2B#A

saðBÞ. The fuzz-

ifying a-closure of a set A ˝ X [17], denoted by Cla 2 IðXÞ,
is defined as ClaðAÞðxÞ ¼ 1�Na

xðX� AÞ. If (X,s) and (Y,r)
are two fuzzifying topological spaces and f 2 YX, the unary

fuzzy predicate Ca 2 IðYXÞ, called fuzzifying a-continuity
[17], is given as Ca(f) :¼ "B(B 2 r fi f�1(B) 2 sa). Let X be

the class of all fuzzifying topological spaces. A unary fuzzy

predicate Ta
2 2 IðXÞ, called fuzzifying a-Hausdorffness [22],

is given as follows:
Ta
2ðX; sÞ ¼ ð8xÞð8yÞððx 2 X ^ y 2 Y ^ x–yÞ ! ð9BÞð9CÞðB

2 Na
x ^ C 2 Na

y ^ B \ C � /ÞÞ:

A unary fuzzy predicate C 2 IðXÞ, called fuzzifying compact-

ness [21], is given as follows:

(1) CðX ; sÞ :¼ ð8RÞðK�ðR; X Þ ! ð9}Þðð} 6 RÞ ^ Kð}; AÞ
�FF ð}ÞÞÞ.For K, K� (resp. 6 and FF) see ([15], Defini-
tion 4.4)(resp. ([15], Theorem 4.3) and ([21], Definition
1.1 and Lemma 1.1)).

(2) If A ˝ X, then C(A) :¼ C(A,s/A).

2. Fuzzifying a-irresolute mappings

The purpose of this section is to introduce and study the con-
cept of a-irresolute mappings in fuzzifying topological spaces.

Definition 2.1. Let (X,s) and (Y,r) be two fuzzifying topolog-

ical spaces and let f 2 YX. A unary fuzzy predicate Ia 2 IðYXÞ,
called fuzzifying a-irresoluteness, is given as follows:

IaðfÞ :¼ 8BðB 2 ra ! f�1ðBÞ 2 saÞ:

The following theorem generalize the well known result in
general topology which state that the concept a-continuous
mappings is strictly weaker than that of a-irresolute mappings
[23].

Theorem 2.1. Let(X,s) and(Y,r) be two fuzzifying topological
spaces and let f 2 YX. Then

� f 2 Ia ! f 2 Ca:

Proof. From ([17], Theorem 3.3 (1) (a)) we have r(B) 6 r a(B)
and the result holds. h

Lemma 2.1. Let (X,s), (Y,r) and (Z,m) be three fuzzifying
topological spaces and let f 2 YX and g 2 ZY. Then

� IaðfÞ ! ðCaðgÞ ! Caðg � fÞÞ

Proof. It suffices [Ia(f)] 6 [Ca(g) fi Ca(g � f)]. If [Ca(g)] 6 [Ca

(g � f)], the results holds. If [Ca(g)] P [Ca(g � f)], then

½CaðgÞ��½Caðg � fÞ�¼
^

V2PðZÞ
minð1;1�mðVÞþraðg�1ðVÞÞÞ

�
^

V2PðZÞ
minð1;1�mðVÞþsaðf�1ðg�1ðVÞÞÞÞ

6

_
V2PðZÞ

ðraðg�1ðVÞÞ�saðf�1ðg�1ðVÞÞÞÞ:

Therefore

½CaðgÞ ! Caðg � fÞ� ¼ minð1; 1� ½CaðgÞ� þ ½Caðg � fÞ�Þ
P

^
U2PðYÞ

minð1; 1� raðUÞ þ saðf�1ðUÞÞÞ

¼ ½IaðfÞ�: �

The above lemma is a generalization of the following well
known result in general topology ([31], Proposition 4).
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Corollary 2.1. If f:(X,s) fi (Y,r) is a-irresolute and

g:(Y,r) fi (Z,m) is a-continuous, then g � f:(X,s) fi (Z,m) is
a-continuous.

Definition 2.2. Let (X,s) and (Y,r) be two fuzzifying topolog-
ical spaces and let f 2 YX. We define the unary fuzzy predicates

xk 2 IðYXÞ, where k= 1, . . . , 5, as follows:

(1) f 2 x1 ¼ 8B B 2 FY
a ! f �1ðBÞ 2 FX

a

� �
, where FX

a and FY
a

are the fuzzifying a-closed subsets of X and Y,
respectively;

(2) f 2 x2 ¼ 8x8U U 2 N aY

f ðxÞ ! f �1ðUÞ 2 N aX

x

� �
, where

N aX
and N aY

are the family of fuzzifying a-neighborhood
systems of X and Y, respectively;

(3) f 2x3¼8x8U U 2N aY

f ðxÞ !9V f ðV Þ#U! V 2N aX

x

� �� �
;

(4) f 2 x4 ¼ 8A f ClX
a ðAÞ

� �
# ClY

a ðf ðAÞÞ
� �

;

(5) f 2 x5 ¼ 8BðClX
a ðf �1ðBÞÞ# f �1ðClY

a ðBÞÞÞ.

Theorem 2.2. `f 2 Ia M f 2 xk, k = 1, . . . , 5.

Proof.

(a) We will prove that `f 2 Ia M f 2 x1.

½f 2 x1� ¼
^

B2PðYÞ
min 1; 1� FY

a ðBÞ þ FX
a ðf�1ðBÞÞ

� �
¼

^
B2PðYÞ

min 1; 1� raðY� BÞ þ saðf�1ðY� BÞÞ
� �

¼
^

B2PðYÞ
min 1; 1� raðY� BÞ þ saðX� f�1ðBÞÞ

� �
¼

^
U2PðYÞ

min 1; 1� raðUÞ þ saðf�1ðUÞÞ
� �

¼ ½f 2 Ia�:

