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Abstract In 2000 [1], Zahran introduced the concept of regular open sets in fuzzifying topology.
In 2004 [2], Sayed and Zahran, gave an example to illustrate that the statements:

() E4A€R, — 4 €1 (Lemma 2.2 [1]); and
2 E(A4€R,ABER,)— ANB € R, (Theorem 2.4 [1]),
are incorrect. In the present paper we redefine this concept to make these statements correct. Fur-

thermore, by making use of our definition of regular open sets, the concepts of almost continuity
and J-continuity are introduced and studied in fuzzifying topology.
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1. Introduction

In classical and fuzzy topology, Almost continuity, J-continuity
[3-5] have been defined and their properties have been obtained.

In 1991 [6], Ying used the semantics of fuzzy logic to pro-
pose a topology whose logical fundament is fuzzy. Proceeding
in this direction many papers have been written [1,7-9]. The
concept of regular open set in fuzzifying topology was given
in 2000 [1] by Zahran. In 2004 [2], Sayed and Zahran illustrate
by a counterexample that the statements:

M~ R.(4) (Lemma 2.2 [1]); and
@) ( (A) «(B)) < R.(ANB) (Theorem 2.4 [1)),
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are incorrect. In the present paper we redefine the concept
of regular open sets in fuzzifying topology to make these state-
ments correct. Furthermore by making use of this concept we
introduce and study the almost continuity and d-continuity in
fuzzifying topology.

For the definition of a fuzzifying topology and some of its
basic concepts used in this paper we refer to [6,8,9]. For the
definitions of the family of semi-open sets and the family of
semi-closed sets in fuzzifying topology we refer to [7].

However we recall here some of the basic concepts used in
this paper.

Definition 1.1. Let (X
Then

,7) be a fuzzifying topological space.

(1) The family of all closed sets in X is denoted by F, or Fif
there is no confusion and defined as: F.(4) =
(X —A) ¥V A € 2*, where X — A is the complement of A.

(2) The neighborhood system of x at a subset 4 of X is
denoted by ¢, ,)(4), and defined as:

1110-256X © 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Mathematical Society. Open access under CC BY-NC-ND license.
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Py (A4) = \/ 7(B) V42"

xeBCA

(3) The closure (resp. interior) of 4 is denoted by c/.(4),
(resp. int,(A),) and defined as:

el (A)(x) = 1 = ¢ (X — A)(resp. int,(A)(xX) = ¢, (A4)) ¥V 4
e2¥ vxeXx

(4) Let f € I*, where I = [0, 1]. Then
(a) The closure of fis denoted by ¢/, (f), and defined

as:
cl(f) \/(f YAl (fy))(x) YV x€X; and
2€[0,1]
(b)  The interior of fis denoted by i/nTi(f), and defined
as:

int.(f) = 1 — el (1 - /).
(5) The family of semi-open sets is denoted by St, and

defined as:
/\cl (int.(A))(x) ¥V 4 €2,

xeA

St(A) =

(6) The family of semi-closed sets is denoted by SF, and
defined as:

SF(A) = St(X — A) V 42"

(7) The degree of the convergence of a net S'in X tox € X is
denoted by S>.x, and defined as:

S x = /\(1 = Qe (4))
$24

V S € N(X),V xeX, where Sc4 means S almost in 4 and
N(X) denoted the set of all nets in X.

Definition 1.2. Let f,g € I*. The fuzzy inclusion of fin g is
denoted by [[f, g[[, and defined as:

(I gll= /\ (%)

xex

Note, that “—” is defined by:
+pB) o, pel

a— f=min(l,1 —a

2. Regular open sets and J-open sets

Definition 2.1. Let (X
Then

,7) be a fuzzifying topological space.

(1) The faanily of all regular open sets is denoted by
Rt € 1% and defined as follows:

Rr(A) = t(A) A SF(A).

(2) The family of all regular closed sets is denoted by
RF € I®) and defined as follows:

RF(A) = Rt(X— 4) V Ae2".

