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Abstract Two Gauss functions are said to be contiguous if they are alike except for one pair of

parameters, and these differ by unity. Contiguous relations are of great use in extending numerical

tables of the function. In this paper we will introduce a new method for computing such types of

relations.
ª 2012 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.
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1. Introduction

The study of hypergeometric series was launched many years
ago by Euler, Gauss and Riemann; such series are the subject

of considerable research. Hypergeometric series have a some-
what formidable notation,which takes a little time to get used to.

In 1812, Gauss presented to the Royal Society of Sciences
at Göttingen his famous paper (Gauss, 1813) in which he con-

sidered the infinite series

1þ a1a2
1 � a3

zþ a1ða1 þ 1Þa2ða2 þ 1Þ
1 � 2 � a3ða3 þ 1Þ z2

þ a1ða1 þ 1Þða1 þ 2Þa2ða2 þ 1Þða2 þ 2Þ
1 � 2 � 3 � a3ða3 þ 1Þða3 þ 2Þ z3 þ � � � ð1Þ

as a function of a1, a2, a3, z, where it is assumed that a3 „
0, �1, �2, . . ., so that no zero factors appear in the denomina-

tors of the terms of the series. He showed that the series con-
verges absolutely for ŒzŒ < 1, and for ŒzŒ = 1 when
ptian Mathematical Society.

g by Elsevier

ical Society. Production and hostin

8.005

 

Re(a3 � a1 � a2) > 0, gave its (contiguous) recurrence rela-
tions, and derived his famous formula

Fða1; a2; a3; 1Þ ¼
Cða3ÞCða3 � a1 � a2Þ
Cða3 � a1ÞCða3 � a2Þ

; Reða3 � a1 � a2Þ > 0 ð2Þ

for the sum of his series when z = 1 and Re(a3 � a1 � a2) > 0.
Although Gauss used the notation F(a1, a2, a3, z) for his

series, it is now customary to use F[a1, a2; a3; z] or either of
the notations

2F1ða1; a2; a3; zÞ; 2F1

a1; a2

a3
; z

� �
ð3Þ

for the series (and for its sum when it converges), because these
notations separate the numerator parameters a1, a2 from the

denominator parameter a3 and the variable z. In view of Gauss’
paper, his series is frequently called Gauss’ series. However,
since the special case a1 = 1, a2 = a3 yields the geometric series

1þ zþ z2 þ z3 þ � � � ð4Þ

Gauss’ series is also called (ordinary) hypergeometric series or
the Gauss hypergeometric series. For more details about
hypergeometric series and their contiguous relations, see [1–4].

Two hypergeometric functions with the same argument z are
contiguous if their parameters a1, a2 and a3 differ by integers.
Gauss derived analogous relations between 2F1[a1, a2; a3; z]
g by Elsevier B.V. Open access under CC BY-NC-ND license.
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and any two contiguous hypergeometrics in which a parameter

has been changed by ±1. Rainville [5] generalized this to cases
with more parameters.

Applications of contiguous relations range from the evalu-
ation of hypergeometric series to the derivation of summation

and transformation formulas for such series, they can be used
to evaluate a hypergeometric function that is contiguous to a
hypergeometric series which can be satisfactorily evaluated.

Contiguous relations are also used to make a correspondence
between Lie algebras and special functions. The correspon-
dence yields formulas of special functions [6].

The 15 Gauss contiguous relations for 2F1[a1, a2; a3; z]
hypergeometric series imply that any three 2F1[a1, a2; a3; z]
series whose corresponding parameters differ by integers are lin-

early related (over the field of rational functions in the parame-
ters). In [7], several properties of coefficients of these general
contiguous relations were proved and then used to propose
effective ways to compute contiguous relations. In [8], contigu-

ous relations were used to establish and prove sharp inequalities
between the Gaussian hypergeometric function and the power
mean. These results extend known inequalities involving the

complete elliptic integral and the hypergeometric mean. More
details about contiguous relations and their application can be
found in [9–14].

In this paper, we will extend the results obtained in [15], to
prove different identities that relate between the contiguous
functions of 2F1[a1, a2; a3; z] hypergeometric functions. We will
generalize the method of Theorem 1.1. of Vidúnas in [7], in

which he summarizes some properties of the coefficients of
contiguous relations. This method will be useful in computa-
tions and application of contiguous relations.

