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Abstract Granulation of a universe involves grouping of similar elements into granules. With

granulated views, we deal with approximations of concepts, represented by subsets of the universe,

in terms of granules. This paper examines the problem of approximations with respect to various

granulations of the universe. The granulation structures used by rough set theory, neighborhood

systems and topological space and the corresponding approximation structures, are studied.
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1. Introduction

Granular computing may be regarded to as a label of the family

of theories, methodologies, and techniques that make use of
granules, i.e., groups, classes, or clusters of a universe, in the
process of problem solving [1]. The basic ideas of granular com-

puting have appeared in many fields, such as interval analysis,
quantization, rough set theory, Dempster–Shafer theory of be-
lief functions, divide and conquer, cluster analysis, machine

learning, databases, information retrieval, and many others
[2,3]. There are many reasons for the study of granular comput-
ing [2]. The practical necessity and simplicity in problem solving
are perhaps some of themain reasons.When a problem involves

incomplete, uncertain, or vague information, it may be difficult
to differentiate distinct elements and one is forced to consider
granules. Although detailed information may be available, it
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may be sufficient to use granules in order to have an efficient
and practical solution. Very precise solutions may not be re-

quired for many practical problems. The use of granules gener-
ally leads to simplification of practical problems. The
acquisition of precise information may be too costly, and
coarse-grained information reduces cost. There is clearly a need

for the systematic studies of granular computing. It is expected
that granular computing will play an important role in the de-
sign and implementation of efficient and practical intelligent

information systems. Lin [4] and Yao [5] studied granular com-
puting using neighborhood systems for the interpretation of
granules. Pawlak [6], Polkowski and Skowron [7], and Skowron

and Stepaniuk [8] examined granular computing in connection
with the theory of rough sets. The theories of rough sets and
neighborhood systems provide convenient and effective tools

for granulation, and deal with some fundamental granulation
structures. In the rough set theory, one starts with an equiva-
lence relation. A universe is divided into a family of disjoint sub-
sets. The granulation structure adopted is a partition of the

universe. By weakening the requirement of equivalence rela-
tions, we can have more general granulation structures such
as coverings of the universe. Neighborhood systems provide

an even more general granulation structure. For each element
of a universe, one associates it with a nonempty family of neigh-
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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borhood granules, which is called a neighborhood system. It of-
fers a multi-layered granulation of the universe, which is a nat-
ural generalization of the singlelayered granulation structure

used by rough set theory. With the granulation of universe,
one considers elements within a granule as a whole rather than
individually [3]. The loss of information through granulation

implies that some subsets of the universe can only be approxi-
mately described. Topology is also a mathematical tool to study
information systems and rough sets [9,10]. In theory of rough

sets, a pair of lower and upper approximation is typically used.
The approximations are expressed in terms of granules accord-
ing to their overlaps with the set to be approximated. Based on
this idea, the main objective of the paper is to study the three re-

lated issues of granulation and approximation. The granulation
structures used by theories of rough sets, neighborhood systems
and topological space are analyzed and compared, and the cor-

responding approximation structures are investigated.

2. Granulations and approximations

From view of points of rough sets, this section examines con-
nections between granulations and approximations.

2.1. Rough sets: granulation by partitions

Let U be a finite and nonempty set called the universe, and let
E ˝ U · U denote an equivalence relation on U. The pair

apr = (U, E) is called an approximation space. The equiva-
lence relation E partitions the set U into disjoint subsets. This
partition of the universe is denoted by U/E. The equivalence
relation is the available information or knowledge about the

objects under consideration. If two elements x, y in U belong
to the same equivalence class, we say that x and y are indistin-
guishable. Each equivalence class may be viewed as a granule

consisting of indistinguishable elements, and it is also referred
to as an equivalence granule. The granulation structure in-
duced by an equivalence relation is a partition of the universe.

An arbitrary set X ˝ U may not necessarily be a union of some
equivalence classes. This implies that one may not be able to
describe X precisely using the equivalence classes of E. In this

case, one may characterize X by a pair of lower and upper
approximations:

aprðXÞ ¼
[
½x�E #X

½x�E;

aprðXÞ ¼
[

½x�E\X – /

½x�E;

where [x]E = {yŒxEy}, is the equivalence class containing x.
The lower approximation apr(X) is the union of all the equiv-
alence granules which are subsets of X. The upper approxima-

tion aprðXÞ is the union of all the equivalence granules which
have a nonempty intersection with X.