(b) We will prove that `f 2 Ia M f 2 x2. First, we prove
that [f 2 x2] P [f 2 Ia]. If N aY

f ðxÞðUÞ 6 N aX

x ðf �1ðUÞÞ, then
minð1; 1� N aY

f ðxÞðUÞ þ N aX

x ðf �1ðUÞÞÞ ¼ 1 P ½f 2 Ia�.
Suppose N aY

f ðxÞðUÞ > N aX

x ðf �1ðUÞÞ. It is clear that, if
f(x) 2 A ˝ U, then x 2 f�1(A) ˝ f�1(U). Then

NaY

fðxÞðUÞ�NaX

x ðf�1ðUÞÞ¼
_

fðxÞ2A#U

raðAÞ�
_

x2B#f�1ðUÞ
saðBÞ

6

_
fðxÞ2A#U

raðAÞ�
_

fðxÞ2A#U

saðf�1ðAÞÞ

6

_
fðxÞ2A#U

ðraðAÞ�saðf�1ðAÞÞÞ

So 1�NaY

fðxÞðUÞ þNaX

x ðf�1ðUÞÞP
V

fðxÞ2A#U

ð1� raðAÞþ

saðf�1ðAÞÞÞ. Therefore

min 1; 1�NaY

fðxÞðUÞ þNaX

x ðf�1ðUÞÞ
� �

P
^

fðxÞ2A#U

minð1; 1� raðAÞ þ saðf�1ðAÞÞÞ

P
^

V2PðYÞ
minð1; 1� raðVÞ þ saðf�1ðVÞÞÞ ¼ ½f 2 Ia�:

Hence
V
x2X

V
U2PðYÞ

minð1;1�NaY

fðxÞðUÞþNaX

x ðf�1ðUÞÞÞP ½f2 Ia�.Second, we

prove that [f 2 Ia] P [f 2 x2]. From Corollary 4.1 [17] we have
½f2 Ia�¼
^

U2PðYÞ
minð1;1�raðUÞþsaðf�1ðUÞÞÞ

P
^

U2PðYÞ
min 1;1�

^
fðxÞ2U

NaY

fðxÞðUÞþ
^

x2f�1ðUÞ
NaX

x ðf�1ðUÞÞ

0@ 1A

P
^

U2PðYÞ
min 1;1�

^
x2f�1ðUÞ

NaY

fðxÞðUÞþ
^

x2f�1ðUÞ
NaX

x ðf�1ðUÞÞ

0@ 1A
P
^
x2X

^
U2PðYÞ

min 1;1�NaY

fðxÞðUÞþNaX

x ðf�1ðUÞÞ
� �

¼½f2x2�:

(c) We prove that [f 2 x2] = [f 2 x3]. Since f(V) ˝ U implies

V ˝ f�1(U), then from Theorem 4.2 (2) [17] we have

½f2x3�¼
^
x2X

^
U2PðYÞ

min 1;1�NaY

fðxÞðUÞþ
_

V2PðXÞ;fðVÞ#U

NaX

x ðVÞ
 !!

¼P
^
x2X

^
U2PðXÞ

min 1;1�NaY

fðxÞðUÞþNaX

x ðf�1ðUÞÞ
� �

¼½f2x2�:

(d) We will prove that [f 2 x4] = [f 2 x5]. First, we prove

[f 2 x4] 6 [f 2 x5]. Since for any fuzzy set eA we have

½f �1ðf ðeAÞÞ 	 eA� ¼ 1. Then for any B 2 P(Y), we have

½f �1ðf ðClX
a ðf �1ðBÞÞÞÞ 	 ClX

a ðf �1ðBÞÞ� ¼ 1. Also, since

[f(f�1(B)) ˝ B] = 1, then ClY
a ðf ðf �1ðBÞÞÞ# ClY

a ðBÞ
� 	

¼
1. From Lemma 1.2 (2) [15], we obtain

ClXa ðf�1ðBÞÞ#f�1ðClYa ðBÞÞ
� 	

P f�1ðfðClXa ðf�1ðBÞÞÞÞ#f�1ðClYa ðBÞÞ
� 	

P f�1ðfðClXa ðf�1ðBÞÞÞÞ#f�1ðClYa ðfðf�1ðBÞÞÞÞ
� 	

P fðClXa ðf�1ðBÞÞÞ#ClYa ðfðf�1ðBÞÞÞ
� 	

:

Hence

½f 2 x5� ¼
^

B2PðYÞ
ClXa ðf�1ðBÞÞ# f�1ðClYa ðBÞÞ
� 	

P
^

B2PðYÞ
fðClXa ðf�1ðBÞÞÞ#ClYa ðfðf�1ðBÞÞÞ
� 	

P
^

A2PðXÞ
fðClXa ðAÞÞ#ClYa ðfðAÞÞ
� 	

¼ ½f 2 x4�:

Second, for each A 2 P(X), there exists B 2 P(Y) such that
f(A) = B and f�1(B) ˚ A. Hence from Lemma 1.2 (1) [15] we
have

½f 2 x4� ¼
^

A2PðXÞ
fðClXa ðAÞÞ#ClYa ðfðAÞÞ
� 	

P
^

A2PðXÞ
fðClXa ðAÞÞ# fðf�1ðClYa ðfðAÞÞÞÞ
� 	

P
^

A2PðXÞ
ClXa ðAÞ# f�1ðClYa ðfðAÞÞÞ
� 	

P
^

B2PðYÞ;B¼fðAÞ
ClXa ðf�1ðBÞÞ# f�1ðClYa ðBÞÞ
� 	

P
^

B2PðYÞ
ClXa ðf�1ðBÞÞ# f�1ðClYa ðBÞÞ
� 	

¼ ½f 2 x5�:

(e) We want to prove that `f 2 x2 M f 2 x5.
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½f2x5�¼
^

B2PðYÞ
ClXa ðf�1ðBÞÞ#f�1ðClYa ðBÞÞ
� 	

¼
^

B2PðYÞ

^
x2X

min 1;1� 1�NaX

x ðX� f�1ðBÞÞ
� �

þ1�NaY

fðxÞðY�BÞ
� �

¼
^

B2PðYÞ

^
x2X

min 1;1�NaY

fðxÞðY�BÞþNaX

x ðf�1ðY�BÞÞ
� �

¼
^

U2PðYÞ

^
x2X

min 1;1�NaY

fðxÞðUÞþNaX

x ðf�1ðUÞÞ
� �

¼½f2x2�: �
3. Fuzzifying a-compact spaces

Definition 3.1. A fuzzifying topological space (X,s) is said to

be fuzzifying a-topological space if sa(A \ B) P sa(A) � sa(B).