The paper is organized as follows: In Section 2, we introduce
our method of computations; in Section 3 we introduce our
main theorem in which we generalize the operators we defined

in Section 2, while in Section 4, we use Mathematica to show
how helpful is our main theorem in deriving contiguous func-
tion relations as well as to obtain any of their consequences.
2. Computations

Gauss defined as contiguous to 2F1[a1, a2; a3; z] each of the six
functions obtained by increasing or decreasing one of the
parameters by unity [16, pp. 555–566]. Thus 2F1[a1, a2; a3; z]
is contiguous to the six functions

2F1½a1 � 1; a2; a3; z�; 2F1½a1; a2 � 1; a3; z� and 2F1½a1; a2; a3
� 1; z�

Gauss proved that between 2F1[a1, a2; a3; z] and any two of

its contiguous functions, there exists a linear relation with coef-
ficients at most linear in z. These relationships are of great use
in extending numerical tables of the function, since for one

fixed value of z, it is necessary only to calculate the values of
the function over two units in a1, a2 and a3, and apply some
recurrence relations in order to find the function values over
a large range of values of a1, a2 and a3 in this particular

z-plane. A contiguous relation between any three contiguous
hypergeometric functions can be found by combining linearly
a sequence of Gauss contiguous relations.

In this section, we will introduce our method of computa-
tions fromwhich wewill be able to prove any type of contiguous
relation, and for simplicity in the notation, let us introduce the

following definition:

Definition 1. Let Aai
i : X! X, (i= 1, 2, 3), where X is the set

of all Gauss’ functions 2F1[a1, a2; a3; z] with variable z, and
parameters a1, a2 and a3 such that a3 „ 0, �1, �2, . . ., then

Aa1
1 ðC½a1; a2; a3�2F1½a1; a2; a3; z�Þ
¼ C½a1 þ a1; a2; a3� 2F1½a1 þ a1; a2; a3; z� ð5Þ

Aa2
2 ðC½a1; a2; a3� 2F1½a1; a2; a3; z�Þ
¼ C½a1; a2 þ a2; a3� 2F1½a1; a2 þ a2; a3; z� ð6Þ

Aa3
3 ðC½a1; a2; a3� 2F1½a1; a2; a3; z�Þ
¼ C½a1; a2; a3 þ a3�2F1½a1; a2; a3 þ a3; z� ð7Þ

where ai, i = 1, 2, 3 are any integers, and C[a1, a2, a3] is an
arbitrary constant function of a1, a2 and a3 such that for any
such operators

Aai
i A

�ai
i ðC½a1; a2; a3� 2F1½a1; a2; a3; z�Þ

¼ IðC½a1; a2; a3� 2F1½a1; a2; a3; z�Þ

and I is the identity operator defined on X with

IkðC½a1;a2;a3� 2F1½a1;a2;a3;z�Þ¼IðC½a1;a2;a3� 2F1½a1;a2;a3;z�Þ
¼C½a1;a2;a3� 2F1½a1;a2;a3;z�; 8F
2X

We have the following theorem:

Theorem 2. Let Aai
i ; i ¼ 1; 2; 3 and I defined as in Definition

(1), then

A�13 ¼
a1

a3 � 1
A1 þ

a3 � a1 � 1

a3 � 1
I ; a3 – 1 ð8Þ

A�12 ¼
a1ðz� 1Þ
a2 � a3

A1 þ
a1 þ a2 � a3

a2 � a3
I ; a2 – a3 ð9Þ

A�11 ¼
a1ðz� 1Þ
a1 � a3

A1 þ
2a1 þ ða2 � a1Þz� a3

a1 � a3
I ; a1 – a3 ð10Þ

A2 ¼
a1
a2
A1 þ

a2 � a1
a2

I ; a2 – 0 ð11Þ

A3 ¼
a1a3ðz� 1Þ

ða1 � a3Þða3 � a2Þz
A1

� a3ðða3 � a2Þz� a1Þ
ða1 � a3Þða3 � a2Þz

I ; a1 – a3; a2 – a3 and z – 0

ð12Þ

Proof 1. To prove (8), from Eq. (45) of [15], and with
a1 = a2 = a3 = 0, one has

I � A�11 �
a2
a3

zA2A3

� �
2F1½a1; a2; a3; z� ¼ 0

that is

A1 ¼ I þ
a2
a3

zA1A2A3 ð13Þ
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Now using (47) of [15], and with a1 = a2 = a3 = 0, we will

have

I � A3 �
a1a2

a3ða3 þ 1Þ zA1A2A2
3 ¼ 0

applying A�13 to both sides that is a3 fi a3 � 1, we will have

A�13 ¼ I þ
a1a2

a3ða3 � 1Þ zA1A2A3 ð14Þ

Eliminating A1A2A3 from (13) and (14), one gets (8).