Equivalence classes of the partition U/E are called the ele-

mentary granules. They represent the available information.
All knowledge we have about the universe are about these ele-
mentary granules, instead of about individual elements. With

this interpretation, we also have knowledge about the union
of some elementary granules. The empty set / and the union
of one or more elementary sets are usually called definable, ob-
servable, measurable, or composed sets. In this study, we call

them granules. The set of all granules is denoted GK(U), which
is a subset of the power set 2U. By extending equivalence class
of x as given above to a subset X ˝ U, we have:

½X�E ¼
[
x2X
½x�E:

Thus, each element of GK(U) may be viewed as the equiv-
alence granule containing a subset of U, and the set GK(U)
is defined by:

GKðUÞ ¼ f½X�EjX#Ug:

The set of granules GK(U) is closed under both set intersec-
tion and union.

For an element G 2 GK(U), we have:

aprðGÞ ¼ G ¼ aprðGÞ:

For an arbitrary subset X ˝ U, we have the following equiv-
alent definition of rough set approximations:

aprðXÞ ¼
[
fGjG#X;G 2 GKðUÞg;

aprðXÞ ¼
\
fGjX#G;G 2 GKðUÞg:

This definition offers another interesting interpretation.

The lower approximation is the largest granule contained in
X, where the upper approximation is the smallest granule con-
taining X. They therefore represent the best approximation of
X from below and above using granules.

2.2. Generalized rough sets: granulation by coverings

Granulation of the universe by family of disjoint subsets is a

simple and easy to analyze case. One may consider general
cases by extending partitions to coverings of the universe, or
by extending equivalence relations to arbitrary binary rela-

tions. In this section, we use the covering induced by a reflexive
binary relation. Let R ˝ U · U be a binary relation on U. For
two elements x, y in U, if xRy, we say that y is R related to x. A

binary relation may be more conveniently represented using
right neighborhoods:

xR ¼ fy 2 UjxRyg:

But we will use a minimal neighborhood of a point x [11] in
the form:

hxiR ¼
\
x2yR

yR:

When R is an equivalence relation, ÆxæR is the equivalence class
containing x. When R is a reflexive relation, the family of the

neighborhoodsU/R= {ÆxæRŒx 2 U} is a covering ofU, namely,
¨x2UÆxæR= U. The binary relation R represents the similarity
between elements of a universe. It is reasonable to assume that

similarity is at least reflexive, but not necessarily symmetric
and transitive [12]. For the granulation induced by the covering
U/R, rough set approximations can be defined by generalizing

Pawlak definitions. The equivalence class [x]E may be replaced
by the minimal neighborhood of xÆxæR as the following:

aprðXÞ ¼
[

hxiR#X

hxiR;

aprðXÞ ¼ ½aprðXcÞ�c;¼ fx 2 Uj9yj½x 2 hyiR; hyiR#Xc�gc

¼ fx 2 Uj8yj½x 2 hyiR) hyiR�Xc�g
¼ fx 2 Uj8yj½x 2 hyiR) hyiR \ X – /�g:
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In this definition, we generalize the lower approximation
and define the upper approximation through duality, where
Xc denotes the complementation of X in U. In general,

aprðXÞ is different from the straightforward generalization
aprðXÞ ¼

S
hxiR\X – /hxiR. While the lower approximation is

the union of some new successor neighborhoods, the upper

approximation cannot be expressed in this way. Similar to
the case of partition, we call the elements of a covering elemen-
tary granules. The empty set / or the union of some elemen-

tary granules is referred to as a granule. For a subset X ˝ U,
we define:

hXiR ¼
[
x2X
hxiR;

which is the neighborhood of X. The set of all such neighbor-

hoods is given by:

GKðUÞ ¼ fhXiRjX#Ug:
Proposition 1. The set GK(U) is closed under both set
intersection and union.

