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Abstract Two Gauss functions are said to be contiguous if they are alike except for one pair of
parameters, and these differ by unity. Contiguous relations are of great use in extending numerical
tables of the function. In this paper we will introduce a new method for computing such types of
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1. Introduction

The study of hypergeometric series was launched many years
ago by Euler, Gauss and Riemann; such series are the subject
of considerable research. Hypergeometric series have a some-
what formidable notation, which takes a little time to get used to.

In 1812, Gauss presented to the Royal Society of Sciences
at Gottingen his famous paper (Gauss, 1813) in which he con-
sidered the infinite series

ayap - al(al —+ 1)6[2([12 + 1)22

1’613 l~2-a3(a3+1)

al(a1+l)(a1+2)a2(a2+1)((12+2)23+“. (1)
1~2~3~a3(a3+1)(a3+2)

as a function of a;, a,, az, z, where it is assumed that a3 #
0, —1, =2, ..., so that no zero factors appear in the denomina-
tors of the terms of the series. He showed that the series con-
verges absolutely for |4 <1, and for |4 =1 when

1+
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Re(as — ay — a») > 0, gave its (contiguous) recurrence rela-
tions, and derived his famous formula

I'(ay)I (a3 —a) — az)

e(ay — a, — a» 2
I'lay —a)I (a3 — )’ Re(a; )>0 ()

Flay, a;a3;1) =
for the sum of his series when z = 1 and Re(az — a; — ap) > 0.

Although Gauss used the notation F(ay, a,, az, z) for his
series, it is now customary to use Fla;, a»; as; z] or either of
the notations

ap,
2Fi(an, ay;a352), o F) { ‘; ;Z} 3)
3

for the series (and for its sum when it converges), because these
notations separate the numerator parameters a;, a, from the
denominator parameter a3 and the variable z. In view of Gauss’
paper, his series is frequently called Gauss’ series. However,
since the special case a; = 1, a, = a3 yields the geometric series

l+z+2+2 4 (4)

Gauss’ series is also called (ordinary) hypergeometric series or
the Gauss hypergeometric series. For more details about
hypergeometric series and their contiguous relations, see [1—4].

Two hypergeometric functions with the same argument z are
contiguous if their parameters a;, a, and a3 differ by integers.
Gauss derived analogous relations between ,F|[ay, a»; a; ]
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and any two contiguous hypergeometrics in which a parameter
has been changed by =+ 1. Rainville [5] generalized this to cases
with more parameters.

Applications of contiguous relations range from the evalu-
ation of hypergeometric series to the derivation of summation
and transformation formulas for such series, they can be used
to evaluate a hypergeometric function that is contiguous to a
hypergeometric series which can be satisfactorily evaluated.
Contiguous relations are also used to make a correspondence
between Lie algebras and special functions. The correspon-
dence yields formulas of special functions [6].

The 15 Gauss contiguous relations for ,Fi[a;, a; as; 2]
hypergeometric series imply that any three F\[a;, ay; as; z]
series whose corresponding parameters differ by integers are lin-
early related (over the field of rational functions in the parame-
ters). In [7], several properties of coefficients of these general
contiguous relations were proved and then used to propose
effective ways to compute contiguous relations. In [8], contigu-
ous relations were used to establish and prove sharp inequalities
between the Gaussian hypergeometric function and the power
mean. These results extend known inequalities involving the
complete elliptic integral and the hypergeometric mean. More
details about contiguous relations and their application can be
found in [9-14].

In this paper, we will extend the results obtained in [15], to
prove different identities that relate between the contiguous
functions of ,F\[ay, a,; as; z] hypergeometric functions. We will
generalize the method of Theorem 1.1. of Vidunas in [7], in
which he summarizes some properties of the coefficients of
contiguous relations. This method will be useful in computa-
tions and application of contiguous relations.

The paper is organized as follows: In Section 2, we introduce
our method of computations; in Section 3 we introduce our
main theorem in which we generalize the operators we defined
in Section 2, while in Section 4, we use Mathematica to show
how helpful is our main theorem in deriving contiguous func-
tion relations as well as to obtain any of their consequences.