Theorem 2.1. Let (X, 1) be a fuzzifying topological space. Then

(D) (@)  Re(X) =1,Re(¢) = 1;
(b) Rz(ANn ) > Rt(4) A Rx(B);
(© () = Re(d),SF(4) = Re(4);

() (@) RF(X)=1,RF(¢)=1
(b) RF(AUB) > RF(A) ARF(B);
(© F(4) > RF(4),5t(4) > RF(4);
d) RF(A) = F(4) A St(A).

Proof. We just prove (1) (b). From Theorem 3.2 (1) (b) [7], we
have

Rt(AN B) =1(ANB) ASF(AN B)

= 1(A) At(B) A SF(A) A SF(B) = Rt(A) A Rt(B).

The other statements are clear. [

In 2004 [2], Sayed and Zahran illustrate by the following
example that the statements:

(1) 7(4) = Rt(4) (Lemma 2.2 [1]); and
(2) (Rt(4) NRt(B)) < Rt(ANB) (Theorem 2.4 [l]), are
incorrect.

Example 2.1. Let X = {a,b,c} and 1 be a fuzzifying topology
on X defined as t(X)=1(0)=1({a}) =1({a,c}) =1,
1({b}) = 1({a,b}) = 0 and 1({c}) = <({b,c}) =5

Sayed and Zahran have obtained the regular openness de-
gree of every A € 2¥ according to the definition of regular
open in form Rt(A4) = (4 = int.(cl.(A4))) as follows:

Rt(X) = Re(0) =1, Rt({a}) = Rt({c}) = Rt({a,b}) =
({h,c}) =% and Rr({b}) = Rt({a,c}) = 0. Therefore, as we
see  Rt({a,b}) > t({a,b}) and Rzt({a,b}N{b,c}) < Rt
({a,b}) N Rt({b, c}).

Now, we obtain the regular openness degree of every
A € 2¥ according to the definition of regular open in form
Rt(A) = 1(A4) N SF(A) as follows:

Example 2.2. Let X = {a, b, c} and 7 be a fuzzifying topology

on X that defined in Example 2.1. So, SF(X)=
SF(0) = SF({b}) =1, SF({a}) = SF({a,b}) = SF({a,c}) =0
and SF({c}) = SF({b,c}) ={. Therefore, as we see Rt(X) =

Rt(®) =1, Ri({a})= RT({b}) Rt({a,b}) = Rt({a,c}) =0
and Rt({c}) = Rt({b,c}) =1 Thus Rt(4) < 1(A) for every

A4 €2 and Rt(A4) N Rt(B) < Rr(A N B) for every A4, B € 2¥.

Definition 2.2. Let (X, t) be a fuzzifying topological space and
let x € X. The d-neighborhood system of x is denoted by
0Py € 1?Y and defined as follows:

S¢en(4) = \/ Re(B) VAe2"

xeBCA
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Theorem 2.2. Let (X, r)xbe a fuzzifying topological space. The
mapping o¢. y: X — 1% has the following properties:

(D 5‘1’(”) (X)=1and 5¢(r,x)(¢)) =0;

(2) If AC B, then ¢, ,)(4) < 0, (B);

(3) 9.y (4) = 0 whenever x ¢ 4;

(4) 6¢ () (ANB) = . (A) AP, (B);

(5) 00y (4) < Ve a(00i)(C) A N0y (C)).

Conversely, if a mapping d¢, , satisfies (4), (5), then 15 is a
fuzzifying topology which is defined as follows:

Tri(A) = /\5¢(1\)(A) VAe 2X'
x€A

Proof. It is similar to the proof of Theorem 3.2 [6]. [
Remark 2.1. 7; is called the family of d-open sets in (X, 7).

Theorem 2.3. Let (X, 1) be a fuzzifying topological space. Then,
Rt is a base for t;.

Proof. First, let A4e2* Then
/\xeBVxeB;ART(B) > Rt(A). Second,

\/ (i) =\ o, (H)

xeHCA xeH C AyeH
\/ Re(B)

\ d¢.yH) < \/

XeEHCA xXeHC AxeBCH

\/ Ru(B)< \/ Ru(B).