In a topological space (X,s), a family R of subsets of X is

said to be a-covering of X if and only if R covers X and
R # aðXÞ; where a(X) is the class of all a-sets in X. We gener-
alize this notion to the fuzzifying setting in the following

definition:

Definition 3.2. A binary fuzzy predicate
Ka 2 IðIðPðXÞÞ 
 PðXÞÞ, called fuzzifying a-open covering,

is given as KaðR;AÞ :¼ KðR;AÞ � ðR # saÞ.

In classical topology, a space (X,s) is a-compact if and only

if every a-covering of X has a finite subcover. Also, a subset A
of a space (X,s) is said to be a-compact if and only if (A,s/A) is
a-compact, where s/A denotes the induced topology on A. The
following definition generalize these notions.

Definition 3.3. Let X be the class of all fuzzifying topological
spaces. A unary fuzzy predicate Ca 2 IðXÞ, called fuzzifying a-
compactness, is given as follows:

(1) ðX ; sÞ 2 Ca :¼ ð8RÞðKaðR;X Þ ! ð9}Þðð} 6 RÞ ^ Kð};
X Þ � FF ð}ÞÞÞ;

(2) If A ˝ X, then Ca(A) :¼ Ca(A,s/A).

Lemma 3.1. � K�ðR;AÞ ! KaðR;AÞ.

Proof. Since `s ˝ sa, (see [17, Theorem 3.3 (1) (a)]), then we
have ½R # s� 6 ½½R # sa�. Therefore, ½K�ðR;AÞ� 6 ½KaðR;
AÞ�. h

Since in general topology every a-compact space is compact
([24], Remark 3.1), we have the following theorem in fuzzifying
topology.

Theorem 3.1. `(X,s) 2 Ca fi (X,s) 2 C.

Proof. From Lemma 3.1 the proof is immediate. h

The following theorem generalize the notions which state

that:

(1) A subset A of a topological space (X,s) is a-compact rel-
ative to (X,s) if and only if every cover of A by a-open
sets of (X,s) has a finite subcover.

(2) A subset A of a topological space (X,s) is a-compact rel-
ative to (X,s) if and only if it is compact in (X,sa).
Theorem 3.2. For any fuzzifying topological space (X,s) and

A ˝ X we have

(1) � CaðAÞ $ ð8RÞðKaðR;AÞ ! ð9}Þðð} 6 RÞ ^ Kð};AÞ�
FF ð}ÞÞÞ,where Ka is related to s.

(2) Ca(A) = C(A,sa).

Proof. For any R 2 IðIðXÞÞ, we set R 2 IðIðAÞÞ defined as

RðA \ BÞ ¼ RðBÞ;B#X. Then KðR;AÞ ¼
V
x2A

W
x2C

RðCÞ ¼V
x2A

W
x2C¼A\B

RðBÞ ¼
V
x2A

W
x2B

RðBÞ ¼ KðR;AÞ; because x 2 A

and x 2 B if and only if x 2 A \ B. Therefore

½R#sa=A� ¼
^
C#A

minð1;1�RðCÞþ sa=AðCÞÞ

¼
^
C#A

min 1;1�
_

C¼A\B;B#X

RðBÞþ
_

C¼A\B;B#X

saðBÞ
 !

P
^

C#A;C¼A\B;B#X

minð1;1�RðBÞþ saðBÞÞ

P
^
B#X

minð1;1�RðBÞþ saðBÞÞ ¼ ½R#sa�:

For any } 6 R; we define }0 2 IðPðXÞÞ as }0ðBÞ ¼
}ðBÞ if B#A
0 otherwise:



Then }0 6 R;FFð}0Þ ¼ FFð}Þ and

K(}0,A) = K(},A). Furthermore, we have

½CaðAÞ � KaðR;AÞ� 6 ½CaðAÞ � K0aðR;AÞ�

6 ½ð8RÞðK0aðR;AÞ ! ð9}Þðð}

6 RÞ ^ Kð};AÞ � FFð}ÞÞÞ� � ½K0aðR;AÞ�

6 ½K0aðR;AÞ ! ð9}Þðð}

6 RÞ ^ Kð};AÞ � FFð}ÞÞ� � ½K0aðR;AÞ�

6 ½ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞ�

6 ½ð9}0Þðð}0

6 RÞ ^ Kð}0;AÞ � FFð}0ÞÞ�

6 ½ð9bÞððb 6 RÞ ^ Kðb;AÞ � FFðbÞÞ�

Then CaðAÞ6 ½KaðR;AÞ� ! ½ð9bÞððb6RÞ ^Kðb;AÞ�FFðbÞÞ�,
where K0aðR;AÞ ¼ ½KðR;AÞ� ðR#sa=AÞ�. Therefore

CaðAÞ6
^

R2IðPðXÞÞ
½KaðR;AÞ! ð9bÞððb6RÞ^Kðb;AÞ�FFðbÞÞ�

¼ ½ð8RÞðKaðR;AÞ! ð9bÞððb6RÞ^Kðb;AÞ�FFðbÞÞÞ�:

Conversely, for any R 2 IðPðAÞÞ; if ½R # sa=A� ¼
V

B#A

minð1;

1�RðBÞ þ sa=AðBÞÞ ¼ k, then for any n 2 N and

B#A;
W

B¼A\C;C#X

saðCÞ ¼ sa=AðBÞ > kþRðBÞ � 1� 1
n
; and

there exists CB ˝ X such that CB \ A= B and saðCBÞ > kþ
RðBÞ � 1� 1

n
. Now, we define R 2 IðPðXÞÞ as RðCÞ ¼

max
B#A
ð0; kþRðBÞ � 1� 1

n
Þ. Then ½R # sa� ¼ 1 and
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KðR;AÞ ¼
^
x2A

_
x2C#X

RðCÞ ¼
^
x2A

_
x2B

RðCBÞ

P
^
x2A

_
x2B

kþRðBÞ � 1� 1

n

� �
¼
^
x2A

_
x2B

RðBÞ þ k� 1� 1

n
¼ KðR;AÞ þ k� 1� 1

n
:

Also, we have

KaðR;AÞ ¼ ½KðR;AÞ � ðR # saÞ� ¼ ½KðR;AÞ�

P max 0;KðR;AÞ þ k� 1� 1

n

� �
P maxð0;KðR;AÞ þ k� 1Þ � 1

n

¼ maxð0;KðR;AÞ þ ½R # sa=A� � 1Þ � 1

n

¼ KðR;AÞ � ½R # sa=A� �
1

n
¼ K0aðR;AÞ �

1

n
:

For any } 6 R, we set }0 2 IðPðAÞÞ as }0(B) = }(CB),B ˝ A.
Then }0 6 R;FFð}0Þ ¼ FFð}Þ and K(}0,A) = K(},A).