Proof. Let G1, G2 in GK(U) we want to show that G1 \ G2,
G1 [ G2 in GK(U). Firstly, we have G1 = ÆX1æR and

G2 = ÆX2æR, if x 2 G1 \ G2 then, x 2 ÆX1æR and x 2 ÆX2æR,
hence ÆxæR ˝ ÆX1æR and ÆxæR ˝ ÆX2æR for all x 2 G1 \ G2,
i.e., ÆxæR ˝ (ÆX1æR \ ÆX2æR) for all x 2 G1 \ G2, thus

G1 \ G2 2 GK(U). Secondly, if x 2 G1 [ G2 then, x 2 ÆX1æR
or x 2ÆX2æR, hence ÆxæR ˝ÆX1æR or ÆxæR ˝ ÆX2æR for all
x 2 G1 [ G2, i.e., ÆxæR ˝ (ÆX1æR [ÆX2æR) for all x 2 G1 [ G2,
thus G1 [ G2 2 GK(U). h

The complemented system:

GKcðUÞ ¼ fGcjG 2 GKðUÞg

is also closed under both set intersection and union. In fact,
GKc(U) is a closure system. For an element G 2 GK(U), i.e.,
Gc 2 GKc(U), we have:

aprðGÞ ¼ G;

aprðGcÞ ¼ Gc:

In general, G ¼ aprðGÞ– aprðGÞ and aprðGcÞ – aprðGcÞ
¼ Gc for an arbitrary G 2 GK(U). By these properties, we refer
to the elements of GK(U) as inner definable granules, and the
elements of GKc(U) as outer definable granules. Using these

granules, we have another equivalent definition:

aprðXÞ ¼
[
fGjG#X;G 2 GKðUÞg;

aprðXÞ ¼
\
fGjX#G;G 2 GKcðUÞg:

The lower approximation is the largest inner definable
granule contained in X, and the upper approximation is the
smallest outer definable granules containing X. They are re-

lated to the definition for the case of partitions, in which
GK(U) and GKc(U) are the same set. For a covering, the set
GK(U) \ GKc(U) consists of both inner and outer definable

granules. Obviously, /, U 2 GK(U) \ GKc(U).

Proposition 2. Let R be a reflexive binary relation, then the
lower and the upper approximations,
aprðXÞ ¼
[
fGjG#X;G 2 GKðUÞg;

aprðXÞ ¼
\
fGjX#G;G 2 GKcðUÞg:

Satisfy the following condition:

L1: aprðX Þ ¼ ½aprðX cÞ�c.
L2. apr(U) = U.
L3. apr(X \ Y) = apr(X) \ apr(Y).
L4. apr(X [ Y) apr(X) [ apr(Y).

L5. X � Y) apr(X) � apr(Y).
L6. apr(/) = /.
L7. apr(X) � X.

L9. apr(X) � apr (apr(X)).
U1: aprðX Þ ¼ ½aprðX cÞ�c.
U2: aprð/Þ ¼ /.
U3: aprðX [ Y Þ ¼ aprðX Þ [ aprðY Þ.
U4: aprðX \ Y Þ � aprðX Þ \ aprðY Þ.
U5: X � Y ) aprðX Þ � aprðY Þ.
U6: aprðUÞ ¼ U .
U7: X � aprðX Þ.
U9: aprðaprðX ÞÞ � aprðX Þ.

Proof. We give only the proves of (L1–L7) and (L9).

(L1)

½aprðXcÞ�c ¼
\
fGjXc #G;G 2 GKcðUÞg

h ic

¼
[
fGjXc #G;G 2 GKcðUÞgc

¼
\
fGjXc #Gc;G 2 GKðUÞg

¼
\
fGjG#X;G 2 GKðUÞg ¼ aprðXÞ:

(L2) Since apr(U) ˝ U, we want to show that U ˝ apr(X).

Let x 2 U, since U 2 GK(U) and U 2 U, then x 2 apr(X),
i.e., U ˝ apr(X).