HC AxeBCH XEBC A

%5(A4) = NeaPer) =

d)(r(y,x) (A) =

N

N

Then from Theorem 4.1 [7], Rt is a base for t5. [

Theorem 2.4. Let (X, 1) be a fuzzifying topological space. Then
vAde2¥vxekx,

6¢(r,x) (A) = ¢(‘[0.X) (A) .

Proof. From Theorem 2.3, we have ¢, ,(4) < d¢, (4) ¥V
A4 e2¥ VxeX Now,

5¢(f.x)(A) = \/ Re(B) < \/ 15(B) :qs(r(;,x)(A)‘ O

xeBCA xeBCA

3. Almost continuity and J-continuity in fuzzifying topology

Definition 3.1. Let (X,t) and (Y, 0) be two fuzzifying topo-
logical spaces. The unary fuzzy predicates AC,6C € 1) are
called fuzzy almost continuity and fuzzy J-continuity, respec-
tively, and defined as follows:

(1) AC(f) = Npeor (Ro(B)—1(f~'(B))):
(2) 0C(f) = Nperr (Ro(B)—15(f~'(B)))-

Theorem 3.1. Let (X, 1) and (Y, 0) be two fuzzifving topological
spaces. For any f € Y*, we set

(1) AC\(f) = Nperr (RFo(B))—F.(f(B));

(2) AC(f) = Niex Nverr (00 6.50) (U)— (3¢ (f 1 (U))):
(3) AC5(f) = Arex Averr (00650 (U)— Ny c p-10) (60 (V)
(4 AC4(f) = Niex Nsen) (Spex—(f 0 S)>g, f(x));

(5) ACs(f) = Nyerr [[f (cl:(4)), cloy (f (A))[[s

(6) ACs(f) = Nperr [lcl:(f(B)), £~ (el (B))[;

(7) AC1(f) = Naerr [If " (int, (4)) int (f 1 (4))[[-

Then AC(f) = ACi(f),i=1,2,3,4,5,6,7.
Proof.

(1) We want to prove that AC(f) = AC,(f). Now,
AC\(f) = )\ (RF,(B))—F.(/"\(B))

= /\,min(l,l — RF,(B) + F.(f"'(B)))
= A min(1,1 - Re(Y — B) + (X — /(B)))
= A min(1,1 - Re(Y = B) + (/"' (Y — B)))

= /\ min(1,1 = Ro(U) + (f~'(U))) = AC().

ve2¥

(2) To prove that AC(f) = ACy(f).
AC(f) < ACy(f).  Suppose  that
G ey(f 1 (U)). Then we obtain that

min(l, 1 - 6¢(rr/(¥))(U) + (i)(f,x)(f‘il (U))) =1L

Therefore, the result holds. Now, suppose that 66, ), (U) >
Gy (f1(U)). We prove that

min(1, 1 = 0, 1) (U) + 0 (17 (U))) = AC().
If f(x) € AC U, then x € f7'(4) C/ (V). So
3asoy (V)= e (I (V)= \/ Ra(4)— \/ <(B)

First, we prove
0 (es)(U) <

flx)edcU xeBCf1(U)
<\ Ro(4)- (f1(4))
flx)eAcU flx)edcU
<\ (Ro(4)—<(/'(4))).
flx)edAcU
Then
1_5¢(n,/(.\‘))(U)+¢(1,.\‘)(le({])) = /\ (1—Ra(A4)+(f' (4))).
flX)eACU
So

min(1, 1 = 6¢, 1), (U) + ¢(r.x)(fL1(U)))
> /\ min(1,1 — Ra(4) + 1(f~'(4)))

flx)edcU
> A\ min(1,1 = Re(V) + (/"' (V) = AC()).
ve2¥
Hence,
/\ /\ min(1, 1 =0, 1) (U) + ¢ (f(U))) = AC(f).
xeXyer”

Second, we prove AC(f) = AC,(f).
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(3) We will prove that AC,(f)
(3) [6] we have

\/ ¢(Lx) ( V) = \/ d’(f,x) ( V)

= AC;(f). From Theorem 3.2

= ey (V).

veX, fivycu ve2X . v f~1(U)
Then,
AG(f) = /\ /\ min(1, 1 — 0, 1) (U) + \/ Gy (V))
xeXye2? vexX fivycu
xeXyerY
= ACZ(/‘)).

