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Abstract Let Cx([—d,0]) (resp. Cp, 1([—d,0]) be the Banach space of continuous functions from
[~d,0] into a Banach space E (resp. into B(0,T)), where B(0,7) = {x € E : ||x| < T} and let
C € Cg([—d,0]). In this paper we prove an existence theorem for the differential equation with delay
x(6) = f(1,0x), te]0,T],

x=2C, on [—d, 0],

Delay where 0, : Cpo.1)([—d, 1]) — Cg([—d,0]) is such that 0,x(s) = x(¢ + s) for all s € [-d,0] and for
all x € Cpo,1([—d,?]) while % is a function from [0, 7] x Cpo.n([—d,0]) into E. By using
(Rg, N, p)— measure of noncompactness and under a generalization of the compactness
assumptions, we prove an existence theorem and give some topological properties of solution

sets of the problem

x(1) € A()x(1) + F(1,0,x), te€][0,T],
x=C, on [—d, 0],

where F*: [0, T] x C([—d,0]) — P;(E), Py(E) is the set of all nonempty closed convex subsets

of E while 0, :

Ci(—d, 1) = Ci([—d,0]) defined by 0.x(s) = x(t + 5)V x € Ci{[—d. 1)),

Vs € [—d,0] and {A(¢) : 0 < t < b} is a family of densely defined closed linear operators gen-
erating a continuous evolution operator S(¢,s).
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1. Introduction

Put B(0,T)={x€ E:|x|| < T}, C= Cpon([-d,0]) and
Co = Ci([—d,0]), where Cpgo 1([—d,0]) is the Banach space
of continuous functions from [—d,0] into B(0,7) and
Cx([—d,0]) is the Banach space of continuous functions from
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[~d,0] into a Banach space E. Let f£:[0,7) x C — E be a
Carathéodory  function. For  any t [0, 7], let
0, : Cpo,n([—d, 1)) = C, defined by 0,x(s) = x(t +s) for all
s €[—d,0] and x € Cp,7/([—d,1]). Assume that Fis a multi-
valued function from [0, 7] x Cy into the set, P(E), of all non-
empty closed convex subsets of £ and {4(¢) : 0<¢t< T} bea
family of densely defined closed linear operators generating a
continuous evolution operator N (¢, s). For each C € C, in Sec-
tion 3 we deal with the existence solutions to the differential
equations with delay of the form

») x(6) = f(1,0x) t€]0,T]
x=C, on [—d, 0],

we have a finite delay and use a measure of noncompactness
thus we improvement Theorem 9 in [1] and that with a gener-
alization of Theorem 2 in [2].

Moreover in Section 4 we consider the differential inclusion

x(1) € A()x(1) + F(1,0,x), t€][0,T)
(Q){ x=C on [—d, 0],

where 0, : Cg([—d, t]) > C, defined by 0,x(s) = x(¢ + s) for all
s € [-d,0] and for all x € Cg([—d, {]). Our purpose in this sec-
tion is to prove an existence theorem for integral solution of
the problem (Q) and we give some topological properties for
the solution set, S(C), of the integral solutions for (Q), also
we have an important consequence of Theorem 4.1 in the ab-
stract control problems. In this section we have a generaliza-
tion to the existence theorems of Deimling [3], Ibrahim and
Gomaa [4], Kisiclewicz [5] and Papageorgiou [6,7]. As
A(t) # 0 the results extend that of [6,8—-10].

2. Preliminaries

Let E be a Banach space and let us denote by P(E) the collec-
tion of all nonempty subsets of E. Let By be the family of all
nonempty bounded subsets of E and let Rr be the family of
all nonempty and relatively weakly compact subsets of E.

Definition 2.1. A nonempty family X C R is said to be a
kernel if it satisfies the following conditions:

(1) A€ K= conv 4 €K,
(i) B#0, BC A=A €Kk,
(iii) A subfamily of all weakly compact sets in K is closed in
the family of all bounded and closed subsets of E with
the topology generated by the Hausdorff distance.

Definition 2.2. A function y : B — [0, 00) is said to be a mea-
sure of noncompactness with the kernel K if it is subject to the
conditions:

(i) y(A)=0<= 4 €K,

(ii) 7(4) = y(4), where 4 is weak closure of the set A,
(i) p(conv A) = y(A),
(iv) 4,B € By, BC A= 7(B) < 3(4) [11,12].

Denote by N a basis of neighbourhoods of zero in a locally
convex space composed of closed convex sets and

N' ={rN:NeN,r>0}. The following two definitions can
be found in [13,14].