(L3)

aprðX \ YÞ ¼
[
fGjG#X \ Y;G 2 GKðUÞg

¼
[
fGjG#X and G#Y;G 2 GKðUÞg

¼
[
fGjG#X;G 2 GKðUÞg

� �

\
[
fGjG#Y;G 2 GKðUÞg

� �

¼ aprðXÞ \ aprðYÞ:

(L4) Suppose x R apr(X [ Y), there is no G 2 GK(U) and
x 2 G such that G ˝ X [ Y. So there is no G 2 GK(U) and

x 2 G such that G ˝ X and G ˝ Y, hence x R apr(X) [
apr(Y). Thus we have apr(X) [ apr(Y) ˝ apr(X [ Y).
(L5) Assume that X ˝ Y. If x 2 apr(X), then there is

G 2 GK(U) and x 2 G such that G ˝ X. But X ˝ Y, thus
G ˝ Y and so x 2 apr(Y), i.e., apr(X) ˝ apr(Y).
(L6) Since / ˝ apr(/) we want to show that apr(/) ˝ /. Let
x 2 apr(/), then there is G 2 GK(U) and x 2 G such that
G ˝ /, which is a contradiction, i.e., apr(/) = /.
(L7) Let x 2 apr(X), then there is G 2 GK(U) and x 2 G
such that G ˝ X, hence x 2 X, thus, apr(X) ˝ X.

(L9) Since apr(X) = ¨ {GŒG ˝ X, G 2 GK(U)}, then from
Proposition 1 we have apr(X) 2 GK(U) and for every
G ˝ X we get G ˝ apr(X), thus, apr(X) = ¨ {GŒG ˝
apr(X),G 2 GK(U)} = apr(apr(X)). h
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Proposition 3. Let R be a reflexive binary relation, then the fol-

lowing properties do not hold generally:

(L8) X � aprðaprðX ÞÞ.
(L10) aprðX Þ � aprðaprðX ÞÞ.
(U8) aprðaprðX ÞÞ � X .
(U10) aprðaprðX ÞÞ � aprðX Þ.
Example 1 (Examples of the above properties do not hold). Let
R= {(a, a), (a, b), (b, b), (c, b), (c, c), (d, e), (d, d), (e, e), (e, c)}
be any reflexive binary relation on a nonempty set U = {a, b,

c, d, e}. Then, ÆaæR= {a, b}, ÆbæR= {b}, ÆcæR= {c},
ÆdæR = {d, e} and ÆeæR = {e}. Thus, GK(U) = {/, U, {b},
{c}, {e}, {a, b}, {d, e}, {b, c}, {b, e}, {c, e}, {a, b, c}, {a, b,
e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, d, e}, {a, b, c, e}, {b, c,

d, e}} and GKc(U) = {/, U, {a}, {c}, {d}, {a, b}, {a, c}, {a,
d}, {c, d}, {d, e}, {a, b, d}, {a, c, d}, {a, d, e}, {a, b, c}, {c, d,
e}, {a, b, c, d}, {a, b, d, e}, {a, c, d, e}}.

(L8) Let X= {b, c, d}, we have aprðX Þ ¼ fa; b; c; dg and
aprðaprðX ÞÞ ¼ fa; b; cg, so, X � aprðaprðX ÞÞ.
(L10) For X = {b, c, d}, aprðX Þ ¼ fa; b; c; dg. But
aprðaprðX ÞÞ ¼ fa; b; cg, so, aprðX Þ� aprðaprðX ÞÞ.
(U8) Let X= {b, c, d}, we get apr(X) = {b, c} and
aprðaprðX ÞÞ ¼ fa; b; cg, so, aprðaprðX ÞÞ� X .

(U10) For X= {b, c, d}, apr(X) = {b, c}. But
aprðaprðX ÞÞ ¼ fa; b; cg, so, aprðaprðX ÞÞ� aprðX Þ.
Definition 1 13. Let (U, s) be a topological space, a closure
(resp. interior) operator cl: U fi 2U (resp. int: U fi s) satisfy
the Kuratowski axioms iff for every X, Y 2 U the following
hold:

(1) cl(/) = / (resp. int(U) = U),

(2) cl(X[Y)= cl(X)[ cl(Y) (resp. int(X\ Y)= int(X)\
int(Y)),

(3) X ˝ cl(X) (resp. int(X) ˝ X),

(4) cl(cl(X)) = cl(X) (resp. int(X) = int(int(X))).