2. Computations

Gauss defined as contiguous to >Fi[a;, as; as; z] each of the six
functions obtained by increasing or decreasing one of the
parameters by unity [16, pp. 555-566]. Thus »Fi[a;, a; as; z]
is contiguous to the six functions

2Filar £ 1,403 a3; 2],
+1;z]

JFila,ar £ 1;a3;z] and S Fi[ar, ax; a3

Gauss proved that between »Fi[a;, a»; as; z] and any two of
its contiguous functions, there exists a linear relation with coef-
ficients at most linear in z. These relationships are of great use
in extending numerical tables of the function, since for one
fixed value of z, it is necessary only to calculate the values of
the function over two units in a;, @, and a3, and apply some
recurrence relations in order to find the function values over
a large range of values of a;, @, and a3 in this particular
z-plane. A contiguous relation between any three contiguous
hypergeometric functions can be found by combining linearly
a sequence of Gauss contiguous relations.

In this section, we will introduce our method of computa-
tions from which we will be able to prove any type of contiguous

relation, and for simplicity in the notation, let us introduce the
following definition:

Definition 1. Let A : X — X, (i = 1, 2, 3), where X is the set
of all Gauss’ functions »Fi[a;, a»; as; z] with variable z, and

parameters a;, a» and a3 such that a3 #0, —1, =2, ..., then
AT'(C[a17a2,a3]2Fl [01702;03;2})

= Cla, + oy, a2, a3] 2F\[ay + 0y, 433 033 2] (5)
A;z(C[al,az,a_;] 2F1 [al,az;ag;z})

= Clay,a + o2, a3) 2F\[ay, a» + 03 033 2] (6)
AV (Clar, ar, @3] 2 Filan, an; as; 2])

= Clay, ay, a3 + 032 Fi[ay, ap; a3 + 03 2] (7)

where «;, i = 1,2,3 are any integers, and Cla;, a», az] is an
arbitrary constant function of «;, a, and a5 such that for any
such operators

AP AT (Clay, az, as] 2Fi[an, az; as; z))
=ZI(Clay, a2, a3] 2Fi]ar, ar; a3; z])
and Z is the identity operator defined on X with
TH(Clay,a0,a3) 1 Fy [y, a2;a3;2]) = Z(Clay, a2, a3) . Fy [ar, a2; a3;2])
=Clay,ar,a3] 2 F\[ay,a2;a3;z); VF

eXx
We have the following theorem:

Theorem 2. Let A¥ i=1,2,3 and T defined as in Definition
(1), then

-1 ay 03—a1—1
= 7; # 1 8
Al = TR A T T (8)
—1 _
A;lzal(z )A1+al+a2 a3I; dz#(l; (9)
a) — dz a) — a3

Al—l :al(z_ I)Al +2611 +(a2—a1)z—a3

I, a #a (10)

a, — as a, —das
A=04+L2707 4 %0 (11)
a) a)
0143(2— 1)

A3 - (a1 — (13)(613 — az)Z

3 a;((a3 — @)z — ay)

(ar —a3)(as — az)zI; a7 as, ay 7 az and z 70

(12)

Proof 1. To prove (8), from Eq. (45) of [15], and with
o = o = a3 = 0, one has

a
AR -/4171 —a—22A2A3 JFilay, arya3;2) = 0
3

that is

A, =I+%ZA1A2A3 (13)
3
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Now using (47) of [15], and with o; = oy = a3 = 0, we will
have
ad

ZiAB*a;(a,;—',— l)

A AA =0

applying A;l to both sides that is a3 — a3 — 1, we will have

-1 _ aydy
Aj _I+7a3(a3 — I)ZA1A2A3 (14)

Eliminating A;A,A; from (13) and (14), one gets (8).

Now using symmetry on (13), [Remark 1 — Section 3] in [15]
we will have

,M:I+%m%&A3 (15)
3

from which solving both (13) and (15) by eliminating A;.4,.4;,
formula (11) holds.

Moreover, applying Ay A; on both sides of (13), that is
(ay—> ay + 1 and a3 —> a3 + 1), then

Ay = DA oAy + B0 a4, (16)
as as
and from (13)
_Bog
A&&-@JA 7) (17)
or equivalently
a _
Aﬁﬁjia—AU (18)

Now, using (11), (17) and (18), formula (10) holds.
By the same method, formulas (9) and (12) can be hold. [

Although Gauss relations can be proved by the expansion
of the various power series in z, and equating the coefficients
of " throughout, rewriting these relations in their correspond-
ing operator forms makes their proofs simplified by using
Theorem (2).