Now using symmetry on (13), [Remark 1 – Section 3] in [15]

we will have

A2 ¼ I þ
a1
a3

zA1A2A3 ð15Þ

from which solving both (13) and (15) by eliminating A1A2A3,
formula (11) holds.

Moreover, applying A2A3 on both sides of (13), that is

(a2 fi a2 + 1 and a3 fi a3 + 1), then

A2 ¼
a1
a3
A1A2A3 þ

a3 � a1
a3

A2A3 ð16Þ

and from (13)

A1A2A3 ¼
a3
a2z
ðA1 � IÞ ð17Þ

or equivalently

A2A3 ¼
a3
a2z
ðI � A�11 Þ ð18Þ

Now, using (11), (17) and (18), formula (10) holds.

By the same method, formulas (9) and (12) can be hold. h

Although Gauss relations can be proved by the expansion
of the various power series in z, and equating the coefficients
of zn throughout, rewriting these relations in their correspond-

ing operator forms makes their proofs simplified by using
Theorem (2).

Theorem (2), can be of a great help in proving several types

of contiguous relations such as:

1. All the 15 Gauss contiguous relations.
2. Functional identities in which relations between contiguous

functions are given, [16].
3. Recurrence identities, with consecutive neighbors, in which

one parameter in one of its contiguous function is shifted by

±1, while one parameter in one of its other contiguous
functions is shifted by ±2 (07.23.17.0001.01–07.23.17.
0004.01) [17].
Example 3. To prove the Gauss relation

ða1 þ a2 � a3Þ 2F1½a1; a2; a3; z� � a1ð1� zÞ 2F1½a1 þ 1; a2; a3; z�
þ ða3 � a2Þ 2F1½a1; a2 � 1; a3; z� ¼ 0

which can be rewritten in operator form as

½ða1 þ a2 � a3ÞI � a1ð1� zÞA1 þ ða3 � a2ÞA�12 � 2F1 ¼ 0
Using formula (9) of Theorem (2), we get

L:H:S: ¼ ða1 þ a2 � a3ÞI � a1ð1� zÞA1 þ ða3 � a2Þ½

� a1ðz� 1Þ
a2 � a3

A1 þ
a1 þ a2 � a3

a2 � a3
I

� ��
2F1¼0¼R:H:S:
3. General forms

In this section we give general forms for the operators A1; A2

and A3 given in Definition (1). In other words, we will reduce
any shift of the forms 2F1[a1 + n, a2; a3; z], 2F1[a1, a2 + n;
a3; z], and 2F1[a1, a2; a3 + n; z] to just 2F1[a1 + 1, a2; a3; z],
that is we will reduce all shifts of the form An

1 2F1; An
2 2F1

and An
3 2F1 to the form A1 2F1, which enables us to prove

any contiguous relation having more than one shifted
parameter.

In the following example, we express A2
1; A

2
2 and A2

3 in
terms of operator A1 .

Example 4. To expressA2
1; A

2
2 andA

2
3 in terms of operatorA1,

from (10), we have

A1 ¼
a3 þ ða1 � a2Þz� 2a1

a1ðz� 1Þ I þ a1 � a2
a1ðz� 1ÞA

�1
1

applying A1 on both sides, one gets

A2
1 ¼

a3 þ ða1 � a2 þ 1Þz� 2ða1 þ 1Þ
ða1 þ 1Þðz� 1Þ A1

þ a1 � a3 þ 1

ða1 þ 1Þðz� 1Þ I ð19Þ

Solving both (9) and (11) for A2, we will have

A2 ¼
a2 � a3
a2ðz� 1ÞA

�1
2 þ

ða2 � a1Þðz� 1Þ � ða1 þ a2 � a3Þ
a2ðz� 1Þ I

from which by applyingA2 on both sides, one can easily obtain

A2
2 ¼

a3 þ ða2 þ 1� a1Þz� 2ða2 þ 1Þ
ða2 þ 1Þðz� 1Þ A2

þ a2 þ 1� a3
ða2 þ 1Þðz� 1Þ I ð20Þ

Now using (11) to eliminate A2, we get

A2
2 ¼

a3 þ ða2 þ 1� a1Þz� 2ða2 þ 1Þ
ða2 þ 1Þðz� 1Þ

a1
a2
A1 þ

a2 � a1
a2

I
� �

þ a2 þ 1� a3
ða2 þ 1Þðz� 1Þ I

that is

A2
2 ¼

a1½ða3 � 2a2 � 2Þ þ ða2 � a1 þ 1Þz�
a2ða2 þ 1Þðz� 1Þ A1

þ ða2 � a1Þ ða3 � 2a2 � 2Þ þ ða2 � a1 þ 1Þz½ � þ a2ða2 � a3 þ 1Þ
a2ða2 þ 1Þðz� 1Þ I