Theorem 1. The pair of new lower and upper approximations are
a pair of interior and closure operators satisfying Kuratowski

axioms.

Proof. The proof follows from Definition 1 and Propositions
2. h
3. Granulations and neighborhood systems

In the theory of rough sets, single-layered granulation struc-
tures of the universe are used. The granulated view of the uni-
verse is based on a binary relation representing the simplest
type of relationships between elements of a universe. Two ele-

ments are either related or unrelated. The notion of neighbor-
hood systems is used to derive more general granulation
structures on the universe. Two granulation structures are de-

fined from a neighborhood system. One is a single covering of
the universe, and the other is a layered family of coverings of
the universe.

The concept of neighborhood systems was originally intro-
duced by Sierpenski and Krieger [13] for the study of Féchet
(V) spaces. Lin [14,4] adopted it for describing relationships
between objects in database systems. Yao [5] used the notion
for granular computing by focusing on the granulation struc-

tures induced by neighborhood systems.
For an element x of a finite universe U, one associates with

it a subset n(x) ˝ U called the neighborhood of x. Intuitively

speaking, elements in a neighborhood of an element are some-
what indiscernible or at least not noticeably distinguishable
from x. A neighborhood of x may or may not contain x. A

neighborhood of x containing x is called a reflexive neighbor-
hood. We are only interested in reflexive neighborhoods of x to
accommodate the intuitive interpretation of neighborhoods. A
neighborhood system NS(x) of x is a nonempty family of

neighborhoods of x. Distinct neighborhoods of x consist of
elements having different types of, or various degrees of, sim-
ilarity to x. A neighborhood system is reflexive, if every neigh-

borhood in it is reflexive. Let NS(U) denote the collection of
neighborhood systems for all elements in U. It determines a
Féchet (V) space, written (U, NS(U)). There is no additional

requirements on neighborhood systems.
Neighborhood systems can be used to describe more gen-

eral types of relationships between elements of a universe

[5,16]. A binary relation can be interpreted in terms of 1-neigh-
borhood systems, in which each neighborhood system contains
only one neighborhood. More precisely, the neighborhood sys-
tem of x is given by

NSðxÞ ¼ hxiR:

If R is a reflexive relation, one obtains a reflexive neighbor-
hood system which is the covering U/R. If R is an equivalence
relation, the neighborhood ÆxæR is the equivalence class con-

taining x, and the neighborhood system is the partition U/R.
With the introduction of multi-neighborhood, we consider var-
ious granulations and the corresponding approximations.

A simple method for defining approximations is to con-
struct a covering of the universe by using all neighborhoods
in every reflexive neighborhood system:

C0 ¼
[
x2U

NSðxÞ ¼ fnðxÞjnðxÞ 2 NSðxÞ; x 2 Ug:

Each granule in C0 is a neighborhood of an element of U.
The approximations are defined by:

aprC0
ðXÞ ¼

[
nðxÞ#X

nðxÞ;

aprC0
ðXÞ ¼ ðaprc0ðXcÞÞc:

A disadvantage of this formulation is that it uses a single-
layered granulation structure, and does not make full use of
the information provided by neighborhood systems. In a

neighborhood system, different neighborhoods represent dif-
ferent types or degrees of similarity. Such information should
be taken into consideration in the approximation. From a

neighborhood system of the universe, we may construct a fam-
ily of coverings of the universe. Instead of using all neighbor-
hoods, each covering is obtained by selecting one particular

neighborhood of each element, i.e.,

C ¼ fnðxÞ; . . . ; nðyÞ; nðzÞg;

where n(x) 2 NS(x), . . . ,n(y) 2 NS(y),n(z) 2 NS(z) for x, . . . ,y,
z 2 U. In this way, we transform a neighborhood system into
a family of 1-neighborhood systems FC(U). An order relation

� on FC(U) can be defined as follows, for C1, C2 2 FC(U),
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C1 � C2 () nC1
ðxÞ# nC2

ðxÞ; for all x 2 U:

The covering C1 is finer than C2, or C2 is coarser than C1.
For each granule in C2, one can find a granule in C1 which is at

least as small as the former. It can be verified that � is reflex-
ive, transitive, and antisymmetric. In other words, � is a par-
tial order, and the set FC(U) is a poset. Thus, we have obtained

a family of multi-layered coverings, which in turn produces
multi-layered granulations of the universe.