Therefore

½ð8RÞðKaðR;AÞ ! ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞ�

� ½K0aðR;AÞ� �
1

n
6 ½ð8RÞðKaðR;AÞ

! ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞ�

� ½K0aðR;AÞ� �
1

n

� �
6 ½KaðR;AÞ

! ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞ�
� ½KaðR;AÞ� 6 ½ð9}Þðð} 6 RÞ ^ Kð};AÞ
� FFð}ÞÞ� 6 ½ð9}0Þðð}0 6 RÞ ^ Kð}0;AÞ
� FFð}0ÞÞ� 6 ½ð9bÞððb 6 RÞ ^ Kðb;AÞ
� FFðbÞÞ�:

Let n fi1. We obtain

½ð8RÞðKaðR;AÞ ! ð9}Þðð}
6 RÞ ^ Kð};AÞ � FFð}ÞÞÞ� � ½K0aðR;AÞ�
6 ½ð9bÞððb 6 RÞ ^ Kðb;AÞ � FFðbÞÞ�:

Then

½ð8RÞðKaðR;AÞ ! ð9}Þðð} 6 RÞ ^ Kð};AÞ � FFð}ÞÞ�

6 ½K0aðR;AÞ ! ð9bÞððb

6 RÞ ^ Kðb;AÞ � FFðbÞÞ�

6

^
R2IðPðXÞÞ

½K0aðR;AÞ

! ð9bÞððb 6 RÞ ^ Kðb;AÞ � FFðbÞÞ�

¼ CaðAÞ:

(2) Obvious. h
The following definition is given in [21].

Definition 3.4. Let X be a set. A unary fuzzy predicate

fI 2 IðIðPðXÞÞÞ, called fuzzy finite intersection property, is
given as follows:

fIðRÞ :¼ ð8bÞððb 6 RÞ ^ FFðbÞ ! ð9xÞð8BÞððB 2 bÞ

! ðx 2 BÞÞÞ:

In a topological space (X,s), the following are equivalent:

(1) X is a-compact;

(2) Each family of a-closed sets in X has the finite intersec-
tion property;

(3) Each family of a-closed sets in X whose intersection is a

subset of an a-set B contains a finite subfamily whose
intersection is a subset of B.

We extend this notion in the following theorem:

Theorem 3.3. Let (X,s) be a fuzzifying topological space.

p1 :¼ ð8RÞððR 2 IðPðXÞÞÞ ^ ðR#FaÞ� fIðRÞ

! ð9xÞð8AÞðA 2R! x 2AÞÞ;

p2 :¼ ð8RÞð9BÞ ðR#FaÞ ^ ðB 2 saÞð Þ� ð8}Þð

ð}6RÞ�FFð}Þ ! :
\
}#B

� �� �
!:

\
R#B

� ��
:

Then `Ca(X,s)$pi, i = 1, 2.

Proof.

(a) We prove Ca(X,s) = [p1]. For any R 2 IðP ðX ÞÞ, we set

RcðX � AÞ ¼ RðAÞ. Then

½R # sa� ¼
^

A2PðXÞ
minð1; 1�RðAÞ þ saðAÞÞ

¼
^

X�A2PðXÞ
minð1; 1�RcðX� AÞ þ FaðX� AÞÞ

¼ ½Rc # Fa�;

FFðRÞ ¼ 1�
^
fd 2 ½0; 1� : FðRdÞg

¼ 1�
^

d 2 ½0; 1� : FðRc
dÞ

� �
¼ FFðRcÞ

and

b 6 Rc () bðMÞ 6 RcðMÞ () bcðX�MÞ

6 RðX�MÞ () bc
6 R:
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Therefore

CaðX; sÞ ¼ ½ð8RÞðKaðR;XÞ
! ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞ�
¼ ½ð8RÞ ðR # saÞ � KðR;XÞð
! ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞ�
¼ ½ð8RÞ ðR # saÞ ! ðKðR;XÞð
! ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞÞ�
¼ ½ð8RÞððRc # FaÞ ! ðð8xÞð9AÞðA 2 R ^ x 2 AÞ
! ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞÞÞ�
¼ ½ð8RÞððRc # FaÞ ! ðð8xÞð9AÞðA 2 R ^ x 2 AÞ
! ð9bcÞððbc

6 RÞ ^ Kðbc;XÞ � FFðbcÞÞÞÞ�
¼ ½ð8RÞððRc # FaÞ ! ðð8xÞð9AÞðA 2 R ^ x 2 AÞ
! ð9bÞððb 6 RcÞ ^ FFðbÞ � Kðbc;XÞÞÞÞ�
¼ ½ð8RÞðRc # Fa ! ðð8xÞð9AÞðA 2 R ^ x 2 AÞ
! ð9bÞððb 6 RcÞ^FFðbÞ � ð8xÞð9BÞðB2bc ^ x 2 BÞÞ�
¼ ½ð8RÞðRc # Fa ! ð:ðð9bÞðb 6 Rc ^ FFðbÞ
�ð8xÞð9BÞðB 2 bc ^ x 2 BÞÞ
! :ðð8xÞð9AÞðA 2 R ^ x 2 AÞÞÞÞ�
¼ ½ð8RÞððRc # FaÞ ! ðfIðRcÞ
! :ðð8xÞð9AÞðA 2 R ^ x 2 AÞÞÞ�
¼ ½ð8RÞððRc # FaÞ � fIðRcÞ
! ð9xÞð8AÞðA 2 Rc ! x 2 AÞÞ�
¼ ½p1�:

(b) We prove [p1] = [p2]. Let X � B 2 P(X). For any
R 2 IðP ðX ÞÞ:

½ðR#FaÞ^ðB2 saÞ�¼ ½ðR#FaÞ^ðX�B2FaÞ�

¼
^

A2PðXÞ
minð1;1�RðAÞþFaðAÞÞ^FaðX�BÞ

¼
^

A2PðXÞ
minð1;1�RðAÞþFaðAÞÞ

^
^

A2PðXÞ
minð1;1�½A2fX�Bg�þFaðAÞÞ

¼
^

A2PðXÞ
minð1;1�½ðR[fX�BgÞðAÞ�þFaðAÞÞ

¼ ½ðR[fX�BgÞ#Fa�:

Therefore, for any b 2 IðPðXÞÞ, let } ¼ b n fX� Bg 2

IðPðXÞÞ. }ðAÞ ¼ bðAÞ; A–X� B
0; A ¼ X� B



. Then } 6 b;

} [ fX� BgP b; ½FFð}Þ� ¼ ½FFðbÞ�; ½} 6 R� ¼ ½b 6 ðR[
fX� BgÞ� and

½ð8}Þðð}6RÞ�FFð}Þ!ð9xÞð8AÞðA2ð}[fX�BgÞ!ðx2AÞÞ�

¼
^
}6R

min 1;1�½FFð}Þ�þ
_
x2X

^
A2PðXÞ

ðð}[fX�BgÞðAÞ
 

!AðxÞÞÞ6
^

b6ðR[fX�BgÞ
minð1;1�½FFðbÞ�

þ
_
x2X

^
A2PðXÞ

ðbðAÞ!AðxÞÞÞ¼ fIðR[fX�BgÞ:
Furthermore, we have

p1� R#Fað Þ^ðB2 saÞð Þ�ð8}Þ ð}6RÞ�FFð}Þ!:
\
}#B

� �� �h i
¼p1� R[fX�Bg#Fað Þ�ð8}Þðð}6RÞ�FFð}Þ½

!ð9xÞð8AÞðA2ð}[fX�BgÞ!x2AÞÞ�

¼p1�½ðR[fX�Bg#FaÞ� fIðR[fX�BgÞ�

6 ½ð9xÞð8AÞðA2ðR[fX�BgÞ!x2AÞ�¼ :
\

R#B
� �h i

:

Therefore

p1 6

^
R2IðPðXÞÞ

_
B#X

R # Fa ^ B 2 sað Þ � ð8}Þ ð} 6 RÞ � FFð}Þðð

! :
\
}#B

� ��
! :

\
R #B

� ��
¼ p2:

Conversely

p2 � ½ðR # FaÞ � fIðRÞ� ¼ p2 � ðR n fBgÞ [ fBgð Þ# Fa½ �
� fI ðR n fBgÞ [ fBgð Þ½ �
¼ p2 � ½ðR0# FaÞ ^ ðX� B 2 saÞ
� ð8}Þðð} 6 R0Þ � FFð}Þ
! ð9xÞð8AÞðA 2 ð} [ fBgÞ
! x 2 AÞÞ�
¼ p2 � ðR0# FaÞ ^ ðX� B 2 saÞ½
�ð8}Þ ð} 6 R0Þ � FFð}Þð

! :
\
}#X� B

� ��i
6 :

\
R0#X� B

� �h i
¼ ð9xÞð8AÞððA 2 ðR0 [ fBgÞ½
! ðx 2 AÞÞ� ¼ ½ð9xÞð8AÞðA 2 R

! ðx 2 AÞÞ�:

Therefore

p26

^
R2IðPðXÞÞ

½ðR#FaÞ� fIðRÞ!ð9xÞð8AÞðA2R!ðx2AÞÞ�¼p1: �
4. Some properties of fuzzifying a-compact spaces

Theorem 4.1. For any fuzzifying topological space (X,s) and
A ˝ X,

(1) � CaðX ; sÞ � A 2 Fa ! CaðAÞ;
(2) � CaðX ; sÞ � A 2 Fa ! CðAÞ;
(3) � CaðX ; sÞ � A 2 F! CaðAÞ;
(4) � CaðX ; sÞ � A 2 F! CðAÞ.

Proof.

(1) For any R 2 IðP ðAÞÞ, we define R 2 IðP ðX ÞÞ as

RðBÞ ¼ RðBÞ if B # A;
0 otherwise:



Then FF ðRÞ ¼ 1�

V
b 2f

½0; 1� : F ðRbÞg ¼ 1�
V

b 2 ½0; 1� : F ðRbÞ
� �

¼ FF ðRÞ



122 O.R. Sayed
and

_
x2X

^
xRB#X

ð1�RðBÞÞ¼
_
x2X

^
x�B#A

ð1�RðBÞÞ
 !

^
^

xRBˆA

1�RðBÞ
� � ! !

¼
_
x2X

^
x�B#A

1�RðBÞ
� � !

^
_
x2X

^
xRBˆA

1�RðBÞ
� � !

¼
_
x2X

^
xRB#A

ð1�RðBÞÞ
 !

¼
_
x2A

^
xRB#A

ð1�RðBÞÞ
 !

_
_
xRA

^
xRB#A

ð1�RðBÞÞ
 !

If x R A, then for any x0 2 A we have^
xRB#A

ð1�RðBÞÞ ¼
^
B#A

ð1�RðBÞÞ 6
^

x0RB#A

ð1�RðBÞÞ:

Therefore_
x2X

^
xRB#X

ð1�RðBÞÞ ¼
_
x2A

^
xRB#A

ð1�RðBÞÞ;

½fIðRÞ�¼ ½ð8bÞððb6RÞ^FFðbÞ!ð9xÞð8BÞððB2RÞ!ðx2BÞÞÞ�

¼
^
b6R

min 1;1�FFðbÞþ
_
x2X

^
xRB#X

ð1�RðBÞÞ
 !

¼
^
b6R

min 1;1�FFðbÞþ
_
x2A

^
xRB#A

ð1�RðBÞÞ
 !