Theorem (2), can be of a great help in proving several types
of contiguous relations such as:

1. All the 15 Gauss contiguous relations.

2. Functional identities in which relations between contiguous
functions are given, [16].

3. Recurrence identities, with consecutive neighbors, in which
one parameter in one of its contiguous function is shifted by
+1, while one parameter in one of its other contiguous
functions is shifted by +£2 (07.23.17.0001.01-07.23.17.
0004.01) [17].

Example 3. To prove the Gauss relation

(ar +a — a3) oFi[ar, avs a3y z) — (1 — z) o Fi[a + 1, a3 a35 2]
+ (a3 — @) 2Fi[ar, a0 — 15a352) = 0

which can be rewritten in operator form as

[(al +a —a3)I—a1(1 —Z)Al + (03 — az)Agl] 2F1 =0

Using formula (9) of Theorem (2), we get

LHS. =[(a1+a —a3)T —a1(1 —2) A + (a3 — a2)
X <a1(z— I)A] +

ay+a, —as
a — das

ay — ds

3. General forms

In this section we give general forms for the operators A, A,
and Aj; given in Definition (1). In other words, we will reduce
any shift of the forms »Fi[a; + n, a; as; z], 2Fi[ay, ar + n;
as; z), and ,F\[ay, ay; a3 + n;z] to just >Fila; + 1, as; as; 2],
that is we will reduce all shifts of the form A} ,F\, A »F)
and A5 »F, to the form A, ,F), which enables us to prove
any contiguous relation having more than one shifted
parameter.

In the following example, we express Af, A§ and .Ag in
terms of operator A; .

Example 4. To express A2, A3 and .A? in terms of operator A,
from (10), we have

a3+ () — @)z — 24

A= a(z—1)

a, —a

-1
al(z— 1)A1

applying A; on both sides, one gets
@ (a —ay+ 1)z —2(a; + 1)

A7 = @+ =D A
(11*L13+1
@i DE-T) (19)

Solving both (9) and (11) for A,, we will have

(a—a))(z—=1)— (a1 +a» — a3)
a(z—1) a(z—1)

from which by applying A, on both sides, one can easily obtain

A = A+ 7

Az_a3+(a2+l—a1)z—2(a2+1)
2T (a+1)(z-1)
[12+17d3
T@r -1

Now using (11) to eliminate .4,, we get

A,

(20)

a3+(a2+1—a1)z—2(a2+1) ap a; — d
A5 = —A I
2 @)1 PR
a + 1— as

— 7

@ DE-1)
that is

»  a(as = 2ay = 2) 4 (ay —a) + 1)z]
A= aay +1)(z— 1) A
N (ay — ar)[(az —2ay — 2) + (a2 — ay + 1)z] + ax(ar — a3 + I)I

a(a+1)(z-1)

Also from (8) and (12) eliminating 4;, we get

alay — 1+ (a1 + ap — 2a5 + 1)z]
(a3 —612)(611 —613)2

03(613— l)(Z—]) 1

+ (a3 — 612)(01 — 613)ZA3

A = T
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applying A; to both sides, then Al 0 0774 A
.AZ _ (03 + 1)[613 + (a1 +a, — 2613 — 1)2] A3 DaXi = 0 .Ag 0 .AI2 = .A;+x = Ajty
3 (as — ar + 1)(ay — as — 1)z 0 0 Aj][A AL
ay(as +1)(z— 1) (21) and
(a;—a2+l)(a1—a3—l)z -~
AP0 0 ki(ay, ar;a3;z) 0 0
Again from (12), we may rewrite (21) as
D,K=]0 A 0 0 ka(ar, ar;as;z) 0
o (a3 + Das + (a1 + @y — 2a; — 1)z] L0 0 A 0 0 ks(ay, ar; as; 2)
3 (a3 —ay+ 1)(a) — a3 — 1)z [ki(ar + o, a0, a3; 2) 0 0
% a1a3(z — 1) Al _ a;[(a3 — az)Z — al} T _ 0 k2<al’a2+%a}:’2) 0 =K,
(ay — a3)(a3 — a)z (a1 — a3)(a3 — an)z
B (a +l)(z 1) L 0 0 ks(ay, ar, a3 + o;z)
3(a3 -
T .
(s —ay+ 1)(ay —as — 1)z Finally,

simplifying, we get

»  aas(as 4+ 1)(z = 1]as — (2a5 —ay —ay + 1)z]