For each covering C 2 FC(U), we can define a pair of lower
and upper approximations:

aprCðXÞ ¼
[

G2C;G#X

G;

aprCðXÞ ¼ ðaprCðXcÞÞc:

With the poset FC(U), we obtain multi-layered approxima-

tions. Approximations in various layers satisfy the property:
C1 � C2)

aprC2
ðXÞ# aprC1

ðXÞ;
aprC1

ðXÞ# aprC2
ðXÞ:

A finer covering C1 produces a better approximation than a
coarser covering C2. In the above formulation, we have trans-

formed general reflexive neighborhood systems into a family of
reflexive 1-neighborhood systems. This enables us to apply the
results about approximations from the theory of rough sets.

Our formulation is indeed based on two basic granulation
structures, i.e., partitions and coverings of the universe. They
are interpreted by using equivalence and reflexive relations.
Consequently, two types of approximations are examined.

The use of nested sequences of binary relation has also been
discussed bymany authors.Marek andRasiowa [15] considered
gradual approximations of sets based on a descending sequence

of equivalence relations. Pomykala [16] used a sequence of toler-
ance relations (i.e., reflexive and symmetric relations). Some re-
cent results on this topic were given by Yao and Lin [17]. The

results reported in this paper are more general.

4. Granulations and topological space

In this section, we introduce the connections between granula-
tions and approximations from the topological point of view.

Zhu in [18] defined a new type of covering-based rough sets

from a topological concept called neighborhood. The authors
in [11] introduced a new definition for binary relation-based
rough sets.

But if we consider the finite intersections of right neighbor-

hoods as granule, the set of granules form a classical topology
(in other words, right neighborhood is a sub-base). So, we
present a new type of covering-based granulation from view

of points of topological space.
Let us consider the pair (U,B), whereB = {R1,R2, . . . ,Rn} is

a family of general binary relations on the universeU.WhenB is

a family of equivalence relations, Pawlak call it knowledge base
andLin call the general case binary knowledge base in [4]. As the
term ‘‘knowledgebase’’ oftenmeans something else, Lin begin to
use the generic name granular structure [5,6].Wewill use knowl-

edge structure and granular structure interchangeably.
Next, we will consider the topological space for each binary

relation; we will call it the topological space of the binary rela-

tion. We denote the base bR = {ÆxæR: x 2 U} that is generated
by the binary relation R. In this case, one may characterize X
by a pair of lower and upper approximations:

aprðXÞ ¼
[

hxiR #X

hxiR;

aprðXÞ ¼ ½aprðXcÞ�c ¼
[
fhxiRjhxiR#Xcg

� �c

¼
\
fhxiRjhxiR#Xcgc

¼
\
fU� hxiRjX#U� hxiRg:

where ÆxæR is an element of the base bR of the topology sR,
which generated by the binary relation R. Obviously, if R is
an equivalence relation, ÆxæR= [x]R and these definitions are
equivalent to the original Pawlak’s definitions.

Lemma 1. For any binary relation R on U if x 2 ÆyæR, then
ÆxæR ˝ ÆyæR.

Proof. Let z 2ÆxæR= \ x2wR(wR). Then z is contained in any
wR which contains x, and since also x is contained in any uR

which contains y, then z is contained in any uR which contains
y, i.e., z 2 ÆyæR. Then ÆxæR ˝ ÆyæR. h

Proposition 4. Let R be a reflexive binary relation, then the

lower and the upper approximations,

aprðXÞ ¼
[

hxiR #X

hxiR;

aprðXÞ ¼
\
fU� hxiRjX#U� hxiRg:

Satisfy the following condition:

(L1) aprðX Þ ¼ ½aprðX cÞ�c.
(L2) apr(U) = U.
(L3) apr(X \ Y) = apr(X) \ apr(Y).

(L4) apr(X [ Y) apr(X) [ apr(Y).
(L5) X � Y) apr(X) � apr(Y).
(L6) apr(/) = /.
(L7) apr(X) � X.