Also from (8) and (12) eliminating A1, we get

A3 ¼
a3½a3 � 1þ ða1 þ a2 � 2a3 þ 1Þz�

ða3 � a2Þða1 � a3Þz
I

þ a3ða3 � 1Þðz� 1Þ
ða3 � a2Þða1 � a3Þz

A�13
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applying A3 to both sides, then

A2
3 ¼
ða3 þ 1Þ½a3 þ ða1 þ a2 � 2a3 � 1Þz�
ða3 � a2 þ 1Þða1 � a3 � 1Þz A3

þ a3ða3 þ 1Þðz� 1Þ
ða3 � a2 þ 1Þða1 � a3 � 1Þz I ð21Þ

Again from (12), we may rewrite (21) as

A2
3 ¼
ða3 þ 1Þ½a3 þ ða1 þ a2 � 2a3 � 1Þz�
ða3 � a2 þ 1Þða1 � a3 � 1Þz

� a1a3ðz� 1Þ
ða1 � a3Þða3 � a2Þz

A1 �
a3 ða3 � a2Þz� a1½ �
ða1 � a3Þða3 � a2Þz

I
� �

þ a3ða3 þ 1Þðz� 1Þ
ða3 � a2 þ 1Þða1 � a3 � 1Þz I

simplifying, we get

A2
3 ¼

a1a3ða3 þ 1Þðz� 1Þ½a3 � ð2a3 � a1 � a2 þ 1Þz�
ða1 � a3Þða1 � a3 � 1Þða3 � a2Þða3 � a2 þ 1Þz2 A1

þ a3ða3þ1Þ½ða1�ða3�a2ÞzÞða3�ð2a3�a1�a2 þ 1ÞzÞ þ ða1�a3Þða3 � a2Þðz� 1Þz�
ða1 � a3Þða1 � a3 � 1Þða3 � a2Þða3 � a2 þ 1Þz2 I

ð22Þ

Results obtained in the last example can be easily used to
verify recurrence identities of ‘‘consecutive neighbors’’, such as

ða2 � a3 þ 1ÞI � ½2a2 � a3 þ 2þ ða1 � a2 � 1Þz�A2½
�ða2 þ 1Þðz� 1ÞA2

2

�
2F1 ¼ 0

For simplicity in the notation, let us introduce the following

definition:

Definition 5. Let A1; A2 and A3 be the operators inDefinition
(1), then we define the shifted matrix operator Da1 ;a2;a3 as

Da1 ;a2 ;a3 ¼
Aa1

1 0 0

0 Aa2
2 0

0 0 Aa3
3

2
64

3
75

for all ai 2 Z; i ¼ 1; 2; 3.

In addition, and for any diagonal matrix K of order 3,

K ¼
k1ða1; a2; a3; zÞ 0 0

0 k2ða1; a2; a3; zÞ 0

0 0 k3ða1; a2; a3; zÞ

2
64

3
75

where ki(a1, a2; a3; z), i= 1, 2, 3 is a function of z with con-
stants a1, a2 and a3, we will have

Da1 ;a2 ;a3K ¼
Aa1

1 k1ða1; a2; a3; zÞ 0 0

0 Aa2
2 k2ða1; a2; a3; zÞ 0

0 0 Aa3
3 k3ða1; a2; a3; zÞ

2
64

3
75

¼
k1ða1 þ a1; a2; a3; zÞ 0 0

0 k2ða1; a2 þ a2; a3; zÞ 0

0 0 k3ða1; a2; a3 þ a3; zÞ

2
64

3
75

and as a special case, if a1 = a2 = a3 = a, we use the notation

Da :¼ Da;a;a ¼
Aa

1 0 0

0 Aa
2 0

0 0 Aa
3

2
64

3
75

such that
DaXi ¼
Aa

1 0 0

0 Aa
2 0

0 0 Aa
3

2
64

3
75
Ai

1

Ai
2

Ai
3

2
64

3
75 ¼

Aiþa
1

Aiþa
2

Aiþa
3

2
64

3
75 ¼ Xiþa

and

DaK ¼

Aa
1 0 0

0 Aa
2 0

0 0 Aa
3

2
6664

3
7775

k1ða1; a2; a3; zÞ 0 0

0 k2ða1; a2; a3; zÞ 0

0 0 k3ða1; a2; a3; zÞ

2
6664

3
7775

¼

k1ða1 þ a; a2; a3; zÞ 0 0

0 k2ða1; a2 þ a; a3; zÞ 0

0 0 k3ða1; a2; a3 þ a; zÞ

2
6664

3
7775 ¼ Ka

Finally,

DaðKXiÞ ¼ DaðKÞDaðXiÞ ¼ KaXiþa

The following lemma enables us to express the nth power of

any shifted operator Ai; ði ¼ 1; 2; 3Þ as a recurrence relation of
(n � 1)th and (n � 2)th powers of such operators.