A TS P | S A

N as(as+1)[(a1—(a3—ar)z) (a3 —(2as—ay—ar + 1)z) + (a1—a3) (a3 — ax)(z — 1)z]
(ar — a3)(ay —as — 1) (a3 — ax) (a3 — a» + 1)22

T

(22)
Results obtained in the last example can be easily used to
verify recurrence identities of “consecutive neighbors”, such as
(aa—a3+1)T —2a0— a3 +2+ (a1 —ar — 1)z] A4,
—(ar+1)(z = 1)A43] 2/ =0

For simplicity in the notation, let us introduce the following
definition:

Definition 5. Let A, A, and A3 be the operators in Definition
(1), then we define the shifted matrix operator Dy, 4, 5, as

AT 000
Dy =] 0 A2 0
0 0 A®

forall; € Z, i=1,2,3.

In addition, and for any diagonal matrix K of order 3,

ki(ar, ax;as;2) 0 0
K= 0 ka(ar, ax; a3;2) 0
0 0 ks(ay, ar; as; z)

where kfa,, ax; az; z), i = 1,2, 3 is a function of z with con-
stants a;, a» and az, we will have

Al ki (ar, ar; a3;2) 0 0
Dy K = 0 AR ks (ay, a; a3; 2) 0
0 0 A ks(ar, ay; 435 2)
ki(ay + oy, ax;a3;2) 0 0
= 0 ka(ay, ay + 03 a3;2) 0
0 0 ks(ay, ar; a3 + o33 2)
and as a special case, if o, = 0y = a3 = o, we use the notation
AT 0 0
D,=D,,.=10 A; 0
0 0 A

such that

Da(K/Yi) = Dz(K)Da(Xi) = KaXiJr'x

The following lemma enables us to express the nth power of
any shifted operator A;, (i = 1,2,3) as a recurrence relation of
(n — Dth and (n — 2)th powers of such operators.

Lemma 6. Let A;, Ay and Aj; be the operators defined as in
Definition (1), then

/\/n - ananfl + T'",]/Y”,z; Vn S Z (24)
where X, defined as in (28), and

K,=D,K, and T,=D,T,
where
[ a3—2a;+(a —ay)z
T 0 0
_ a3 —2ay+(ay—ay)z
K=| 0 e 0
az[(az—1)+(a1+ay—2a3+1)z]
L 0 0 (a3—ar)(a1—a3)z
and
[ae-n O 0
TO = 0 (1‘3’2(:1‘1;) 0
a3(a3—1)(z—1)
L 0 0 (az—ax)(a)—a3)z

Proof 2. Applying the operators A} >, A3 > and A} on the
identities (19)—(21) respectively, one has

A,,_a3+(a1+n—a2—l)z—2(a1+n—1)
e (a+n—-1)(z-1)
a+n—1l—-a .,

(al—b—n—l)(z—l)A1

n—1
A

a+(a+n—a —1)z—2(a+n—1)

no__ n—1
Ay = (a3 +n—1)(z—-1) A
at+n—1l-a .,
(a+n—=1)(z—- 1)'/42
A= (a3 +n—1)[(as + n=2) + (a; + a» — 2a; — 2n+3)z] Ag_l

(as+n—1-—a)(ay —as—n+1)z
(as+n—1)(a3+n—-2)(z—1)