(L9) apr(X) � apr (apr(X)).
(U1) aprðX Þ ¼ ½aprðX cÞ�c.
(U2) aprð/Þ ¼ /.
(U3) aprðX [ Y Þ ¼ aprðX Þ [ aprðY Þ.
(U4) aprðX \ Y Þ � aprðX Þ \ aprðY Þ.
(U5) X � Y ) aprðX Þ � aprðY Þ.
(U6) aprðUÞ ¼ U .
(U7) X � aprðX Þ.
(U9) aprðaprðX ÞÞ � aprðX Þ.
Proof. The proof is similar to that of Proposition 2. h

Proposition 5. Let R be a reflexive binary relation, then the fol-
lowing properties do not hold generally:

(L8) X � aprðaprðX ÞÞ.
(L10) aprðX Þ � aprðaprðX ÞÞ.
(U8) aprðaprðX ÞÞ � X .

(U10) aprðaprðX ÞÞ � aprðX Þ.
Example 1 (Examples of the above properties do not hold). Let

U= {a, b, c, d, e} and R be a reflexive binary relations on U,
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where R= {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, c), (c, d),

(d, d), (d, e), (e, e)}, then ÆaæR = ÆbæR= {a, b, c}, ÆcæR = {c},
ÆdæR = {d} and ÆeæR= {e}. So, bR = {{a, b, c}, {c}, {d}, {e}},
hence the topology sR = {U, /, {c}, {d}, {e}, {c, d}, {c, e}, {d,
e}, {a, b, c}, {c, d, e}, {a, b, c, d}, {a, b, c, e}}.

(L8) Let X= {a, e}, we have aprðX Þ ¼ fa; b; eg and
aprðaprðX ÞÞ ¼ feg, so, X � aprðaprðX ÞÞ.
(L10) For X= {a, e}, aprðX Þ ¼ fa; b; eg. But
aprðaprðX ÞÞ ¼ feg, so, aprðX Þ� aprðaprðX ÞÞ.
(U8) Let X= {b, c, d}, we get apr(X) = {c, d} and

aprðaprðX ÞÞ ¼ fa; b; c; dg, so, aprðaprðX ÞÞ� X .
(U10) For X= {b, c, d}, apr(X) = {c, d}. But
aprðaprðX ÞÞ ¼ fa; b; c; dg, so, aprðaprðX ÞÞ� aprðX Þ.
Theorem 2. Suppose R is a reflexive binary relation on a finite
set U. Then, the pair of lower and upper approximations is a pair

of interior and closure operators satisfying Kuratowski axioms.

Proof. The proof follows from Definition 1 and Propositions
4. h

The complemented system: scR ¼ fGcjG 2 sRg is a closure
system. For an element G 2 sR, i.e., Gc 2 scR, we have:

apr(G) = G, aprðGcÞ ¼ Gc. In general, G ¼ aprðGÞ – aprðGÞ
and aprðGcÞ– aprðGcÞ ¼ Gc for an arbitrary G 2 GK(U). By
these properties, we refer to the elements of sR as inner definable
granules, and the elements of scR as outer definable granules.

Also, the lower approximation is the largest inner definable
granule contained in X, and the upper approximation is the
smallest outer definable granules containing X. Every subset of

the universe is approximated from below by inner definable
granules, and from above by outer definable granules.

They are related to the definition for the case of partitions,

in which sR and scR are the same set, or in which R is an equiv-
alent relation and in this case sR is called a quasi-discrete
topology. For a covering, the set sR \ scR consists of both inner
and outer definable granules. Obviously, /;U 2 sR \ scR.

5. Conclusion

The use of granulation in problem solving can be described as

on old and new method in the same time. It is used on great
wide range from simple problem of clothes classification to
choose a uniform for specific purpose to international problem

such as taking a political decision according to a classification
for countries in view of their decision. The work presented in
this paper utilized the granulation generated by general binary

relation to get a specific type of right neighborhood and apply-
ing it to get more accurate approximations, this approach is
more general than that of Pawlak and Yao. Granulation struc-

tures and the corresponding approximation structures intro-
duced in this paper provide a starting point for further study
of granulation and approximation. Investigations in this direc-
tion may produce interesting and useful results.
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