(4) We prove that AC,(f) < AC4(f), it suffices to show that
for any x € X and S € N(X),

Stox + fo Sb,f(x)) = AC(f),

In fact, if S>.x < foSb,,f(x), it is obvious. Assume
Se.x > fo S, f(x). Since fo S¢B implies S%/~'(B), then

min(1,1 —

S x — fo S, f(x)

= /\ (1 - d)(r,x)(A)) - /\ (1 - 5¢(J,f(x))(B))

Ae2X, SZA Be2Y,| foSZB
< /\ (1= (B) — /\ (1 =00 1) (B))
Be2Y, foSZB Be2Y, foSYB
< \/ (00115 (B) = D) (7'(B))),
Be2Y, foSZB
So,
min(l, 1 — S>.x + fo S, f(x))
Be2Y foSYB
= /\ /\ min(1, 1 = 66, 7. (U) + ¢(t,x)<f_l(U)))
xeXye2¥
= AG(f). O

(5) We will prove that AC4(f) < ACs(f). Since ACs(f)
= N [lf (cl:(4)),cls;(f(4)) [[= Auerr/\yey min(1, 1
—f(cl(4)) + cls;(f(4))), then the result holds if we
proved that for every 4 € 2% and every y € 7Y,
min(l, 1 — f(cl.(4)) + cl,;(f(4))) = ACs(f). If
flcl: (4)) < clg(f(4)), the result holds. Now,
suppose that f(cl.(4)) > cl;(f(4)). Then from
Theorem 6.1 (2) [6], we have

flel(A)) = clo, (flA)) = \/ cl(A) = cl,, (f(4))

fx)=y
\/ \/ Sbox — \/ >4,y
flx)=y SCA4 TCf4)

<V Vseax— \/ foSe,y
flx)=yp SCA4 f(8) Cf(4)

<V Vsex—\/ \foSeay
flx)=y SC4 flx)=y SC4

<V V (Seex —foSbg).
fx)=y SC4

Therefore,

min(1, 1 = f{cl:(4)) + cls, (f(4)))

> A /\ min(1,1 = Sbox+ [0 Sb, /()
fx)=ySc 4

> N\ A\ min(1,1= Seox+fo by f(x) = AC4().
XEXSEN(X)

(6) We will prove that ACs(f) < ACs(f). Now, for any
B C Y one can deduce that

([el: (7~ (B)).f~ (flel-(f (B)))[= L [lele, (1 (B))) ley (B)[[=1
and [/~ (cly, (/U7 (B))))./"" (cl, (B))[[= 1.

So, from Lemma 1.2 (2) [9] we have
([l (1" (B))of " (clo, (BDI[ = I (el (' (B))))S ™ (clo, (B))]]
> ([ (el (f 1 (B))) S (el (FF - (B))I
= (el (1 (B), el (FF (B,

Therefore,

ACs(N) =\ [lel-(r" (B).f

Be2"

> N\ Ak (B)), cloy (U BN

Be2Y

H(clo,(B))I

> N [[fel(4)), ey, (f1A) [[= ACs(1).

Ae2X

(7) We prove that ACs(f)

— AC(f).
ACé(f) = /\ [[le(le(B))vfgl(Claﬁ(B))H

= A\ /A min(1,1-(1

Be2VxeX
+ (1 =000y (Y = B)))

= A\ A\ min(1,1 =8¢, (Y B)

Be2VxeX

+ ‘/’<fﬁx)(le(Y—B)))
= A\ Amin(1,1 =600, (U) + b (/7 (1))

Ue2VxeX

— b (X —f7(B)))

(8) We prove that AC;(f) = ACy(f).
AC;(f) = /\ /\mm (1,1 — int,, (A) (f(x)) + int. (' (4))(x))