Definition 2.3. A function p: N’ — [0,00) is said to be p-
function if it satisfies the following conditions:

() X, Y eN', X CY — p(X) < p(Y),
(ii) for each & > 0 there exists Xe N’ such that p(X) < &,
(iii) p(X) > 0 whenever X ¢ K.

Definition 2.4. A function y:Bg—[0,00) is said to be
(K, N, p)— measure of noncompactness if and only if

YU)=infle>0:34 € K, X e N, UC A+ X,p(X) < &},
for each U € Bg.

For any nonempty bounded subset Z of E we recall the def-
inition of Kuratatowski measure, o, of noncompactness and
the Haudorff measure, «", of noncompactness

o(Z) = inf{e > 0 : Z admits a finite number of sets with diameter < &},
o' (Z) = inf{e > 0 : Z admits a finite number of balls with radius < &}.

For the properties of o and & we refer to [12,15] for in-
stance. Each the Kuratowski measure of noncompactness
and the Hausdorff measure of noncompactnessare is
(K, N, p)- measure of noncompactness (see [13]).

In this paper we consider I = [0, 7], 4 is the Lebesgue mea-
sure on [ and L(E) is the algebra of all continuous, linear oper-

ators from E to E. For each t € I, 0, is the function from
CB(()’ T)([—d, I]) into Co defined by

0,x(s) = x(t+5) Vse[-d0,VxeC.
and 0, is that from Cg([—d,1]) into Cy such that
0,x(s) =x(t+s) Vsel[—d,0]V xe (.

If Q: 71— 2% —{P} is measurable and integrable bounded
with weakly compact values, then set of all integrable selec-
tions of Q,VIQ, is weakly compact in the Banach space,
L'(I,E), of Lebesque Bochner integrable functions /': [ — E
endowed with the usual norm [16].

Definition 2.5. If S:7x I — L(E) such that S(7,0)xp is a
solution of the problem

[ x(r) = A(n)x
(0 _
x(0) = xo
where {A(¢) : t € I} is a family of densely defined closed linear

operators on E, then a continuous function x : [-d, T] = E is
called an integral solution of the problem (Q) if

x=Con[—d,0]and x(¢) = S(z,0)C(0) +/18(z,s)f(s)ds forallzel,

since f(s) € F(s,0,x) and /€ L'(I, E).

A multivalued function F: E — P(E) is upper semicontinu-
ous if for all open subset Vof EF (V) = {x € E: F(x)c V}is
open in E. Let E be the topological dual of the Banach space
E and E, be the Banach space E endowed with the weak
topology. By taking P/ E) the collection of all nonempty closed
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subsets of E, so the multivalued function F : E— P(E) is
w —w sequentially upper semicontinuous if every weakly
closed subset 4 of E F(A) is weakly sequentially closed and
it is upper hemi-continuous (resp. weakly upper hemi-continu-
ous) if and only if for any
X EE, cER{x€E:sup,py(x*,y) <c} is open in E
(resp. in E,,). Moreover F is weakly sequentially upper hemi-
continuous if and only if for any x" € E" the function
h:E,— R defined by h(x) = sup},ep(x)(x*, y) is sequentially
upper semicontinuous. For details and equivalent definitions
see, e.g. [17,18,16].

The following lemmas will be crucial in the proof our exis-
tence results.

Lemma 2.6. [8]. If F: E — P.,.(E) is weakly sequentially upper
hemi-continuous then, for any weakly compact subset A C E,
F(A) is weakly compact. Let Y be a Banach space and let F :
E— Py(Y) be weakly sequentially upper hemi-continuous. If
there exist ae L'(I,R), (Xp)nein< C(LE) and
(Yn)nenoioy c L'(LLE) such that |[F(x(t))|| < a(t) almost all
tel and for all x € C(LLE), x,(t) — xo(t) weakly a.e. on I,
Va—yo weakly and y,(t) € F(x,(t)) ae. on I, then
vo(t) € F(xo(t)) a.e. on I.

Lemma 2.7. [14]. Let y be a (K, N, p)-measure of noncompact-
ness such that p(aX) = ap(X) with X e N1, o € R and let N
be composed of balanced sets. So, for each bounded subset U
of E and for each A € L(E), we have y(AU) <| A y(U).

Lemma 2.8. [13]. If y is a (K, N, p)— measure of noncompact-
ness such that p(oX) = oap(X) with X e N', « € R* and for
each X, Y € N we find X+ Y € N, then

(M) y(U+V)<y(U) +y(V),

(M) y(aU) = ay(U),

(M3) y(U) = 0 < U is relatively compact in E,
(M) y(UU{x}) =y(U), x€E,

Ms) UcV=y(U)<y (V),

(Ms) y(convU) = y(U).