¼½fIðRÞ�:

We want to prove FaðAÞ � ½R # Fa=A� 6 ½R # Fa�. In fact,

Fa

T
k2K

Ak

� �
P
V
k2K

FaðAkÞ (see[17, Theorem 3.2]). Thus

FaðAÞ � ½R # Fa=A�

¼ max 0;FaðAÞ þ
^
B#A

minð1; 1�RðBÞ þ Fa=AðBÞÞ � 1

 !
6

^
B#A

ð1�RðBÞÞ þ ðFaðAÞ þ Fa=AðBÞ � 1Þ

6

^
B#A

ð1�RðBÞÞ þ FaðAÞ ^ Fa=AðBÞð Þ

¼
^
B#A

ð1�RðBÞÞ þ FaðAÞ ^
_

B0\A¼B;B0 #X

FaðB0Þ
 !

¼
^
B#A

ð1�RðBÞÞ þ
_

B0\A¼B;B0#X

FaðAÞ ^ FaðB0Þð Þ

6

^
B#A

ð1�RðBÞÞ þ
_

B0\A¼B;B0 #X

FaðA \ B0Þð Þ

6

^
B#A

ð1�RðBÞÞ þ FaðBÞ

¼
^
B#A

minð1; 1�RðBÞ þ FaðBÞÞ

6

^
B#A

minð1; 1�RðBÞ þ FaðBÞÞ

¼ ½R # Fa�:

Furthermore, from Theorem 3.3 we have

CaðX;sÞ�FaðAÞ�½R#Fa=A�� fIðRÞ

6CaðX;sÞ�½R#Fa�� fIðRÞ6
_
x2X

^
xRB#A

1�RðBÞ
� �

¼
_
x2A

^
xRB#A

ð1�RðBÞÞ:
Then

CaðX;sÞ�FaðAÞ6 ½R#Fa=A�� fIðRÞ!
_
x2A

^
xRB#A

ð1�RðBÞÞ

6

^
R2IðPðAÞÞ

½R#Fa=A�� fIðRÞ!
_
x2A

^
xRB#A

ð1�RðBÞÞ
 !

¼CaðAÞ:

(2) From (1) above and Theorem 3.1, the result holds.

(3) From Theorem 3.3 [17] we have � F # Fa or
½A 2 F� 6 ½A 2 Fa�. Then we obtain

½CaðX; sÞ � A 2 F� 6 ½CaðX; sÞ � A 2 Fa� 6 CaðAÞ:

(4) From (3) above and Theorem 3.1 the result holds. h

As a corollary of the above theorem we have the following

well known theorem for classical topological spaces (see [25],
Corollary 3.5).

Theorem 4.2. Every a-closed subset of an a-compact space is a -
compact.

Theorem 4.3. Let (X,s) and (Y,r) be any two fuzzifying topo-
logical spaces and f 2 YX is surjection. Then

� CaðX; sÞ � CaðfÞ ! CðfðXÞÞ

Proof. (1) For b 2 IðPðYÞÞ, we define R 2 IðPðXÞÞ as

RðAÞ ¼ f�1ðbÞðAÞ ¼ bðfðAÞÞ. Then KðR;XÞ ¼
V
x2X

W
x2A

RðAÞ ¼V
x2X

W
x2A

bðfðAÞÞ ¼
V
x2X

W
fðxÞ2B

bðBÞ ¼
V

y2fðXÞ

W
y2B

bðBÞ ¼ Kðb; fðXÞÞ

and some calculations lead to

½b # r� � ½CaðfÞ� ¼
^
B#Y

min 1; 1� bðBÞ þ rðBÞð Þ

�
^
B#Y

min 1; 1� rðBÞ þ sa f�1ðBÞð Þð Þ

¼ maxð0;
^
B#Y

min 1; 1� bðBÞ þ rðBÞð Þ

þ
^
B#Y

min 1; 1� rðBÞ þ sa f�1ðBÞð Þð Þ � 1Þ

6

^
B#Y

maxð0;min 1; 1� bðBÞ þ rðBÞð Þ

þmin 1; 1� rðBÞ þ sa f�1ðBÞð Þð Þ � 1Þ

6

^
B#Y

min 1; 1� bðBÞ þ sa f�1ðBÞð Þð Þ

¼
^
A#X

^
f�1ðBÞ¼A

min 1; 1� bðBÞ þ sa f�1ðBÞð Þð Þ

¼
^
A#X

^
f�1ðBÞ¼A

min 1; 1� bðBÞ þ saðAÞð Þ

¼
^
A#X

min 1; 1�
_

f�1ðBÞ¼A
bðBÞ þ sa Að Þ

0@ 1A
¼
^
A#X

min 1; 1�RðAÞ þ saðAÞð Þ ¼ ½R # sa�:
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For any } 6 R, we set } 2 IðPðYÞÞ defined as

}ðfðAÞÞ ¼ fð}ÞðfðAÞÞ ¼ }ðAÞ;A#X. Then }ðfðAÞÞ ¼ fð}Þ
ðfðAÞÞ6 fðRÞðfðAÞÞ ¼ fðf�1ðbÞðfðAÞÞ6 bðfðAÞÞ;FFð}Þ ¼ 1�

V
fd 2 ½0;1� : Fð}½d�Þg ¼ 1�

V
fd 2 ½0;1� : Fðfð}Þ½d�Þg ¼ FFðfð}Þ6

FFð}Þ and Kð}; fðXÞÞ ¼
V

y2fðXÞ

W
y2B

}ðBÞ ¼
V

y2fðXÞ

W
y2B¼fðAÞ

}ðAÞPV
y2fðXÞ

W
f�1ðyÞ2A

}ðAÞ ¼
V
x2X

W
x2A

}ðAÞ ¼ Kð};XÞ.