An—l
(a3 +n—1—a)(ay —az —n+1)z" 3
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or, in matrix form o 1
[ a3 +(a +n—ay—1)z=2(a; +n—1) ar
Al ' (u.+u71)(:71)' 0 0 Lo =10 s L] = a s
n| a3 +(ay+n—ay —1)z—2(ar +n—1) M
A = 0 B T o 0 L0 (a—a) (@ —a)z
Al 0 0 (ay+n=1)[(as+n—-2)+(ay +ar—2as ~2n+3)] at(ar+l-ay)z—2(a; +1)
L {aytn—T—az)(a; —az—nt 1)z (a+1)(z—1)
_— an-l-a o _ ai[(a3—2a=2)+(ay—a; +1)7]
A (@+n=D(-1) 0 0 AT L, = a(ar+1)(z—1)
-1 0 aytn—l-ay 0 n-2 ajaz(z—1)(a3+1)[az+ (a1 +ap—2a3—1)z
AT (=Dl 4 L (a1—as—1)(a1—a3)(a3—a2) (a3 —ar +1)z2
n—1 (as+n—1)(az+n—2)(z—1) n—2
L A 0 0 (@ +n—T—ay) (@ —as—n+1)z A and
that is, 17 0
F a3 —2ay+(a;—ay)z a—a
Taen 0 0 My=|1]|, M=| “G |
X, =D, 0 Gt ak 0 X1 1 asla) —(a3—a;)7]
o - (a1—a3)(a3—az)z
3[(a3=1)+(ar +ap —2as —2n+1)z] _
L 0 0 w (UJ:‘}:)ZIM*;?): (aﬂ!jl(;z;ll)
[T E=))
wa 0
ar(z—1) M, — (ax—ay)|[(a3—2a,—2)+(ay—a;+1)z]+az (ay—az+1)
2= a(ar+1)(z—1)
D 0 ww 0 ¥
! @ "2 as(a3+1)[Jar—(a3—ay)z)[as— (2a3 —ar —ar +1)z]+(a1 —a3) (a3 —ap) (z—1)z]
0 0 as(ay—1)(z—1) L (a1—a3—1)(a1—a3)(a3—az) (a3 —az+1)22
(a3 —a)(a1—a3)z (30)
which may be rewritten in the form . .
Y Next lemma will deal with the nth power, n € Z, of any
X =Dyt (Ko) Xo1 + Dyt (To) Xz shifted operators A;, i =1,2,3, as a recurrence relation of
or the operator 4, and 7.
Xy = KXoy + Th1 Xoa (25) Lemma 7. Let Ay, A, and As be the operators defined as in

which is the proof of the lemma. [

Now, in order to have our next lemma, let us re-formulate
the previous results in matrix form. Use of identities (11) and
(12) yields the following matrix equation:

A, 1 0
A | = o A+ | St | T=LA - MT
.A} ajaz(z—1) as[a)—(a3—ar)7]

(a1-a3)(a3—az)z (a1—a3)(a3—az)z

also, from 19, 20 and 22

ay+(ay+1—ap)z—2(a;+1)

A (@11
2| ay[(a3—2ay—=2)+(ay—a; +1)z]
A= BT A
A§ ayaz(z—1)(a3+1)[a3+ (a1 +ay—2a3 —1)z]
(a1—ay=1)(a1~a3)(a3—ar) (a3 —ar +1)z?
a —a3+1
@D
(ay—ay)[(a3—2a,—2)+(ar—a; +1)z]+az (ar—a3+1)
+ ay(ay+1)(z—1)

as(az+1)[lar —(a3—ar)z]las —(2a3 —ay —ar+1)z]+(ar —a3) (a3—ap) (z—1)7]
(a1—a3—1)(a1—a3)(a3—az) (a3 —az +1)2?

7 := LzA] + MzI

(26)
from which
X, =LA +MZ, n=0,1,2 (27)
where
A
X, = | A (28)
A

and L,, M,, n =
by

0, 1, 2 are the three-dimensional vectors given

Definition (1), then

X, =LA +MI, VneZ (31)

where X,, defined as in (28), and ¥n € Z, we have

L,=K, 1L, 1+ Tn—an—Zy }7 n>0 (32)
M, =K, .M, 1 +T, 1M,
and
Ln = Tn:ll [Ln+2 - Kn+an+l]7

, n<0 (33)
Mn = T:ll [MnJrZ - Kn+an+1]

Moreover, L, and M, for n = 0, 1, 2 are defined as in (29) and
(30) and K,,, T, are defined as in Lemma (6)

Proof 3. Results obtained in example (3), gives the proof of the
lemma when n = 0,1,2. Using mathematical induction, assume
that

Xy =LA +MZT and X;_, =LA + M_ T, k
=12,...
then from Lemma (6), we have
Xier1 = K Xie + Ty Xi—
= Ki(Li Ay + M T) + Ti (Lot AL 4+ M1 Z)
= (KiLy + TiLi—1) Ay + (K My + TiMi )T
= Ly Ay + M T
from which it follows that
X, =LA +M,I, VneZ

where
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Ly = KLy + Ty + Ly, } (34)

My = KkMy + T + My
which completes the proof of the lemma. [

One can easily show that (34), can be split into positive and
negative cases as in (32 and 33).

The previous two lemmas asserts the existence of a unique
representation for A7, A/} i, j=1,2,3 and o, f € Z in terms
of the operators A, and 7 with coefficients /;,, m;, and [,
m;z which are the ith and the jth elements of the vectors L,,
M, and Lg, Mg respectively,

.A; = l,].Al + m,,vI,

Consequently, the recurrence relation combining A} and A//}
is unique.