Under the assumptions in Lemma 2.8 on the measure y we
state the following lemma.

Lemma 2.9. [19]. Let V< C(I,E) be a bounded equicontinuous
for the strong topology and V(J) = {x(t):x € V, t € J}, where
J is a subinterval of 1. Then, under the assumptions in Lemma
2.8, 9(V(J)) = supepy(V({t})) = v (J(s)) for some s € J.

3. Existence result for (P)

In the following theorem we have a finite delay and use a mea-
sure of noncompactness thus we improvement Theorem 9 in [1]
and that with a generalization of Theorem 2 in [2].

Theorem 3.1. Let f?: 1 x C — E be a Carathéodory function
and w be a Kamke function such that w('t,) is nondecreasing for

every t€ [0,T]. Suppose that the following conditions are
satisfied:

() ¥(t,0) €I x C, [t @)l < u(r) for
peL'(I,RY),

(2) for each ¢ > 0 and any nonempty bounded subset Z of
C there exists a closed subset I, of I with A(/ — I,) < ¢
and y(f(J x Z)) < sup,ew(t, (Z)) for any compact sub-
set J of I,

(3) for each ¢ € C, f*(I x {¢}) is separable.

some

Then, for any C € C, the problem (P) has a solution.

Proof. For any arbitrary ne€N and for

(t,x) € [-d, L] x B(0,T), set

n

every

_few if t € [—-d,0]
AEX =1 00) 4 mix—c0) irt e [0,7].

Also let hl(t,x):f”<l,?)% '{(,x))) and thus |i(2,-
)|l < p(2). Set

s{xec([oﬂ,m n): It - coll < [ e ds},

then for each n € N we can define an element x,, of S by
C(0) ifo<r<L
T {C(O) T Ry (s, (s)) ds if L<e<T,
and @: S — S such that g(x)(¢) = C(0) + fo'hl(s,x(s)) ds, for
all 7 € [0,%]. Now
lim [lo(xn) = x|l = lim sup [lo(x)(2) = X (1)

e [0?—;]

te [OW’,,] te [ﬁ,’—,]

< lim ( sup [le(n) (1) = %0 + sup o(n) (1) —x,y,(m) —~o0.

Let K= {x,,: me N}, L={o(x,): meN} If Id is the
identity function on A, then y((Id — ¢)K([0,1])) = 0 and from
Lemma 2.9 y((/d — 0)K(1)) = 0 also for each 7 € [0,]

7(K(1)) < 9((Id = 0)K(1)) + 7(L(1)).

Moreover

P(L(1) < 9((Id — @) K(1)) + 7(K(1)).

Thus we see that

P(K(1) = »(L(1))-

Obvious the sets 4 and B are equicontinuous. Let y(¢) =
P(L(1)), 1€ [0,Z] and so x(0) = 0. For each 7,7 € [0,1] we
have

2(L(7) < v(L(1) + v(L(7) — L(2)),
P(L(1)) < y(L(x)) +7(L(1) — L(7))
Then

66) = 10 < 680.0) [ (5 o)

and so y is absolutely continuous function that is it is differen-
tiable a.e. on [0,2]. Let (¢,7) € [0,Z] x [0,Z] such that 7 < t.
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Since y is continuous and w is Carathéodory we can find a
closed subset 7, of [0,Z], >0, >0 (n<d) and for sy,
§» € I; 11, 12 € [0, T] such that if sy —sd <8, 1ri—rd <38,
then | w(s1,r1) — W(S2,72) | <& and if |s;—so < n, then
lx(s1) — %(s2)] <3. Consider the partition P = {to,t1,02,...,ln}
of [t,7] such that t;,—t,_; <nfori=1, ..., n. Let 4; = {x(s):
x €K, s€[ti_,t] N I}. Moreover we can find a closed subset J,
of [0,] such that 2([0,Z] — J,) < ¢and that for any compact sub-
set K of J, and any bounded subset Z of
E, y(h (K x Z)) < supyew(s,y(Z2)). Let T, =J.Nti,
HNL, P=5"Ti=[,tNnJ.NI and Q = [1,7]— P. Thus
S (s, K(s)) ds C [, hi(s, K(s)) ds + [, (s, K(s)). In virtue of
Lemma 2.9 and from the continuity of y, we have r; € [t;,_1,t] N I,
such that

7(4;) = sup{y(K(s)) :

RS [l,’,],l,‘] N 1;} = )((V,)
Let Z be a _bounded subset of E and
Or(f’( x):xeZ Thus, for each t
€ [ £, 9 ({1} x 2)) = y(f”({t} x N)). From Condition
), there exists a closed subset J, of [0,Z] such that
A([0,Z] — J,) < & and that for any compact subset C of J,