Furthermore

½CaðX; sÞ� � ½CaðfÞ� � ½K0�ðb; fðXÞÞ�

¼ ½CaðX; sÞ� � ½CaðfÞ� � ½Kðb; fðXÞÞ� � ½b # r�

6 ½CaðX; sÞ� � ½R # sa� � ½KðR;XÞ�

¼ ½CaðX; sÞ� � ½KaðR;XÞ�

6 ½ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞ�

6 ½ð9}Þðð} 6 RÞ ^ Kð}; fðXÞÞ � FFð}ÞÞ�

6 ½ð9}0Þðð}0 6 RÞ ^ Kð}0; fðXÞÞ � FFð}0ÞÞ�;

where K0� is related to r. Therefore

½CaðX;sÞ��½CaðfÞ�6K0�ðb;fðXÞÞ!ð9}0Þðð}06RÞ^Kð}0;fðXÞÞ
�FFð}0ÞÞ6

^
b2IðPðXÞÞ

K0�ðb;fðXÞÞ
�

!ð9}0Þðð}06RÞ^Kð}0;fðXÞÞ�FFð}0ÞÞÞ
¼ ½CðfðXÞÞ�: �

Theorem 4.4. Let (X,s) and (Y,r) be any two fuzzifying topo-

logical space and f 2 YX is surjection. Then `Ca(X,s) �
Ia(f) fi Ca(f(X)).

Proof. From the proof of Theorem 4.3 we have for any

ß2 IðPðYÞÞ we define R 2 IðPðXÞÞ as RðAÞ ¼ f�1ðbÞðAÞ ¼
bðfðAÞÞ. Then KðR;XÞ ¼ Kðb; fðXÞÞ and ½b # ra� � ½IaðfÞ� 6
½R # sa�. For any } 6 R, we set } 2 IðPðYÞÞ defined as

}ðfðAÞÞ ¼ fð}ÞðfðAÞÞ ¼ }ðAÞ;A#X and we have FFð}Þ 6
FFð}Þ;Kð}; fðXÞÞP Kð};XÞ. Therefore

½CaðX; sÞ� � ½IaðfÞ� � ½K0aðb; fðXÞÞ�
¼ ½CaðX; sÞ� � ½IaðfÞ� � ½Kðb; fðXÞÞ� � ½b # ra�
6 ½CaðX; sÞ� � ½R # sa� � ½KðR;XÞ�
¼ ½CaðX; sÞ� � ½KaðR;XÞ�
6 ½ð9}Þðð} 6 RÞ ^ Kð};XÞ � FFð}ÞÞ�
6 ½ð9}Þðð} 6 RÞ ^ Kð}; fðXÞÞ � FFð}ÞÞ�
6 ½ð9}0Þðð}0 6 bÞ ^ Kð}0; fðXÞÞ � FFð}0ÞÞ�;

where K0a is related to r. Therefore

½CaðX; sÞ� � ½IaðfÞ� 6 K0aðb; fðXÞÞ
! ð9}0Þðð}0 6 bÞ ^ Kð}0; fðXÞÞ � FFð}0ÞÞ
6 inf

b2IðPðXÞÞ
K0aðb; fðXÞÞ
�

! ð9}0Þðð}0 6 bÞ ^ Kð}0; fðXÞÞ � FFð}0ÞÞÞ
¼ ½CaðfðXÞÞ�: �

As a corollary of the above two theorems we have the fol-
lowing theorem [24].
Theorem 4.5. Let (X,s), (Y,r) be two topological spaces and

f:(X,s) fi (Y,r) be a surjective mapping. If f is a-continuous
(resp. a-irresolute) and X is a-compact, then Y is compact (resp.
a-compact).

Theorem 4.6. Let (X,s) be any fuzzifying a-topological space
and A, B ˝ X. Then

(1) T a
2ðX ;sÞ�ðCaðAÞ^CaðBÞÞ^A\B¼/�wsT a

2ðX ;sÞ!ð9UÞ
ð9V ÞððU 2 saÞ^ðV 2 saÞ^ðA#UÞ^ðB#V Þ^ðU \V ¼/ÞÞ;

(2) T a
2ðX ; sÞ � CaðAÞ�wsT a

2ðX ; sÞ ! A 2 Fa, where u`
wsw

means that [u]> 0 implies [w] = 1 (see [21], Defini-

tion 3.1]).

Proof.

(1) Assume A \ B = / and T a
2ðX ; sÞ ¼ t. Let x 2 A. For any

y 2 B and k < t we have
W
fsaðP Þ ^ saðQÞ : x 2 P ;

y 2 Q; P \ Q ¼ /g ¼
W
fsaðP Þ ^ saðQÞ : x 2 P # U ; y 2 Q

# V ;U \ V ¼ /g ¼
W

U\V¼/

W
x2P # U

saðP Þ ^
W

y2Q # V
saðQÞ

( )
¼

W
U\V¼/

N a
xðUÞ ^ N a

yðV Þ
n o

P
V
x–y

W
U\V¼/

N a
xðUÞ

�
^N a

yðV Þg ¼ T a
2ðX ; sÞ ¼ t > k, i.e., there exist Py,Qy such

that x 2 Py,y 2 Qy,Py \ Qy = / and sa(Py) > k,sa

(Qy) > k. Set b(Qy) = sa(Qy) for y 2 B. Since [b
˝ sa] = 1, we have

½Kaðb;BÞ�¼ ½Kðb;BÞ�¼
^
y2B

_
y2C

bðCÞP
^
y2B

bðQyÞ¼
^
y2B

saðQyÞPk:

On the other hand, Since ½Ta
2ðX; sÞ � ðCaðAÞ ^ CaðBÞÞ� > 0;

Ta
2ðX; sÞ þ ðCaðAÞ ^ CaðBÞÞ � 1 > 0 or 1 � t < Ca(A) � Ca(B)

6 Ca(A). From Theorem 3.2 we have for any k 2 (1 � Ca(A),t),

it holds that 1� k < CaðAÞ 6 1� ½Kaðb;BÞ� þ
W
}6b
fKð};

BÞ� � FFð}Þg 6 1� kþ
W
}6b
fKð};BÞ� � FFð}Þg, i.e.,

W
}6b
fKð};

BÞ� � FFð}Þg > 0 and there exists } 6 b such that

K(},B) + FF(}) � 1 > 0, i.e., 1 � FF(}) < K(},B). Then,

§ {h:F(}h)} < K(},B). Now, there exists h1 such that

h1 < K(},B) and Fð}h1
Þ. Since } 6 b, we may write

}h1 ¼ fQy1
; . . . ;Qyn

g: We put Ux ¼ fPy1 \ . . . \ Pyng;Vx ¼
fQy1

\ . . . \Qyn
g and have Vx 	 B;Ux \ Vx ¼ /; saðUxÞP

saðPy1Þ ^ . . . ^ saðPynÞ > k because (X,s) is fuzzifying a-topo-

logical space. Also, saðVxÞP saðQy1
Þ ^ . . . ^ saðQyn

Þ > k. In

fact,
V
y2B

W
y2D

}ðDÞ ¼ Kð};BÞ > h1, and for any y 2 B, there ex-

ists D such that y 2 D and }ðDÞ > h1;D 2 }h1
. Similarly, if

k 2 (1 � [Ca(A) � Ca(B)], t), then we can find x1, . . . , xm 2 A

with U� ¼ Ux1 [ . . . [Uxm 	 A. By putting V� ¼ Vx1 \ . . .