Lemma 6. Let A1; A2 and A3 be the operators defined as in
Definition (1), then

Xn ¼ Kn�1Xn�1 þ Tn�1Xn�2; 8n 2 Z ð24Þ

where Xn defined as in (28), and

Kn ¼ DnK0 and Tn ¼ DnT0

where

K0 ¼

a3�2a1þða1�a2Þz
a1ðz�1Þ 0 0

0 a3�2a2þða2�a1Þz
a2ðz�1Þ 0

0 0 a3 ½ða3�1Þþða1þa2�2a3þ1Þz�
ða3�a2Þða1�a3Þz

2
66664

3
77775

and

T0 ¼

a1�a3
a1ðz�1Þ 0 0

0 a2�a3
a2ðz�1Þ 0

0 0 a3ða3�1Þðz�1Þ
ða3�a2Þða1�a3Þz

2
6664

3
7775

Proof 2. Applying the operators An�2
1 ; An�2

2 and An�2
3 on the

identities (19)–(21) respectively, one has

An
1 ¼

a3 þ ða1 þ n� a2 � 1Þz� 2ða1 þ n� 1Þ
ða1 þ n� 1Þðz� 1Þ An�1

1

þ a1 þ n� 1� a3
ða1 þ n� 1Þðz� 1ÞA

n�2
1

An
2 ¼

a3 þ ða2 þ n� a1 � 1Þz� 2ða1 þ n� 1Þ
ða2 þ n� 1Þðz� 1Þ An�1

2

þ a2 þ n� 1� a3
ða2 þ n� 1Þðz� 1ÞA

n�2
2

An
3 ¼
ða3 þ n� 1Þ½ða3 þ n�2Þ þ ða1 þ a2 � 2a3 � 2nþ3Þz�

ða3 þ n� 1� a2Þða1 � a3 � nþ 1Þz An�1
3

þ ða3 þ n� 1Þða3 þ n� 2Þðz� 1Þ
ða3 þ n� 1� a2Þða1 � a3 � nþ 1ÞzA

n�1
3
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or, in matrix form

An
1

An
2

An
3

2
6664

3
7775 ¼

a3þða1þn�a2�1Þz�2ða1þn�1Þ
ða1þn�1Þðz�1Þ 0 0

0 a3þða2þn�a1�1Þz�2ða2þn�1Þ
ða2þn�1Þðz�1Þ 0

0 0 ða3þn�1Þ½ða3þn�2Þþða1þa2�2a3�2nþ3Þz�
ða3þn�1�a2 Þða1�a3�nþ1Þz

2
666664

3
777775

�

An�1
1

An�1
2

An�1
3

2
66664

3
77775þ

a1þn�1�a3
ða1þn�1Þðz�1Þ 0 0

0 a2þn�1�a3
ða2þn�1Þðz�1Þ 0

0 0 ða3þn�1Þða3þn�2Þðz�1Þ
ða3þn�1�a2 Þða1�a3�nþ1Þz

2
666664

3
777775

An�2
1

An�2
2

An�2
3

2
66664

3
77775

that is,

Xn ¼ Dn�1

a3�2a1þða1�a2 Þz
a1 ðz�1Þ 0 0

0 a3�2a2þða2�a1Þz
a2ðz�1Þ 0

0 0 a3 ½ða3�1Þþða1þa2�2a3�2nþ1Þz�
ða3�a2 Þða1�a3 Þz

2
666664

3
777775

0
BBBBB@

1
CCCCCA
Xn�1

þDn�1

a1�a3
a1ðz�1Þ 0 0

0 a2�a3
a2ðz�1Þ 0

0 0 a3 ða3�1Þðz�1Þ
ða3�a2 Þða1�a3Þz

2
666664

3
777775

0
BBBBB@

1
CCCCCA
Xn�2

which may be rewritten in the form

Xn ¼ Dn�1ðK0ÞXn�1 þDn�1ðT0ÞXn�2

or

Xn ¼ Kn�1Xn�1 þ Tn�1Xn�2 ð25Þ

which is the proof of the lemma. h

Now, in order to have our next lemma, let us re-formulate

the previous results in matrix form. Use of identities (11) and
(12) yields the following matrix equation:

A1

A2

A3

2
64

3
75 ¼

1
a1
a2

a1a3ðz�1Þ
ða1�a3Þða3�a2Þz

2
664

3
775A1 þ

0
a2�a1
a2

a3 ½a1�ða3�a2Þz�
ða1�a3Þða3�a2Þz

2
664

3
775I :¼L1A1 þM1I

also, from 19, 20 and 22

A2
1

A2
2

A2
3

2
64

3
75 ¼

a3þða1þ1�a2Þz�2ða1þ1Þ
ða1þ1Þðz�1Þ

a1 ða3�2a2�2Þþða2�a1þ1Þz½ �
a2ða2þ1Þðz�1Þ

a1a3ðz�1Þða3þ1Þ½a3þða1þa2�2a3�1Þz�
ða1�a3�1Þða1�a3Þða3�a2Þða3�a2þ1Þz2

2
6664

3
7775A1

þ

a1�a3þ1
ða1þ1Þðz�1Þ

ða2�a1Þ½ða3�2a2�2Þþða2�a1þ1Þz�þa2ða2�a3þ1Þ
a2ða2þ1Þðz�1Þ

a3ða3þ1Þ½½a1�ða3�a2Þz�½a3�ð2a3�a1�a2þ1Þz�þða1�a3Þða3�a2Þðz�1Þz�
ða1�a3�1Þða1�a3Þða3�a2Þða3�a2þ1Þz2

2
6664

3
7775

I :¼ L2A1 þM2I
ð26Þ

from which

Xn ¼ LnA1 þMnI ; n ¼ 0; 1; 2 ð27Þ

where

Xn ¼
An

1

An
2

An
3

2
64

3
75 ð28Þ

and Ln,Mn, n = 0, 1, 2 are the three-dimensional vectors given

by
L0 ¼
0

0

0

2
64
3
75; L1 ¼

1
a1
a2

a1a3ðz�1Þ
ða1�a3Þða3�a2Þz

2
664

3
775;

L2 ¼

a3þða1þ1�a2Þz�2ða1þ1Þ
ða1þ1Þðz�1Þ

a1 ½ða3�2a2�2Þþða2�a1þ1Þz�
a2ða2þ1Þðz�1Þ

a1a3ðz�1Þða3þ1Þ½a3þða1þa2�2a3�1Þz�
ða1�a3�1Þða1�a3Þða3�a2Þða3�a2þ1Þz2

2
6664

3
7775

and

M0 ¼

1

1

1

2
664
3
775; M1 ¼

0

a2�a1
a2

a3 ½a1�ða3�a2Þz�
ða1�a3Þða3�a2Þz

2
6664

3
7775;

M2 ¼

a1�a3þ1
ða1þ1Þðz�1Þ

ða2�a1Þ½ða3�2a2�2Þþða2�a1þ1Þz�þa2ða2�a3þ1Þ
a2ða2þ1Þðz�1Þ

a3ða3þ1Þ½½a1�ða3�a2Þz�½a3�ð2a3�a1�a2þ1Þz�þða1�a3Þða3�a2Þðz�1Þz�
ða1�a3�1Þða1�a3Þða3�a2Þða3�a2þ1Þz2

2
66664

3
77775

ð30Þ

Next lemma will deal with the nth power, n 2 Z, of any
shifted operators Ai; i ¼ 1; 2; 3, as a recurrence relation of

the operator A1 and I .

Lemma 7. Let A1; A2 and A3 be the operators defined as in
Definition (1), then

Xn ¼ LnA1 þMnI ; 8n 2 Z ð31Þ

where Xn defined as in (28), and 8n 2 Z, we have

Ln ¼ Kn�1Ln�1 þ Tn�1Ln�2;

Mn ¼ Kn�1Mn�1 þ Tn�1Mn�2

�
; n P 0 ð32Þ

and

Ln ¼ T�1nþ1½Lnþ2 � Knþ1Lnþ1�;

Mn ¼ T�1nþ1½Mnþ2 � Knþ1Mnþ1�

9>=
>;; n < 0 ð33Þ

Moreover, Ln and Mn for n = 0, 1, 2 are defined as in (29) and
(30) and Kn, Tn are defined as in Lemma (6)

Proof 3. Results obtained in example (3), gives the proof of the

lemma when n= 0,1,2. Using mathematical induction, assume
that

Xk ¼ LkA1 þMkI and Xk�1 ¼ Lk�1A1 þMk�1I ; k

¼ 1; 2; . . .