P (C % Z)) = 3(f/(C x N)) <

Now if N = {é%(ff('vx)) (X € A,-}, then

sup w(s, B(N)).

seC

sup w(s, B(N)).

seC

§(Di(C x 4;)) = 3(F(C x N)) <

From the mean value theorem we obtain

/Phl(s,N(s)) ds C iZ/T hi(s,N(s)) ds C ZA(T,-)WM(T,- x A;)

Now, from Lemma 2.9 and Condition 2, we have

«/< [ nts.vs)

Invoking Lemma 2.7, we get

y(./th(s, N(s)) ds) < (B0, 1))./Q u(s) ds.

Therefore (1) < w(t,z(t)) a.e. on [0,Z] [19]. Since x(0) = 0
and w is a Kamke function, then y =0. Thus the closure of
(Xm),en 18 compact and thus we can find a subsequence (x,, )
of (x,,) which converges to a limit u; in C([0,1],E). Since
I, — e(x,)l| = 0 and @ is continuous, then x = @(x). There-
fore there is a continuous function #; such that u; =C on
[—d.0] and u; = x on [0,Z] that is for each 7 € [0,1],

ds> < /tI w(s, x(s)) ds + e(t — 1).

t t
u (1) = C(0) +/ Iy (s, u (s))ds = C(0) +/ & (s 0: (/i s, ul(s))))ds.
0 0
Now for some k € {1,2,3,...,n} and by taking k¥ = k — 1
we can assume that there exist a continuous function 4, and
uy such that uy = C on [—d,0] and for each ¢ € [0, ;77]

e (0) =€)+ [ et (s = €0)+ [ (5008 5,005 ) s

also let g : [—d,tI] x B(0, T) — E be such that

if 1 € [—d,£7]

] ()
£ (1, x) { K ug (K1) if t e [KT k1)

¢ (50) +n(r—50) (3 -

Now for each (1,x)€ [EL AI] x B(0,T) set

n

I (t,x) =

f”(l Our (fi (-, x ))) then we have a continuous function u; de-

fined on [ LI by

t
nT) +/, Iy (s, i (s))ds

u (1) = ukr<

Furthermore

KT

Uy (k};T) =C(0) + /OT Iy (s, up () ds.

Hence there exists

hk'(ta ka(l)) ifre [ ’ nT]
hk(t,xk(t)) ift € [AT “}7

n’n

gi(t, xi(1)) = {
such that

w. (1) = C(0) + /O’g,{(s7 xi(8))ds.

So, for any n € N, there exist v, such that v, = C on [-d,0] and
for each ¢ € I, v, is defined by

/ ha(s

where KL <y

ha(0) = (s, wa,(( ())
||v,:(ll)*Vn(l‘2)||</l HCARAONIEE /,2“(‘06[‘?

< ke{1,2,3,...,n} and
Let t, h € Idnd ) < t,. Now

since v,=C on [-d,0], then L is equicontinuous in
Cpo,nl—d,T]. Moreover the set S(L(t)) = f({va(f) :n € N})
is such that B(L(0)) = 0 and, as in the proof of Theorem 9
in [1] and by using Lemmas 2.8 and 2.9, we get p(L(¢)) = 0
for all z € I. Thus by Ascoli’s theorem we may assume that
the sequence {v, :n € N} converges uniformly to a function

veE Cpgo,1([—d,T]) such that y=C on [-d0]. But
B({h,(t): neN}) =0 and so {h,(r): ne N} is relatively
compact. Create a  multivalued function F(7) =

conv{h,(t) : n € N}. Thus F(¢) is nonempty convex and com-
pact, the set 0. = {/ € L'(I, E) : [(t) € F(¢)} is nonempty con-
vex and weakly compact. By Eberlein—Smulian Theorem there
exists a subsequence (4, ) of (h,) such that h,,, — [ weakly,
/€ 5. Thus v, tends weakly to C(0 —O—fo . Moreover
since, for each n € N, v, € Cgo)([—d, T]), v, converges uni-
formly to v on each compact subset of [—d, 7] and v is uni-
formly continuous on [—d,0]; also for each ¢ € I, there exists
n>Twith t € [KT &1 for k € {1,2,3,...,n} so,

n 0o
kT kT
| |< sup Wl —+s | —v{—+s
\e[fd,f,—’,] n n

v<k7T+ s) —v(t+s)
(—TJrs) —v(t+5)

01\%/‘7(., (1)) — 0,v

+

+ g [ (mo - (5
w(5) ()l

— 0 asn— oo.