\Vxm we obtain V� ˚ B,U� \ V�= / and

ð9UÞð9VÞððU 2 saÞ ^ ðV 2 saÞ ^ ðA#UÞ ^ ðB#VÞ ^ ðU \ V

¼ /ÞÞP saðU�Þ ^ saðV�Þ

P min
i¼1;...;n

saðUxiÞ ^ min
i¼1;...;n

saðVxiÞ > k:
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Finally, we let k fi t and complete the proof.

(2) Assume ½T a
2ðX ; sÞ � CaðAÞ� > 0. Then for any x 2 X � A

we have from (1) above that_
x2U#X�A

saðUÞP
_
fsaðUÞ ^ saðVÞ : x 2 U;A#V;U \ V

¼ /gP ½Ta
2ðX; sÞ�:

Since saðAÞ ¼
V
x2A

Na
xðAÞ (see [17], Corollary 4.1), then we have

that

FaðAÞ ¼ saðX� AÞ ¼
^

x2X�A
Na

xðX� AÞ ¼
^

x2X�A

_
x2U#X�A

saðUÞ

P ½Ta
2ðX; sÞ�: �

As a corollary of the above theorem we have the following
result in general topology.

Theorem 4.7.

(1) For any disjoint a-compact subsets A and B of an a-Haus-
dorff space X, there exist disjoint a-open sets U and V

such that A � U and B � V.
(2) Every a-compact subset of a-Hausdorff space is a-closed.

Definition 4.1. Let (X,s) and (Y,r) be two fuzzifying topologi-
cal spaces. A unary fuzzy predicate Qa 2 IðYXÞ, called fuzzify-
ing a-closedness, is given as follows:

QaðfÞ :¼ 8B B 2 FX
a ! f�1ðBÞ 2 FY

a

� �
;

where FX
a and FY

a are the fuzzy families of s, r-a-closed in X and

Y, respectively.

Theorem 4.8. Let (X,s) be a fuzzifying topological space
(Y,r) be a fuzzifying a-topological space and f 2 YX. Then
� CaðX; sÞ � Ta

2ðY; rÞ � IaðfÞ ! QaðfÞ.

Proof. For any A ˝ X, we have the following:

(i) From Theorem 4.1 we have CaðX ; sÞ � FX
a ðAÞ

� 	
6 CaðAÞ;

(ii) IaðfnAÞ ¼
^

min 1; 1� raðUÞ þ sa=Aððf=AÞ
�1ðUÞÞ

� �

U2PðYÞ

¼
^

U2PðYÞ
min 1; 1� raðUÞ þ sa=AðA \ f�1ðUÞÞ

� �

¼
^

U2PðYÞ
min 1; 1� raðUÞ þ

_
A\f�1ðUÞ¼B\A

saðBÞ

0@ 1A
P

^
U2PðYÞ

min 1; 1� raðUÞ þ saðf�1ðUÞÞ
� �

¼ IaðfÞ:
(iii) From Theorem 4.4, we have [Ca(A) � Ia(fnA)] 6
Ca(f(A)).
(iv) From Theorem 4.6 (2) we have T a
2ðY ; rÞ�

Caðf ðAÞÞ�wsT a
2ðY ; rÞ ! f ðAÞ 2 FY

a , which implies �
T a

2ðY ; rÞ � Caðf ðAÞÞ ! f ðAÞ 2 FY
a .By combining (i)–(iv)

we have

½CaðX; sÞ � Ta
2ðY; rÞ � IaðfÞ� 6 ½ðFX

a ðAÞ ! CaðAÞÞ � IaðfnAÞ
� Ta

2ðY; rÞ� 6 ½ðFX
a ðAÞ ! ðCaðAÞÞ

� IaðfnAÞÞÞ � Ta
2ðY; rÞ�

6 FX
a ðAÞ ! CaðfðAÞÞ � Ta

2ðY; rÞ
� 	

¼ FX
a ðAÞ ! FY

a ðfðAÞÞ
� 	

6

^
A#X

FX
a ðAÞ ! FY

a ðfðAÞÞ
� 	� �

¼ QaðfÞ: �

As a crisp setting from the above theorem we have

Theorem 4.9. An a-irresolute map from a-compact space to a-
Hausdorff space is a-closed.
5. Conclusion

The present paper investigates topological notions when these

are planted into the framework of Ying’s fuzzifying topologi-
cal spaces (in semantic method of continuous valued-logic).
It continue various investigations into fuzzy topology in a
legitimate way and extend some fundamental results in general

topology to fuzzifying topology. An important virtue of our
approach (in which we follow Ying) is that we define topolog-
ical notions as fuzzy predicates (by formulae of ukasiewicz fuz-

zy logic) and prove the validity of fuzzy implications (or
equivalences). Unlike the (more wide-spread) style of defining
notions in fuzzy mathematics as crisp predicates of fuzzy sets,

fuzzy predicates of fuzzy sets provide a more genuine fuzzifica-
tion; furthermore the theorems in the form of valid fuzzy
implications are more general than the corresponding theo-
rems on crisp predicates of fuzzy sets. The main contributions

of the paper are to study a-compact spaces in fuzzifying topol-
ogy and the behavior of a-compact spaces under various types
of mappings. There are some problems for further study:

(1) What is the justification for fuzzifying a-compactness in
the setting of (2, L) topologies.

(2) Obviously, fuzzifying topological spaces in [13] form a
fuzzy category. Perhaps, this will become a motivation
for further study of the fuzzy category.

(3) It would be interesting to give examples and results con-
sidering sums, hereditary and productivity, etc.
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