then from Lemma (6), we have

Xkþ1 ¼ KkXk þ TkXk�1

¼ KkðLkA1 þMkIÞ þ TkðLk�1A1 þMk�1IÞ
¼ ðKkLk þ TkLk�1ÞA1 þ ðKkMk þ TkMk�1ÞI
¼ Lkþ1A1 þMkþ1I

from which it follows that

Xn ¼ LnA1 þMnI ; 8n 2 Z

where
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Lkþ1 ¼ KkLk þ Tk þ Lk�1;

Mkþ1 ¼ KkMk þ Tk þMk�1

�
ð34Þ

which completes the proof of the lemma. h

One can easily show that (34), can be split into positive and
negative cases as in (32 and 33).

The previous two lemmas asserts the existence of a unique
representation for Aa

i ; A
b
j ; i; j ¼ 1; 2; 3 and a; b 2 Z in terms

of the operators A1 and I with coefficients lia, mia and ljb,
mjb which are the ith and the jth elements of the vectors La,

Ma and Lb, Mb respectively,

Aj
i ¼ lijA1 þmijI ; i ¼ 1; 2; 3; j 2 Z ð35Þ

Consequently, the recurrence relation combining Aa
i andA

b
j

is unique.

The technique of our work depends essentially on the rela-
tions between the shifted operators defined in (8)–(12) on
Gauss functions which enable us to find the desired formulas.

The following theorem gives a general form of the relation be-
tween the three Gauss functions:

2F1½a1 þ a1; a2; a3; z�; 2F1½a1
þ a2; a2; a3; z� and 2F1½a1 þ a3; a2; a3; z� ð36Þ
Theorem 8. Let ai 2 Z; i ¼ 1; 2; 3, then the three Gauss func-

tions (43) are related in the following linear form:

Aa1
1 Aa2

1 Aa3
1

l1a1 l1a2 l1a3

m1a1 m1a2 m1a3

�������

������� 2F1½a1; a2; a3; z� ¼ 0 ð37Þ

where Aai
1 ; i ¼ 1; 2; 3 are defined as in Definition (1), and lij, mij

are the ith elements of the vectors Li, Mj respectively.

Proof 4. Assuming that the desired recurrence relation joining

the three mentioned Gauss function is

d12F1½a1 þ a1; a2; a3; z� þ d22F1½a1 þ a2; a2; a3; z� þ d32F1½a1
þ a3; a2; a3; z�
¼ 0

for some nonzero di 2 Z, which can be written in operator
form as

X3
k¼1
ðdkAak

1 Þ2F1½a1; a2; a3; z� ¼ 0 ð38Þ

Now, setting i= 1 in (35), we get

Aj
1 ¼ l1jA1 þm1jI ; j 2 Z

and for j= ak, k= 1, 2, 3, we get

Aak
1 ¼ l1akA1 þm1akI ; k ¼ 1; 2; 3 ð39Þ

combining (38) and (39), we get

X3
k¼1

dkl1ak ¼ 0; and

X3
k¼1

dkm1ak ¼ 0

9>>>>=
>>>>;

ð40Þ
solving for dk, one can have

dk ¼
l1akþ1 l1akþ2
m1akþ1 m1akþ2

����
����; k ¼ 1; 2; 3; . . . ðmod 3Þ ð41Þ

substituting in (38) we get

X3
k¼1

l1akþ1 l1akþ2
m1akþ1 m1akþ2

����
���� Aak

1

� �
2F1½a1; a2; a3; z� ¼ 0

which can be written in the determinant form as in (38), which
completes the proof. h

A similar formulas for the shifts in a2 and a3 can be easily
obtained. The next corollary generalizes the result obtained in

Theorem (8).

Corollary 9. Let Aak
i ; i; k ¼ 1; 2; 3 be the shifted operator

defined as in Definition (1), then the recurrence relation joining
the three Gauss functions with one parameter shifted is given by:

Aa1
i Aa2

i Aa3
i

lia1 lia2 lia3

mia1 mia2 mia3

�������

������� 2F1½a1; a2; a3; z� ¼ 0; i ¼ 1; 2; 3 ð42Þ

The following theorem deals with the more general formula
joining the three shifted Gauss polynomials:

2F1½a1 þ a1; a2; a3; z�; 2F1½a1; a2
þ a2; a3; z� and 2F1½a1; a2; a3 þ a3; z� ð43Þ

Theorem 10. For any integers ai, i = 1, 2, 3, the three shifted
Gauss polynomials (43), are linearly related in the form:

Aa1
1 Aa2

2 Aa3
3

l1a1 l2a2 l2a3

m1a1 m2a2 m2a3

�������

������� 2F1½a1; a2; a3; z� ¼ 0 ð44Þ

where lij, mij; i, j = 1, 2, 3 are defined as in (32 and 33).