+

)

From Lemma 2.6 the proof is therefore complete. [l
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4. Existence Results for (Q)

Assume that F: I x Cy — P(E), where Py (E) is the family of
nonempty closed convex subsets of E. We say that F satisfies
(A) if:

(4) [[F(t,0)|| < c(®)(1+||C(0)|| for each C € Cy and for
some ¢ € L'(I,R) a.e. on I.

(A4,) for each ¢ > 0, there exists a closed subset 7, of I with A
(I — 1) < &such that for any nonempty bounded subset
Z of Cr([—d,0]) and for each closed subset J < I, one has

P(F(J x Z)) < supw(t, B(2)).

(43) F(,C) has a measurable each
C € Cg(]—d,0)).
(Ay4) for each 1 € I, F¥(t,") is weakly sequentially upper hemi-

continuous.

selection, for

In this section our purpose is to prove an existence theorem
for integral solution of the problem (Q), and give some topo-
logical properties for the solution set of all integral solutions
for (Q). The problem (Q) was investigated, without delay, by
many authors [3,10,8,9,20] for instance. In this case when
A(t) =0, S(t,s) = id and a mild solution is a Carathéodory
one, we have a generalization to the existence theorems of
Deimling [3], Ibrahim and Gomaa [4], Kisielewicz [5] and
Papageorgiou [6,7]. As A(f)#0 the following results extend
that of [6,8-10].

Theorem 4.1. Let {A(t):t € I} be a generator of a fundamental
solution N : I x I — L(E) such that N'(t,t) = id, t € I, idis the
identity function on E; N(t,s)N(s,r)= N(t,r), t,s,r €I,

IN(2,9)|| < C< oo, t,s€I; N is continuous; N(-,s) is uni-
Sformly continuous, for each s € 1. Moreover let F:I x Cy — P/.(E)
satisfy (A) and w be a Kamke function such that w(t,-) is
nondecreasing for every t € [0,T]. Then, for each x, € E, the
solution set of integral solutions S(xy) of (Q) is nonempty.

Proof. Let S;"L‘,v(» ={fe L"(I,E) : f(s) € F'(s,0,v)}. If vis an
integral of (Q), then v=C on [-d,0] and
v(t) = N (£,0)C(0) + [y N'(t,5)f(s)ds for all tel and
fe S;"(-,vb))' So, for each t € I,

V(DI <INV @ 0)IICO)] +/0, IN (6 )N ds

< c(nc«»n +lel+ [ )vis)l ds).

Put C, = (C||C(0)|| + Tlle|)e¥l, from Bellman’s inequal-
ity, ()| < C;. Put o(¢) = c(t)(1 + C)). So we may assume
[[F(2. v(1)|| < @(¢) a.e. on I since, otherwise we can replace F*
by G? which is defined by

Fd )
Gd(z7x(t)) = {Fjg )Ccl(?r)))

> Il

if x € B(0,C))
if x ¢ B(0,Cy).

Foreach (1,x) € [-d, 1] x Ewithanaturalnumbern € N set

(e if 1 € [~d,0]
gi(t,x) = C(0) + nt(x — C(0)) ift € [Ovﬂ'

Also let D(¢,x) :Fd<t, 0r(g7(-,x)) ). Now there exists

a multivalued function R: B(0,C,) — 2¢(75)  which s
defined by the following formula:

(Rx)(1) = N(1,0)C(0) + /OIN(I,S)F’<17 0%(g’f(.,x(s))))ds.

From Lemma 2.6 there exists an integrable selection gof
D (-, v(-)) for each v € C([0,1],E). So for each x € B(0,C))

we have Rx # (. Since N is C(’;ntinuous we can define a func-
tion ¥ : L'([0,1], E) — C([0,Z], E) by the formula

V(1) = N (£,0)C(0) + /0 N )fls) ds.

If we set V={feL'([0,Z],E): |/l < ¢(t) a.e. on [0,1]},
then V' is uniformly integrable in L'([0,Z],E) and, since
N(-,s5) is uniformly continuous, ¥(V)={xe C([0,1],
E) : x(t) = N(0,0C(0) + [, N(t,5)f(s)ds, f€ V} is nonempty
equicontinuous subset of C([0,Z], E) and so, comvy (V) is non-
empty convex closed bounded and equicontinuous subset of
C([0,1],E). Now we can assume that there exist (x,,y,)€
Graph R such that x,—-x, y,—>y in C
([0,4],E), v, : 1— C([0,], E) is given by

V() = N (2,0)C(0) + /’N(I,s)zm(s) ds

where z,, € L' ([0,2], E), zu(s) € D (s, x,u(s)) and
(N (0)e(0)