The technique of our work depends essentially on the rela-
tions between the shifted operators defined in (8)—(12) on
Gauss functions which enable us to find the desired formulas.
The following theorem gives a general form of the relation be-
tween the three Gauss functions:

i=1,23 jez (35)

JFilay+ar, a0 a35z),  LFia

+ o, ax;a33z] and L F\[a) + a3, a0; a3; 2] (36)

Theorem 8. Let o; € Z,i=1,2,3, then the three Gauss func-
tions (43) are related in the following linear form:

Al AP AP

Loy Lo hos | 2F [al,az;as;Z} =0 (37)
mpoy  nmydy  Nyos

where AY', i=1,2,3 are defined as in Definition (1), and l;;, my;

are the ith elements of the vectors L; M; respectively.

Proof 4. Assuming that the desired recurrence relation joining
the three mentioned Gauss function is
dirFi[ay + oy, ax; a3; z) + doa Fi[ay + o0, ay; a3; 2] + dso Fi

+ 03, ap; a3; 2]

=0

for some nonzero d; € Z, which can be written in operator
form as

3
Z dk

k=1

F] [al,aQ,a; Z] =0 (38)
Now, setting i = 1 in (35), we get

A/l = l]‘/'.Al -+ ml_,l',
and forj =
A?k = llzkAl + I’Vl]mkI, k = 1,2,3 (39)

jeZ

o, k= 1,2,3, we get

combining (38) and (39), we get

3
> dil, =0, and
k=1
3
demlac/( =0
k=1

(40)

solving for dj, one can have

d/c: 5 k:1,2,3,...

L hays
’ okt ka2 (mod 3) (41)

ml“lml ml“/uz

substituting in (38) we get

3
E(‘ llaHl 111k+2
Mgy,

k=1 Mg,

AT‘) 2Fi[ay, ar;as5z) =0

which can be written in the determinant form as in (38), which
completes the proof. [l

A similar formulas for the shifts in @, and a; can be easily
obtained. The next corollary generalizes the result obtained in
Theorem (8).

Corollary 9. Let A¥, i, k=1,2,3 be the shifted operator
defined as in Definition (1), then the recurrence relation joining
the three Gauss functions with one parameter shifted is given by:

o o o3
A AT A

Loy Lo los | oFi[an,ax;a352] =0, i=1,2,3 (42)
m;oly Moy Nos
The following theorem deals with the more general formula

joining the three shifted Gauss polynomials:

2y + oy, ax3a3; 2], o F[an, a

+oc2;a3;z} and 2F1[a17a2;613+063;2} (43)

Theorem 10. For any integers o,;, i = 1,2, 3, the three shifted
Gauss polynomials (43), are linearly related in the form:

o o o3
AN AN

Loy hoy boy | o Fy [alﬂzéas;z} =0 (44)

mpoy  Mmplly  Npos

where I, my, i,j = 1,2, 3 are defined as in (32 and 33).
Proof 5. Suppose that the required relation has the form:

di 2 Fia + oy, a0; a3, 2] + db 2 F\[ar, an + 0 a3; 2]
+d; 2 F\[ay, ax; a3 + 035 2]

=0
for some d; = dfay, a», a3, z), i = 1, 2, 3, that is
3
Z(dlAT’) 2F1 [al,az;a3;z] = 0 (45)

i=1

Now, setting j =o; € Z, i =1,2,3 in (35), one can have

A?[ = lioc,vAl + mia,':z-a i= 13 23 3 (46)
substituting in (45)

3

Zdi[m’ = O7 and

- (47)

3
E dimj,, =0
=1
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solving for d;, we get

li Kot li J0ig2
dy= | e TR G 1203, (mod 3) (48)
mi+l.a,-+| mi+2.1,‘-2
using (48), we can rewrite (45) in the form (44) which com-
pletes the proof. [

4. Computational examples

In this section we will use the computer algebra system,
Mathematica to find the vectors L;, M; for all integer j, and
consequently expressing the operators Af, i=1,2,3 for all
values of j, in terms of the operators A;, Z.

Referring to Lemma (6) in the previous section, one can eas-
ily derive the relation

Ai.:l,-/.A1+m,-,-Z, l:1,273 andjeZ

where /;;,m;; are the ith elements of the vectors L; and M.
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