Proof 5. Suppose that the required relation has the form:

d1 2F1½a1 þ a1; a2; a3; z� þ d2 2F1½a1; a2 þ a2; a3; z�
þ d3 2F1½a1; a2; a3 þ a3; z�
¼ 0

for some di = di(a1, a2, a3, z), i= 1, 2, 3, that is

X3
i¼1
ðdiAai

i Þ 2F1½a1; a2; a3; z� ¼ 0 ð45Þ

Now, setting j ¼ ai 2 Z; i ¼ 1; 2; 3 in (35), one can have

Aai
i ¼ liaiA1 þmiaiI ; i ¼ 1; 2; 3 ð46Þ

substituting in (45)

X3
i¼1

diliai ¼ 0; and

X3
i¼1

dimiai ¼ 0

9>>>>=
>>>>;

ð47Þ
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solving for di, we get

di ¼
liþ1;aiþ1 liþ2;aiþ2

miþ1;aiþ1 miþ2;aiþ2

����
����; i ¼ 1; 2; 3; . . . ðmod 3Þ ð48Þ

using (48), we can rewrite (45) in the form (44) which com-
pletes the proof. h
4. Computational examples

In this section we will use the computer algebra system,
Mathematica to find the vectors Lj, Mj for all integer j, and
consequently expressing the operators Aj

i; i ¼ 1; 2; 3 for all

values of j, in terms of the operators A1; I .
Referring toLemma (6) in the previous section, one can eas-

ily derive the relation

Aj
i ¼ lijA1 þmijI ; i ¼ 1; 2; 3 and j 2 Z

where lij,mij are the ith elements of the vectors Lj and Mj.
The following tables give the values of lij, mij for i = 1, 2, 3

and j= 0, 1, 2.
j= 0 j= 1 j= 2

i= 1 l10 = 0 l11 = 1 l12 ¼ a3þða1�a2þ1Þz�2ða1þ1Þ
ða1þ1Þðz�1Þ

i= 2 l20 = 0 l21 ¼ a1
a2

l22 ¼ a1 ða3�2a2�2Þþða2�a1þ1Þz½ �
a2ða2þ1Þðz�1Þ

i= 3 l30 = 0 l31 ¼ a1a3ðz�1Þ
ða1�a3Þða3�a2Þz l32 ¼ a1a3ða3þ1Þðz�1Þ½a3�ð2a3�a1�a2þ1Þz�

ða1�a3Þða1�a3�1Þða3�a2Þða3�a2þ1Þz2
and
j= 0 j= 1 j= 2

i= 1 m10 = 1 m11 = 0 m12 ¼ a1�a3þ1
ða1þ1Þðz�1Þ

i= 2 m20 = 1 m21 ¼ a2�a1
a2

m22 ¼ ða2�a1Þ½ða3�2a2�2Þþða2�a1þ1Þz�þa2ða2�a3þ1Þa2ða2þ1Þðz�1Þ

i= 3 m30 = 1 m31 ¼ a3 ½a1�ða3�a2Þz�
ða1�a3Þða3�a2Þz m32 ¼ a3ða3þ1Þ½ða1�ða3�a2ÞzÞða3�ð2a3�a1�a2þ1ÞzÞþða1�a3Þða3�a2Þðz�1Þz�

ða1�a3Þða1�a3�1Þða3�a2Þða3�a2þ1Þz2
Using the relations

A2
1 ¼ l12A1 þm12I ð49Þ

A2
2 ¼ l22A1 þm22I ð50Þ

and

A2
3 ¼ l32A1 þm32I ð51Þ

we can easily obtain A2
1; A

2
2 and A

2
3 which are exactly what we

obtained in example (4).

Moreover, one can easily use the previous computations to
present a recurrence relation joining any two operators such as
A2

2 and A
2
3, by eliminating A1 from Eqs. (50) and (51), we get

l32A2
2 � l22A2

3 ¼ ðl32m22 � l22m32ÞI

which may be rewritten as

l32 2F1½a1; a2 þ 2; a3; z� � l22 2F1½a1; a2; a3 þ 2; z�
� ðl32m22 � l22m32Þ2F1½a1; a2; a3; z� ¼ 0

where l22, l32, m22 and m32 can be obtained from the above
tables.
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