)= {N(@ 0)C(0) + [N (1, )z, (s)ds if L< 1<

|~

f0<r<

nj

SN S

Thus

lim [|y/(z,,) — zu|| = lim sup [[(2,,)(£) — zw (D)l
m—oo mamre[o‘%}

< lim ( sup [[Y(z) (1) — zu(O)|| + Squ [l () () _Zm(t)|)

m—00 16[0.,%,] © [W%
t t
< lim | sup / Co(s) ds+ sup / Co(s) | =0.
m—ee IE[O.%] 0 te[TTmﬂ =

Let H :={z,, : m € N} and G := {{(z,,) : m € N}. Thus H
and G are equicontinuous. Let y(¢) := y(H(t)), t € [0,Z]. Then
%(0) = 0. We Since |z, — ¥(z)| = 0 as m— oo so, from
Lemma 2.9, 3((Id — y)H) = 0 and

7({zm: meN}) =({v(zn) :
Since for all ¢, T € [O,ﬂ,

m € N}).

K (zm)(z) :m € N} < p{ih(zn) (1) - m € N} 4+ 9{(z0)(7)
—Y(z,)(2) :m e N}

and

H{Y(zm) (1) :m € N} < p{y(zn) (1) - m € N} + {0 (za) (1)
—Y(z)(z) : me N}

From Lemma 2.7 |y(7) — x(¢)| < y(B(0,1)) |7 C ¢(s) ds. There-

fore y is absolutely continuous function and thus it is differen-
tiable a.e. on [0,2]. Let (¢,7) € [0,Z] x [0,Z] with 7 < 7. Since
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is continuous and w is Carathéodory we can find a closed subset
I, of [0,1],6>0,7>0(n<d) and for s,5 €l; r,
ry € [0,2L] such that if Isy —sl <8, |lri—rd <8, then
| w(s1,r1) — w(sy, r2)| <¢ and if ls—s < n,  then
l%(s1) — x(s2)| < 3. Consider the following partition, to [z,1],
t=1ty <t <---<t.=1such that t,—t,_y <n for i =1,
.., Let 4;={x(s): x€ H, s€[ti_1,t;]N1I}. Let Z be a
bounded subset of E and 4 = {@(g’{(-,x)) ix € Z}. Thus,

for each te [0,1], y(Di({1} x Z)) = y(F'({r} x 4)). From
Condition (A4,),there exists a closed subset J, of [0, %] such that
AMI — J,;) < & and that for any compact subset C of J,

2(Di(C x Z)) = (F(C x 4)) < sup w(s, f(A))-
Now if 4 = {0%(g’1’(~,x)) (X € A,-}, then

2(Di(C x A1) = (F/(C x A)) < sup w(s, B(A4)).

seC

Let T;=J,N[ti 1, t;]NI, P= Z;’;, T: = [t,1] m Js N1, and
Qf[tr] P Thus [ Di(s,H(s)) ds C [, Dy (s, H(s)) ds+
J,D 0 ). In virtue of Lemma 2.6 and from the continuity
ofy we have r; € [ti_1,t] N I, such that

2(A) = sup{p(A(s)) : s € [t1, 6] N L} = 7(r).

and by the mean value theorem we obtain
/D] (s, H(s)) ds C Z/ D (s,H(s)) ds C Zl JeonvD, (T: x A4;)
P i=1 JTi

Now from the fact that w(z,-) is nondecreasing for every
t €10, T] we have

y(/D (s, H(s ds) Z;

m

< Z/T, w(s, x(s)) ds + eA(T;)

i=1

sup(si, (4,))

S;€T;

< /tT w(s, x(s)) ds+&(t — 1).

and

«,( /Q Dy(s, H(s)) ds) < 5(B(0, 1) /Q o(s) ds.

Also we have

YW (H) () < 26(H) (1) + y( [ Pits. ) ds).

Therefore
2(t) = x(1 V(/ Dy (s, H(s ) / w(s, x(s)) ds.
So (1) < w(t,z(t)) a.e. on [0,1], but x(0) = 0 and w is a

Kamke function, then y=0. Consequently the weak closure
of (zn),en 18 Weakly compact and so [26] we can suppose that

there exist /,(s) € F"(s 0z(D (,xl(t)))> a.e. on [0,Z] and the

sequence (z,,),,.y COnverges to a continuous function x; such
that x; = C on [—d,0] and for each € [0,]

x1(1) = N(1,0)C(0

+/O N (2,8)l1(s)ds

Now, by the mathematical induction for
ke {1,2,3,...,n}, we can assume that there exist

some

Iy(s) € F‘I(z, GA:TT/‘Z'(ka'(S))) ae on ]y €L ({O k—Y] )

since the function Ay is such that iy = C on [—d,0] and for

each 1 € [0,£7]
!
+/ N (,8) 1 (s)ds
0

Also let g} : [~d,’I] x E — E be such that

N Xk’(t)
gk(t’ X) = , ,
xp (57) +n(t = 50) (x =

Arguing as in above, for the multivalued function
Fy: [EL &) x E — Pr(E) which is defined by Fi(t,x) =