Ae2VxeX
= /\ /\ min(1, 1 = 66, ) (A4) + Py (r'(4)))
Aex¥xeX

= AG(f). O
Theorem 3.2. For any € Y*,C(f) < AC(f), where C(f) is the
fuzzy continuity of f.
Proof. It follows from Theorem 2.1 (1) (c). O

Theorem 3.3. Let (X,1),(Y,0) and (Z,n) be three fuzzifying
topological spaces. Then for any f€ Y* and for any g€ Z"¥
we have

(1) C(f) < (4C
(2) AC(g) <

(g§)—A4C(go f));
(C(f)—AC(g o [)).
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Proof.
(1) If AC(g) < AC(gof), the result holds, if AC(g) >
AC(gof), then
AC(g) = AC(gof)] = /\ min(1,1 - RE(v) + (g™ ()
— /\ min(1,1 — REW) +1((g0 /) (v))
< \/(G(g’l(V)) —((go ' ()
= \/ ) = (' (g7 ()
< \/ (o) = (' ()

Therefore,
AC(g)—AC(go /) =min(1,1 — AC(g) + AC(g o))
> A min(1,1 = o(u) + (/" () = C(/).

(2)  AC(g)—(C()—AC(go/))

= AC(g)—~(C(f) ©® ~(AC(g o f)))

= ~(4C(g) © ~=(C(f) © ~(4AC(g 0 /))))
~(4C(g) © C(f) © ~(4C(g 0 f)))
(C(f) © AC(g) © ~(4C(g 1))
(C(f) © =(AC(g) ® ~(AC(g 2 f))))
()——(4C(g) © ~(4C(g o f)))
(f)—(4C(g)—AC(gof)). O

[ | ||
aad J

Theorem 3.4. Let (X, 1) and (Y, 0) be two fuzzifying topological
spaces. For any f € Y, we set

(1) 0Ci(f) = Nperr (RF4(B))—F+,(f~(B)):

(2) 0Cy(f) = Npex Nscrr (0o 10y (B))—(3¢oy (f ' (B)));
(3) oCsi(f ):/\Bex/\ggzy(5¢ (0./(x)) ( ))—’VVC/ (5¢ r,x)(V));
4 0C4(f) = /\xeX/\SeN (Sbfox—>(fOS)l> ( );

(5) oCs(f) = /\BEZY[[leé(f '(B)),f ! (cl,,(B ))H;

(6) 0Cs(f) = /\AEZX[[f(Cl‘Eo A)),clo, (f(4))[[:

(1) 0C3(f) = Nuerr [If " (int, (4)) it (f 1 (A))[[-

Then 6C(f) = 6Ci(f),i =1,2,3,4,5,6,7.
Proof. It is similar to the proof of Theorem 3.1. [

Theorem 3.5. Let (X,1), (Y,0) and (Z,n) be three fuzzifying
topological spaces. Then for any f€ Y* and for any g€ Z*
we have

(1) 6C(f) < (0C(g)—0C(g o f));
(2) 6C(g) < (6C(f)—0C(g o f))-

Proof. It is similar to the proof of Theorem 3.3. [

4. Conclusion

The concept of regular open set in fuzzifying topology was gi-
ven in 2000 [1] by Zahran. In 2004 [2], Sayed and Zahran illus-
trate by a counterexample that the statements:

(1) 7(4) = R.(4) (Lemma 2.2 [1]); and
() (R.(4) AR.(B)) < R.(4 N B) (Theorem 2.4 [1]),

are incorrect. So, we note, if we extend the equivalent def-
inition of regular open sets in general topology to fuzzifying
topology these statements will be correct. Furthermore, as
application of this concept we introduce and study the almost
continuity and J-continuity in fuzzifying topology.

In future, we hope to study this work in the framework of
L-fuzzifying topological spaces “where L is a complete resid-
uated lattice”.

In the end, we would like to point that Definition 2.1 above
and the definition of regular open by Zahran [1], are equivalent
in general topology but it are Independent in fuzzifying
topology.
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