F’(t Hkr(g;’(. x))), we have a continuous function x; defined
I:knT7knT] by
xi(t) = (—T)/\k( ) /./\/'tslk
n
)))) ae on [ET KT] and

where (s ’< Ocx (gr(,
I e L'([EX kT}, E). KT T] we have

D) [

hence

xp (1) = N(2,0)C(0

if 1 € [—d, L]

xp(ED)) ift e [ET AT

n’n

Moreovere for each 1 € [

(1) :N(z,"—T)N<k—T,o)C(0> + /T/\/<z."— N("—T,x) l (s)ds
n n o n n

+ /I N(1,9)l(s)ds = N (2,0)C(0) + /OTN(I,S)I,(/ (s)ds + /;N(t )l (s)ds

=N(1,0)C /Nts)gk
where
ly(t) ifre0,LL
g =1 " 0 TT]A :
lk() lft (S [T ﬂ

Consequently, for all n € N, we have a continuous function
v, such that v, = C on [—d,0] and for each ¢ € I is defined by

/()[/\/’(t7 $)q,,(s)ds

q,(t) € F! <l H/Tgk( v, (1 ))) a.e. on I.

where 1 € [EL T}  Jand k € {1,2,3,...,
t; < t. Then

va(t) = N(£,0)C(0) +

with

n}. Let t1, t, € I with
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Iutr) = wal(i2)| < N (11,0) — A (22, 0)[[C(O) |
+ / IV (@1, 8) = N (e )l (o) s
n /’2||N<rz,s>unqn<>||ds I (11,0) — N (12, 0)[€(0)
+ / N (15) = N (12, 5) | p(s)lds + € / ¥ o(s)ds

while v, = C on [—d, 0], this shows that L is equicontinuous in
CH—d, T). Put p(L(¢)) = y({vu(t) : n € N}), by the same as
above we get y (L(7)) = 0 for all # € I. Thus by Ascoli’s theo-
rem the sequence {v, :n € N} converges uniformly to a func-
tion v € Cg([—d, T]) such that y = C on [—d,0]. As in the proof
of Theorem 3.1 we obtain y({g,(): n€N})=0 and so
{g,(t) : ne N} is relatively compact. Create a new multi-
valued function Q(r) = conv{q,(r) : n € N}. Thus Q(r) is non-
empty convex and compact, the set 51Q ={le L (LE):
[() € Q(#)} is nonempty convex and weakly compact. By
Eberlein-Smulian Theorem there exists a subsequence (4,,)
of (¢,) such that n, = l weakly, le b . Thus v, tends weakly
to N (s, )+ fo s)ds. Moreover since, for each
neN, v, e CE([ d, T]) v,, converges uniformly to v on each
compact subset of [—d, 7] and v is uniformly continuous on
[—d,0]; also for each ¢ € I, there exists n > I with 1 € [E AT
< sup [

for k € {1,2,3,...,n} so, n
g™ (kT ) ( ) '

| ()
(== G- )
)}—>Oasn—>:>c

Ouz (cva(1)) — 01y

S+ 9]+ sup][(r\

s€ [—%.0

kT
v(— +s> —v(t+s)
n

Therefore from Lemma 2.6 the solution set S(C) of integral
solutions of (Q) is nonempty. [

+

Theorem 4.2. Under the assumptions of Theorem 4.1 the solu-
tion set S(C) of the problem (Q) is compact.

Proof. If {v, : n € N} is a sequence of S(C), then arguing as in
the proof of Theorem 4.1 we can show that, for each
tel, y({v.(¢) : n € N}) = 0. Thus this sequence has a conver-
gent subsequence and so S(C) is compact. [

Now we consider the multivalued functions
S:Cy — 2604115 guch that, for each C € Cp, we have S(C)
is the solution set of problem (Q), S:Co — 2% with S,(C) =
{v(#):ve S} and S¢:I—2F defined by Se(1)=
{v(r) : ve S(C)}.

Theorem 4.3. The multivalued function S is upper semicontin-
uous moreover, both S, and S¢ is upper semicontinuous and has
compact values. Further, the set U,c1Se(t) is compact in E.

Proof. To show that S is upper semicontinuous, for each
closed subset Z of Cg([—d,T]), we claim that the set
A={C e Cg([-d,0]) : Se N Z#0} is closed in Cx([—d,0]). Let
{C,:ne N} CA such that C, — C. Then S¢, NZ#0 and
hence there exists v, € S¢, N Z, where

0 +/01N(t,s)qn(s)ds

vu(t) = N(2,0)C

with ¢,(s) € Fi(s,0,v,) a.e. on I and ¢,(-) € L'(I, E). Now, for
each ¢ € I, we have

P({a(0) :n € N}) < Cy({Ca(0) : n

€ N})—i—Cy({/o,q,,(s)ds:n € N})

But y({C,(0) : n € N}) = 0, where C, — C. Thus
P({va(#) :n e N}) < Cy({/o q,(s)ds :n € N})

As in Theorem 4.1 we have y({v,(?) : n € N}) = 0, but the
sequence {v,(¢) : n € N} is equicontinuous, so from Arzela—
Ascoli theorem we can find a subsequence (vn,) converges to
vo in Cp([—d,b]). Let v, (1) = N(£,0)Cy, (0)+ [y N(2,)q,, (s)ds,
where ¢, (s) € F'(s,0,v,,) a.c. on [ and q, () € L (I,E). Then
we can write g, = C on [~d,0] and

N(2,0)C(0) ifo<r<z
4, (1) =

N(1,0)C(0) + fo *N(1,5)q, (s)ds if L<1<T,
As in the proof of Theorem 4.1 we obtain
7({q, (1) :k €N}) =0 for 1€1, so ¢, — g, € L'(I,E) and
from Lemma 2.6 qo(?) € F¥(t,0,v). Thus

vo(t) = N(2,0)C(0) +/0 N(t,5)qy(s)ds

and consequently A = {C € Cg([—d,0]) : Sc N Z#P} is closed
in Cg([—d,0]) thus S is upper semicontinuous. Further, by
the same arguments we can show that
P={Ce Ce([-d,0]): S,(C)NnZ#0} is closed so, S,(C) is
upper semicontinuous. Since S(C) is compact, then both S
and S, has compact values. Lastly the set
Q={tel:Sc(r)ynZ} is closed, then from Berge’s Theo-
rem [16] U,c; Sc(¢) is compact in E. O

Let Z be a compact subset of Cx([—d,0]) and y: E — R be
lower semicontinuous. Now we consider the following control
problem

o | x(0) € A()x(1) + F(1,0,x)
@ ){ x=CcZ
minimise y(x(T)).

The problem (Q°) has an optimal solution if there exist C € Z
and v € S(C) such that y(v(7)) = inf{y(x(7)) : x € S(C)}.

Theorem 4.4. Under the assumptions of Theorem 4.1, the
problem (Q°) has an optimal solution.

Proof. If Cy € ZC Cg([—d,0]), then there exists a continuous
function v € S(Cy) and so, v(T) € S7(Co). But Szis upper semi-
continuous and has compact values, from Berge’s Theorem [16]
we have SHZ) is compact and so y has its minimum 7, on
SH{Z). Now there exists C € Z such that vy € Sy(C), where
y(vo) = Ty and vy € SH{Z), thus vy € S¢(T) which means that
vo=wT) for some ve&S(C). Therefore y(¥(7))=
inf{y(x(7)): x € S(CO)}. O

5. Conclusion

The problem (P) was investigated by many authors without de-
lay (0 is the zero mapping), for instance, in [1] the author deals
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with the existence of weak and strong solutions while in [21,22]
the authors deal with the existence of strong solutions. Cichén
[23] deals with some existence theorems using different types of
integrals and its properties, Szep [24] considered a Peano type
theorem of ordinary differential equations in reflexive Banach
spaces and the result of Cramer-Lakshmikantham—Mitchell
[25] is stronger than that of Szep [24]. We concern with the
problem (Q) on account of its great practical interest since this
problem investigated, without delay, by many authors see
[3,10,6,9,8,26] and the references therein.

When A(7) =0, N (t,s) = id and a mild solution is a Carat-
héodory one, we have a generalization to the existence theo-
rems of Deimling [3] Ibrahim and Gomaa [4], Kisielewicz [5],
Papageorgiou [6,7]. As A(f) #0 our results extend that of
[10,6,8,9]. Moreover much work has been done to study the
topological properties of the solution set for the differential
inclusions (see, for instance, [27-36]). Recent results with a fi-
nite delay d > 0 in Banach spaces are obtained by Syam [37],
Castaing and Ibrahim [6] and Gomaa [38,39].
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